1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/errno.h> 10 #include <linux/err.h> 11 #include <linux/kvm_host.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/vmalloc.h> 15 #include <linux/fs.h> 16 #include <linux/mman.h> 17 #include <linux/sched.h> 18 #include <linux/kvm.h> 19 #include <linux/kvm_irqfd.h> 20 #include <linux/irqbypass.h> 21 #include <linux/sched/stat.h> 22 #include <trace/events/kvm.h> 23 24 #define CREATE_TRACE_POINTS 25 #include "trace_arm.h" 26 27 #include <linux/uaccess.h> 28 #include <asm/ptrace.h> 29 #include <asm/mman.h> 30 #include <asm/tlbflush.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpufeature.h> 33 #include <asm/virt.h> 34 #include <asm/kvm_arm.h> 35 #include <asm/kvm_asm.h> 36 #include <asm/kvm_mmu.h> 37 #include <asm/kvm_emulate.h> 38 #include <asm/kvm_coproc.h> 39 #include <asm/sections.h> 40 41 #include <kvm/arm_hypercalls.h> 42 #include <kvm/arm_pmu.h> 43 #include <kvm/arm_psci.h> 44 45 #ifdef REQUIRES_VIRT 46 __asm__(".arch_extension virt"); 47 #endif 48 49 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data); 50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 51 52 /* The VMID used in the VTTBR */ 53 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 54 static u32 kvm_next_vmid; 55 static DEFINE_SPINLOCK(kvm_vmid_lock); 56 57 static bool vgic_present; 58 59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); 60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 61 62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 63 { 64 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 65 } 66 67 int kvm_arch_hardware_setup(void *opaque) 68 { 69 return 0; 70 } 71 72 int kvm_arch_check_processor_compat(void *opaque) 73 { 74 return 0; 75 } 76 77 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 78 struct kvm_enable_cap *cap) 79 { 80 int r; 81 82 if (cap->flags) 83 return -EINVAL; 84 85 switch (cap->cap) { 86 case KVM_CAP_ARM_NISV_TO_USER: 87 r = 0; 88 kvm->arch.return_nisv_io_abort_to_user = true; 89 break; 90 default: 91 r = -EINVAL; 92 break; 93 } 94 95 return r; 96 } 97 98 static int kvm_arm_default_max_vcpus(void) 99 { 100 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 101 } 102 103 /** 104 * kvm_arch_init_vm - initializes a VM data structure 105 * @kvm: pointer to the KVM struct 106 */ 107 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 108 { 109 int ret; 110 111 ret = kvm_arm_setup_stage2(kvm, type); 112 if (ret) 113 return ret; 114 115 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu); 116 if (ret) 117 return ret; 118 119 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); 120 if (ret) 121 goto out_free_stage2_pgd; 122 123 kvm_vgic_early_init(kvm); 124 125 /* The maximum number of VCPUs is limited by the host's GIC model */ 126 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus(); 127 128 return ret; 129 out_free_stage2_pgd: 130 kvm_free_stage2_pgd(&kvm->arch.mmu); 131 return ret; 132 } 133 134 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 135 { 136 return VM_FAULT_SIGBUS; 137 } 138 139 140 /** 141 * kvm_arch_destroy_vm - destroy the VM data structure 142 * @kvm: pointer to the KVM struct 143 */ 144 void kvm_arch_destroy_vm(struct kvm *kvm) 145 { 146 int i; 147 148 kvm_vgic_destroy(kvm); 149 150 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 151 if (kvm->vcpus[i]) { 152 kvm_vcpu_destroy(kvm->vcpus[i]); 153 kvm->vcpus[i] = NULL; 154 } 155 } 156 atomic_set(&kvm->online_vcpus, 0); 157 } 158 159 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 160 { 161 int r; 162 switch (ext) { 163 case KVM_CAP_IRQCHIP: 164 r = vgic_present; 165 break; 166 case KVM_CAP_IOEVENTFD: 167 case KVM_CAP_DEVICE_CTRL: 168 case KVM_CAP_USER_MEMORY: 169 case KVM_CAP_SYNC_MMU: 170 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 171 case KVM_CAP_ONE_REG: 172 case KVM_CAP_ARM_PSCI: 173 case KVM_CAP_ARM_PSCI_0_2: 174 case KVM_CAP_READONLY_MEM: 175 case KVM_CAP_MP_STATE: 176 case KVM_CAP_IMMEDIATE_EXIT: 177 case KVM_CAP_VCPU_EVENTS: 178 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 179 case KVM_CAP_ARM_NISV_TO_USER: 180 case KVM_CAP_ARM_INJECT_EXT_DABT: 181 r = 1; 182 break; 183 case KVM_CAP_ARM_SET_DEVICE_ADDR: 184 r = 1; 185 break; 186 case KVM_CAP_NR_VCPUS: 187 r = num_online_cpus(); 188 break; 189 case KVM_CAP_MAX_VCPUS: 190 case KVM_CAP_MAX_VCPU_ID: 191 if (kvm) 192 r = kvm->arch.max_vcpus; 193 else 194 r = kvm_arm_default_max_vcpus(); 195 break; 196 case KVM_CAP_MSI_DEVID: 197 if (!kvm) 198 r = -EINVAL; 199 else 200 r = kvm->arch.vgic.msis_require_devid; 201 break; 202 case KVM_CAP_ARM_USER_IRQ: 203 /* 204 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 205 * (bump this number if adding more devices) 206 */ 207 r = 1; 208 break; 209 case KVM_CAP_STEAL_TIME: 210 r = kvm_arm_pvtime_supported(); 211 break; 212 default: 213 r = kvm_arch_vm_ioctl_check_extension(kvm, ext); 214 break; 215 } 216 return r; 217 } 218 219 long kvm_arch_dev_ioctl(struct file *filp, 220 unsigned int ioctl, unsigned long arg) 221 { 222 return -EINVAL; 223 } 224 225 struct kvm *kvm_arch_alloc_vm(void) 226 { 227 if (!has_vhe()) 228 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 229 230 return vzalloc(sizeof(struct kvm)); 231 } 232 233 void kvm_arch_free_vm(struct kvm *kvm) 234 { 235 if (!has_vhe()) 236 kfree(kvm); 237 else 238 vfree(kvm); 239 } 240 241 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 242 { 243 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 244 return -EBUSY; 245 246 if (id >= kvm->arch.max_vcpus) 247 return -EINVAL; 248 249 return 0; 250 } 251 252 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 253 { 254 int err; 255 256 /* Force users to call KVM_ARM_VCPU_INIT */ 257 vcpu->arch.target = -1; 258 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 259 260 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 261 262 /* Set up the timer */ 263 kvm_timer_vcpu_init(vcpu); 264 265 kvm_pmu_vcpu_init(vcpu); 266 267 kvm_arm_reset_debug_ptr(vcpu); 268 269 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 270 271 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 272 273 err = kvm_vgic_vcpu_init(vcpu); 274 if (err) 275 return err; 276 277 return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); 278 } 279 280 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 281 { 282 } 283 284 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 285 { 286 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm))) 287 static_branch_dec(&userspace_irqchip_in_use); 288 289 kvm_mmu_free_memory_caches(vcpu); 290 kvm_timer_vcpu_terminate(vcpu); 291 kvm_pmu_vcpu_destroy(vcpu); 292 293 kvm_arm_vcpu_destroy(vcpu); 294 } 295 296 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 297 { 298 return kvm_timer_is_pending(vcpu); 299 } 300 301 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 302 { 303 /* 304 * If we're about to block (most likely because we've just hit a 305 * WFI), we need to sync back the state of the GIC CPU interface 306 * so that we have the latest PMR and group enables. This ensures 307 * that kvm_arch_vcpu_runnable has up-to-date data to decide 308 * whether we have pending interrupts. 309 * 310 * For the same reason, we want to tell GICv4 that we need 311 * doorbells to be signalled, should an interrupt become pending. 312 */ 313 preempt_disable(); 314 kvm_vgic_vmcr_sync(vcpu); 315 vgic_v4_put(vcpu, true); 316 preempt_enable(); 317 } 318 319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 320 { 321 preempt_disable(); 322 vgic_v4_load(vcpu); 323 preempt_enable(); 324 } 325 326 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 327 { 328 struct kvm_s2_mmu *mmu; 329 int *last_ran; 330 331 mmu = vcpu->arch.hw_mmu; 332 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 333 334 /* 335 * We might get preempted before the vCPU actually runs, but 336 * over-invalidation doesn't affect correctness. 337 */ 338 if (*last_ran != vcpu->vcpu_id) { 339 kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu); 340 *last_ran = vcpu->vcpu_id; 341 } 342 343 vcpu->cpu = cpu; 344 345 kvm_vgic_load(vcpu); 346 kvm_timer_vcpu_load(vcpu); 347 if (has_vhe()) 348 kvm_vcpu_load_sysregs_vhe(vcpu); 349 kvm_arch_vcpu_load_fp(vcpu); 350 kvm_vcpu_pmu_restore_guest(vcpu); 351 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 352 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 353 354 if (single_task_running()) 355 vcpu_clear_wfx_traps(vcpu); 356 else 357 vcpu_set_wfx_traps(vcpu); 358 359 if (vcpu_has_ptrauth(vcpu)) 360 vcpu_ptrauth_disable(vcpu); 361 } 362 363 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 364 { 365 kvm_arch_vcpu_put_fp(vcpu); 366 if (has_vhe()) 367 kvm_vcpu_put_sysregs_vhe(vcpu); 368 kvm_timer_vcpu_put(vcpu); 369 kvm_vgic_put(vcpu); 370 kvm_vcpu_pmu_restore_host(vcpu); 371 372 vcpu->cpu = -1; 373 } 374 375 static void vcpu_power_off(struct kvm_vcpu *vcpu) 376 { 377 vcpu->arch.power_off = true; 378 kvm_make_request(KVM_REQ_SLEEP, vcpu); 379 kvm_vcpu_kick(vcpu); 380 } 381 382 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 383 struct kvm_mp_state *mp_state) 384 { 385 if (vcpu->arch.power_off) 386 mp_state->mp_state = KVM_MP_STATE_STOPPED; 387 else 388 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 389 390 return 0; 391 } 392 393 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 394 struct kvm_mp_state *mp_state) 395 { 396 int ret = 0; 397 398 switch (mp_state->mp_state) { 399 case KVM_MP_STATE_RUNNABLE: 400 vcpu->arch.power_off = false; 401 break; 402 case KVM_MP_STATE_STOPPED: 403 vcpu_power_off(vcpu); 404 break; 405 default: 406 ret = -EINVAL; 407 } 408 409 return ret; 410 } 411 412 /** 413 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 414 * @v: The VCPU pointer 415 * 416 * If the guest CPU is not waiting for interrupts or an interrupt line is 417 * asserted, the CPU is by definition runnable. 418 */ 419 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 420 { 421 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 422 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 423 && !v->arch.power_off && !v->arch.pause); 424 } 425 426 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 427 { 428 return vcpu_mode_priv(vcpu); 429 } 430 431 /* Just ensure a guest exit from a particular CPU */ 432 static void exit_vm_noop(void *info) 433 { 434 } 435 436 void force_vm_exit(const cpumask_t *mask) 437 { 438 preempt_disable(); 439 smp_call_function_many(mask, exit_vm_noop, NULL, true); 440 preempt_enable(); 441 } 442 443 /** 444 * need_new_vmid_gen - check that the VMID is still valid 445 * @vmid: The VMID to check 446 * 447 * return true if there is a new generation of VMIDs being used 448 * 449 * The hardware supports a limited set of values with the value zero reserved 450 * for the host, so we check if an assigned value belongs to a previous 451 * generation, which requires us to assign a new value. If we're the first to 452 * use a VMID for the new generation, we must flush necessary caches and TLBs 453 * on all CPUs. 454 */ 455 static bool need_new_vmid_gen(struct kvm_vmid *vmid) 456 { 457 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen); 458 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */ 459 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen); 460 } 461 462 /** 463 * update_vmid - Update the vmid with a valid VMID for the current generation 464 * @vmid: The stage-2 VMID information struct 465 */ 466 static void update_vmid(struct kvm_vmid *vmid) 467 { 468 if (!need_new_vmid_gen(vmid)) 469 return; 470 471 spin_lock(&kvm_vmid_lock); 472 473 /* 474 * We need to re-check the vmid_gen here to ensure that if another vcpu 475 * already allocated a valid vmid for this vm, then this vcpu should 476 * use the same vmid. 477 */ 478 if (!need_new_vmid_gen(vmid)) { 479 spin_unlock(&kvm_vmid_lock); 480 return; 481 } 482 483 /* First user of a new VMID generation? */ 484 if (unlikely(kvm_next_vmid == 0)) { 485 atomic64_inc(&kvm_vmid_gen); 486 kvm_next_vmid = 1; 487 488 /* 489 * On SMP we know no other CPUs can use this CPU's or each 490 * other's VMID after force_vm_exit returns since the 491 * kvm_vmid_lock blocks them from reentry to the guest. 492 */ 493 force_vm_exit(cpu_all_mask); 494 /* 495 * Now broadcast TLB + ICACHE invalidation over the inner 496 * shareable domain to make sure all data structures are 497 * clean. 498 */ 499 kvm_call_hyp(__kvm_flush_vm_context); 500 } 501 502 vmid->vmid = kvm_next_vmid; 503 kvm_next_vmid++; 504 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1; 505 506 smp_wmb(); 507 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen)); 508 509 spin_unlock(&kvm_vmid_lock); 510 } 511 512 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) 513 { 514 struct kvm *kvm = vcpu->kvm; 515 int ret = 0; 516 517 if (likely(vcpu->arch.has_run_once)) 518 return 0; 519 520 if (!kvm_arm_vcpu_is_finalized(vcpu)) 521 return -EPERM; 522 523 vcpu->arch.has_run_once = true; 524 525 if (likely(irqchip_in_kernel(kvm))) { 526 /* 527 * Map the VGIC hardware resources before running a vcpu the 528 * first time on this VM. 529 */ 530 if (unlikely(!vgic_ready(kvm))) { 531 ret = kvm_vgic_map_resources(kvm); 532 if (ret) 533 return ret; 534 } 535 } else { 536 /* 537 * Tell the rest of the code that there are userspace irqchip 538 * VMs in the wild. 539 */ 540 static_branch_inc(&userspace_irqchip_in_use); 541 } 542 543 ret = kvm_timer_enable(vcpu); 544 if (ret) 545 return ret; 546 547 ret = kvm_arm_pmu_v3_enable(vcpu); 548 549 return ret; 550 } 551 552 bool kvm_arch_intc_initialized(struct kvm *kvm) 553 { 554 return vgic_initialized(kvm); 555 } 556 557 void kvm_arm_halt_guest(struct kvm *kvm) 558 { 559 int i; 560 struct kvm_vcpu *vcpu; 561 562 kvm_for_each_vcpu(i, vcpu, kvm) 563 vcpu->arch.pause = true; 564 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 565 } 566 567 void kvm_arm_resume_guest(struct kvm *kvm) 568 { 569 int i; 570 struct kvm_vcpu *vcpu; 571 572 kvm_for_each_vcpu(i, vcpu, kvm) { 573 vcpu->arch.pause = false; 574 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 575 } 576 } 577 578 static void vcpu_req_sleep(struct kvm_vcpu *vcpu) 579 { 580 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 581 582 rcuwait_wait_event(wait, 583 (!vcpu->arch.power_off) &&(!vcpu->arch.pause), 584 TASK_INTERRUPTIBLE); 585 586 if (vcpu->arch.power_off || vcpu->arch.pause) { 587 /* Awaken to handle a signal, request we sleep again later. */ 588 kvm_make_request(KVM_REQ_SLEEP, vcpu); 589 } 590 591 /* 592 * Make sure we will observe a potential reset request if we've 593 * observed a change to the power state. Pairs with the smp_wmb() in 594 * kvm_psci_vcpu_on(). 595 */ 596 smp_rmb(); 597 } 598 599 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 600 { 601 return vcpu->arch.target >= 0; 602 } 603 604 static void check_vcpu_requests(struct kvm_vcpu *vcpu) 605 { 606 if (kvm_request_pending(vcpu)) { 607 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 608 vcpu_req_sleep(vcpu); 609 610 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 611 kvm_reset_vcpu(vcpu); 612 613 /* 614 * Clear IRQ_PENDING requests that were made to guarantee 615 * that a VCPU sees new virtual interrupts. 616 */ 617 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 618 619 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 620 kvm_update_stolen_time(vcpu); 621 622 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 623 /* The distributor enable bits were changed */ 624 preempt_disable(); 625 vgic_v4_put(vcpu, false); 626 vgic_v4_load(vcpu); 627 preempt_enable(); 628 } 629 } 630 } 631 632 /** 633 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 634 * @vcpu: The VCPU pointer 635 * 636 * This function is called through the VCPU_RUN ioctl called from user space. It 637 * will execute VM code in a loop until the time slice for the process is used 638 * or some emulation is needed from user space in which case the function will 639 * return with return value 0 and with the kvm_run structure filled in with the 640 * required data for the requested emulation. 641 */ 642 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 643 { 644 struct kvm_run *run = vcpu->run; 645 int ret; 646 647 if (unlikely(!kvm_vcpu_initialized(vcpu))) 648 return -ENOEXEC; 649 650 ret = kvm_vcpu_first_run_init(vcpu); 651 if (ret) 652 return ret; 653 654 if (run->exit_reason == KVM_EXIT_MMIO) { 655 ret = kvm_handle_mmio_return(vcpu); 656 if (ret) 657 return ret; 658 } 659 660 if (run->immediate_exit) 661 return -EINTR; 662 663 vcpu_load(vcpu); 664 665 kvm_sigset_activate(vcpu); 666 667 ret = 1; 668 run->exit_reason = KVM_EXIT_UNKNOWN; 669 while (ret > 0) { 670 /* 671 * Check conditions before entering the guest 672 */ 673 cond_resched(); 674 675 update_vmid(&vcpu->arch.hw_mmu->vmid); 676 677 check_vcpu_requests(vcpu); 678 679 /* 680 * Preparing the interrupts to be injected also 681 * involves poking the GIC, which must be done in a 682 * non-preemptible context. 683 */ 684 preempt_disable(); 685 686 kvm_pmu_flush_hwstate(vcpu); 687 688 local_irq_disable(); 689 690 kvm_vgic_flush_hwstate(vcpu); 691 692 /* 693 * Exit if we have a signal pending so that we can deliver the 694 * signal to user space. 695 */ 696 if (signal_pending(current)) { 697 ret = -EINTR; 698 run->exit_reason = KVM_EXIT_INTR; 699 } 700 701 /* 702 * If we're using a userspace irqchip, then check if we need 703 * to tell a userspace irqchip about timer or PMU level 704 * changes and if so, exit to userspace (the actual level 705 * state gets updated in kvm_timer_update_run and 706 * kvm_pmu_update_run below). 707 */ 708 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 709 if (kvm_timer_should_notify_user(vcpu) || 710 kvm_pmu_should_notify_user(vcpu)) { 711 ret = -EINTR; 712 run->exit_reason = KVM_EXIT_INTR; 713 } 714 } 715 716 /* 717 * Ensure we set mode to IN_GUEST_MODE after we disable 718 * interrupts and before the final VCPU requests check. 719 * See the comment in kvm_vcpu_exiting_guest_mode() and 720 * Documentation/virt/kvm/vcpu-requests.rst 721 */ 722 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 723 724 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) || 725 kvm_request_pending(vcpu)) { 726 vcpu->mode = OUTSIDE_GUEST_MODE; 727 isb(); /* Ensure work in x_flush_hwstate is committed */ 728 kvm_pmu_sync_hwstate(vcpu); 729 if (static_branch_unlikely(&userspace_irqchip_in_use)) 730 kvm_timer_sync_user(vcpu); 731 kvm_vgic_sync_hwstate(vcpu); 732 local_irq_enable(); 733 preempt_enable(); 734 continue; 735 } 736 737 kvm_arm_setup_debug(vcpu); 738 739 /************************************************************** 740 * Enter the guest 741 */ 742 trace_kvm_entry(*vcpu_pc(vcpu)); 743 guest_enter_irqoff(); 744 745 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 746 747 vcpu->mode = OUTSIDE_GUEST_MODE; 748 vcpu->stat.exits++; 749 /* 750 * Back from guest 751 *************************************************************/ 752 753 kvm_arm_clear_debug(vcpu); 754 755 /* 756 * We must sync the PMU state before the vgic state so 757 * that the vgic can properly sample the updated state of the 758 * interrupt line. 759 */ 760 kvm_pmu_sync_hwstate(vcpu); 761 762 /* 763 * Sync the vgic state before syncing the timer state because 764 * the timer code needs to know if the virtual timer 765 * interrupts are active. 766 */ 767 kvm_vgic_sync_hwstate(vcpu); 768 769 /* 770 * Sync the timer hardware state before enabling interrupts as 771 * we don't want vtimer interrupts to race with syncing the 772 * timer virtual interrupt state. 773 */ 774 if (static_branch_unlikely(&userspace_irqchip_in_use)) 775 kvm_timer_sync_user(vcpu); 776 777 kvm_arch_vcpu_ctxsync_fp(vcpu); 778 779 /* 780 * We may have taken a host interrupt in HYP mode (ie 781 * while executing the guest). This interrupt is still 782 * pending, as we haven't serviced it yet! 783 * 784 * We're now back in SVC mode, with interrupts 785 * disabled. Enabling the interrupts now will have 786 * the effect of taking the interrupt again, in SVC 787 * mode this time. 788 */ 789 local_irq_enable(); 790 791 /* 792 * We do local_irq_enable() before calling guest_exit() so 793 * that if a timer interrupt hits while running the guest we 794 * account that tick as being spent in the guest. We enable 795 * preemption after calling guest_exit() so that if we get 796 * preempted we make sure ticks after that is not counted as 797 * guest time. 798 */ 799 guest_exit(); 800 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 801 802 /* Exit types that need handling before we can be preempted */ 803 handle_exit_early(vcpu, ret); 804 805 preempt_enable(); 806 807 ret = handle_exit(vcpu, ret); 808 } 809 810 /* Tell userspace about in-kernel device output levels */ 811 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 812 kvm_timer_update_run(vcpu); 813 kvm_pmu_update_run(vcpu); 814 } 815 816 kvm_sigset_deactivate(vcpu); 817 818 vcpu_put(vcpu); 819 return ret; 820 } 821 822 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 823 { 824 int bit_index; 825 bool set; 826 unsigned long *hcr; 827 828 if (number == KVM_ARM_IRQ_CPU_IRQ) 829 bit_index = __ffs(HCR_VI); 830 else /* KVM_ARM_IRQ_CPU_FIQ */ 831 bit_index = __ffs(HCR_VF); 832 833 hcr = vcpu_hcr(vcpu); 834 if (level) 835 set = test_and_set_bit(bit_index, hcr); 836 else 837 set = test_and_clear_bit(bit_index, hcr); 838 839 /* 840 * If we didn't change anything, no need to wake up or kick other CPUs 841 */ 842 if (set == level) 843 return 0; 844 845 /* 846 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 847 * trigger a world-switch round on the running physical CPU to set the 848 * virtual IRQ/FIQ fields in the HCR appropriately. 849 */ 850 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 851 kvm_vcpu_kick(vcpu); 852 853 return 0; 854 } 855 856 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 857 bool line_status) 858 { 859 u32 irq = irq_level->irq; 860 unsigned int irq_type, vcpu_idx, irq_num; 861 int nrcpus = atomic_read(&kvm->online_vcpus); 862 struct kvm_vcpu *vcpu = NULL; 863 bool level = irq_level->level; 864 865 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 866 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 867 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 868 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 869 870 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 871 872 switch (irq_type) { 873 case KVM_ARM_IRQ_TYPE_CPU: 874 if (irqchip_in_kernel(kvm)) 875 return -ENXIO; 876 877 if (vcpu_idx >= nrcpus) 878 return -EINVAL; 879 880 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 881 if (!vcpu) 882 return -EINVAL; 883 884 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 885 return -EINVAL; 886 887 return vcpu_interrupt_line(vcpu, irq_num, level); 888 case KVM_ARM_IRQ_TYPE_PPI: 889 if (!irqchip_in_kernel(kvm)) 890 return -ENXIO; 891 892 if (vcpu_idx >= nrcpus) 893 return -EINVAL; 894 895 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 896 if (!vcpu) 897 return -EINVAL; 898 899 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 900 return -EINVAL; 901 902 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); 903 case KVM_ARM_IRQ_TYPE_SPI: 904 if (!irqchip_in_kernel(kvm)) 905 return -ENXIO; 906 907 if (irq_num < VGIC_NR_PRIVATE_IRQS) 908 return -EINVAL; 909 910 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); 911 } 912 913 return -EINVAL; 914 } 915 916 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 917 const struct kvm_vcpu_init *init) 918 { 919 unsigned int i, ret; 920 int phys_target = kvm_target_cpu(); 921 922 if (init->target != phys_target) 923 return -EINVAL; 924 925 /* 926 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 927 * use the same target. 928 */ 929 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) 930 return -EINVAL; 931 932 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 933 for (i = 0; i < sizeof(init->features) * 8; i++) { 934 bool set = (init->features[i / 32] & (1 << (i % 32))); 935 936 if (set && i >= KVM_VCPU_MAX_FEATURES) 937 return -ENOENT; 938 939 /* 940 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 941 * use the same feature set. 942 */ 943 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && 944 test_bit(i, vcpu->arch.features) != set) 945 return -EINVAL; 946 947 if (set) 948 set_bit(i, vcpu->arch.features); 949 } 950 951 vcpu->arch.target = phys_target; 952 953 /* Now we know what it is, we can reset it. */ 954 ret = kvm_reset_vcpu(vcpu); 955 if (ret) { 956 vcpu->arch.target = -1; 957 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 958 } 959 960 return ret; 961 } 962 963 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 964 struct kvm_vcpu_init *init) 965 { 966 int ret; 967 968 ret = kvm_vcpu_set_target(vcpu, init); 969 if (ret) 970 return ret; 971 972 /* 973 * Ensure a rebooted VM will fault in RAM pages and detect if the 974 * guest MMU is turned off and flush the caches as needed. 975 * 976 * S2FWB enforces all memory accesses to RAM being cacheable, 977 * ensuring that the data side is always coherent. We still 978 * need to invalidate the I-cache though, as FWB does *not* 979 * imply CTR_EL0.DIC. 980 */ 981 if (vcpu->arch.has_run_once) { 982 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 983 stage2_unmap_vm(vcpu->kvm); 984 else 985 __flush_icache_all(); 986 } 987 988 vcpu_reset_hcr(vcpu); 989 990 /* 991 * Handle the "start in power-off" case. 992 */ 993 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) 994 vcpu_power_off(vcpu); 995 else 996 vcpu->arch.power_off = false; 997 998 return 0; 999 } 1000 1001 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1002 struct kvm_device_attr *attr) 1003 { 1004 int ret = -ENXIO; 1005 1006 switch (attr->group) { 1007 default: 1008 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1009 break; 1010 } 1011 1012 return ret; 1013 } 1014 1015 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1016 struct kvm_device_attr *attr) 1017 { 1018 int ret = -ENXIO; 1019 1020 switch (attr->group) { 1021 default: 1022 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1023 break; 1024 } 1025 1026 return ret; 1027 } 1028 1029 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1030 struct kvm_device_attr *attr) 1031 { 1032 int ret = -ENXIO; 1033 1034 switch (attr->group) { 1035 default: 1036 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1037 break; 1038 } 1039 1040 return ret; 1041 } 1042 1043 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1044 struct kvm_vcpu_events *events) 1045 { 1046 memset(events, 0, sizeof(*events)); 1047 1048 return __kvm_arm_vcpu_get_events(vcpu, events); 1049 } 1050 1051 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1052 struct kvm_vcpu_events *events) 1053 { 1054 int i; 1055 1056 /* check whether the reserved field is zero */ 1057 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1058 if (events->reserved[i]) 1059 return -EINVAL; 1060 1061 /* check whether the pad field is zero */ 1062 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1063 if (events->exception.pad[i]) 1064 return -EINVAL; 1065 1066 return __kvm_arm_vcpu_set_events(vcpu, events); 1067 } 1068 1069 long kvm_arch_vcpu_ioctl(struct file *filp, 1070 unsigned int ioctl, unsigned long arg) 1071 { 1072 struct kvm_vcpu *vcpu = filp->private_data; 1073 void __user *argp = (void __user *)arg; 1074 struct kvm_device_attr attr; 1075 long r; 1076 1077 switch (ioctl) { 1078 case KVM_ARM_VCPU_INIT: { 1079 struct kvm_vcpu_init init; 1080 1081 r = -EFAULT; 1082 if (copy_from_user(&init, argp, sizeof(init))) 1083 break; 1084 1085 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1086 break; 1087 } 1088 case KVM_SET_ONE_REG: 1089 case KVM_GET_ONE_REG: { 1090 struct kvm_one_reg reg; 1091 1092 r = -ENOEXEC; 1093 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1094 break; 1095 1096 r = -EFAULT; 1097 if (copy_from_user(®, argp, sizeof(reg))) 1098 break; 1099 1100 if (ioctl == KVM_SET_ONE_REG) 1101 r = kvm_arm_set_reg(vcpu, ®); 1102 else 1103 r = kvm_arm_get_reg(vcpu, ®); 1104 break; 1105 } 1106 case KVM_GET_REG_LIST: { 1107 struct kvm_reg_list __user *user_list = argp; 1108 struct kvm_reg_list reg_list; 1109 unsigned n; 1110 1111 r = -ENOEXEC; 1112 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1113 break; 1114 1115 r = -EPERM; 1116 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1117 break; 1118 1119 r = -EFAULT; 1120 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1121 break; 1122 n = reg_list.n; 1123 reg_list.n = kvm_arm_num_regs(vcpu); 1124 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1125 break; 1126 r = -E2BIG; 1127 if (n < reg_list.n) 1128 break; 1129 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1130 break; 1131 } 1132 case KVM_SET_DEVICE_ATTR: { 1133 r = -EFAULT; 1134 if (copy_from_user(&attr, argp, sizeof(attr))) 1135 break; 1136 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1137 break; 1138 } 1139 case KVM_GET_DEVICE_ATTR: { 1140 r = -EFAULT; 1141 if (copy_from_user(&attr, argp, sizeof(attr))) 1142 break; 1143 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1144 break; 1145 } 1146 case KVM_HAS_DEVICE_ATTR: { 1147 r = -EFAULT; 1148 if (copy_from_user(&attr, argp, sizeof(attr))) 1149 break; 1150 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1151 break; 1152 } 1153 case KVM_GET_VCPU_EVENTS: { 1154 struct kvm_vcpu_events events; 1155 1156 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1157 return -EINVAL; 1158 1159 if (copy_to_user(argp, &events, sizeof(events))) 1160 return -EFAULT; 1161 1162 return 0; 1163 } 1164 case KVM_SET_VCPU_EVENTS: { 1165 struct kvm_vcpu_events events; 1166 1167 if (copy_from_user(&events, argp, sizeof(events))) 1168 return -EFAULT; 1169 1170 return kvm_arm_vcpu_set_events(vcpu, &events); 1171 } 1172 case KVM_ARM_VCPU_FINALIZE: { 1173 int what; 1174 1175 if (!kvm_vcpu_initialized(vcpu)) 1176 return -ENOEXEC; 1177 1178 if (get_user(what, (const int __user *)argp)) 1179 return -EFAULT; 1180 1181 return kvm_arm_vcpu_finalize(vcpu, what); 1182 } 1183 default: 1184 r = -EINVAL; 1185 } 1186 1187 return r; 1188 } 1189 1190 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1191 { 1192 1193 } 1194 1195 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1196 struct kvm_memory_slot *memslot) 1197 { 1198 kvm_flush_remote_tlbs(kvm); 1199 } 1200 1201 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1202 struct kvm_arm_device_addr *dev_addr) 1203 { 1204 unsigned long dev_id, type; 1205 1206 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> 1207 KVM_ARM_DEVICE_ID_SHIFT; 1208 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> 1209 KVM_ARM_DEVICE_TYPE_SHIFT; 1210 1211 switch (dev_id) { 1212 case KVM_ARM_DEVICE_VGIC_V2: 1213 if (!vgic_present) 1214 return -ENXIO; 1215 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); 1216 default: 1217 return -ENODEV; 1218 } 1219 } 1220 1221 long kvm_arch_vm_ioctl(struct file *filp, 1222 unsigned int ioctl, unsigned long arg) 1223 { 1224 struct kvm *kvm = filp->private_data; 1225 void __user *argp = (void __user *)arg; 1226 1227 switch (ioctl) { 1228 case KVM_CREATE_IRQCHIP: { 1229 int ret; 1230 if (!vgic_present) 1231 return -ENXIO; 1232 mutex_lock(&kvm->lock); 1233 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1234 mutex_unlock(&kvm->lock); 1235 return ret; 1236 } 1237 case KVM_ARM_SET_DEVICE_ADDR: { 1238 struct kvm_arm_device_addr dev_addr; 1239 1240 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1241 return -EFAULT; 1242 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1243 } 1244 case KVM_ARM_PREFERRED_TARGET: { 1245 int err; 1246 struct kvm_vcpu_init init; 1247 1248 err = kvm_vcpu_preferred_target(&init); 1249 if (err) 1250 return err; 1251 1252 if (copy_to_user(argp, &init, sizeof(init))) 1253 return -EFAULT; 1254 1255 return 0; 1256 } 1257 default: 1258 return -EINVAL; 1259 } 1260 } 1261 1262 static void cpu_init_hyp_mode(void) 1263 { 1264 phys_addr_t pgd_ptr; 1265 unsigned long hyp_stack_ptr; 1266 unsigned long vector_ptr; 1267 unsigned long tpidr_el2; 1268 1269 /* Switch from the HYP stub to our own HYP init vector */ 1270 __hyp_set_vectors(kvm_get_idmap_vector()); 1271 1272 /* 1273 * Calculate the raw per-cpu offset without a translation from the 1274 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1275 * so that we can use adr_l to access per-cpu variables in EL2. 1276 */ 1277 tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) - 1278 (unsigned long)kvm_ksym_ref(&kvm_host_data)); 1279 1280 pgd_ptr = kvm_mmu_get_httbr(); 1281 hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE; 1282 vector_ptr = (unsigned long)kvm_get_hyp_vector(); 1283 1284 /* 1285 * Call initialization code, and switch to the full blown HYP code. 1286 * If the cpucaps haven't been finalized yet, something has gone very 1287 * wrong, and hyp will crash and burn when it uses any 1288 * cpus_have_const_cap() wrapper. 1289 */ 1290 BUG_ON(!system_capabilities_finalized()); 1291 __kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2); 1292 1293 /* 1294 * Disabling SSBD on a non-VHE system requires us to enable SSBS 1295 * at EL2. 1296 */ 1297 if (this_cpu_has_cap(ARM64_SSBS) && 1298 arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) { 1299 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 1300 } 1301 } 1302 1303 static void cpu_hyp_reset(void) 1304 { 1305 if (!is_kernel_in_hyp_mode()) 1306 __hyp_reset_vectors(); 1307 } 1308 1309 static void cpu_hyp_reinit(void) 1310 { 1311 kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt); 1312 1313 cpu_hyp_reset(); 1314 1315 if (is_kernel_in_hyp_mode()) 1316 kvm_timer_init_vhe(); 1317 else 1318 cpu_init_hyp_mode(); 1319 1320 kvm_arm_init_debug(); 1321 1322 if (vgic_present) 1323 kvm_vgic_init_cpu_hardware(); 1324 } 1325 1326 static void _kvm_arch_hardware_enable(void *discard) 1327 { 1328 if (!__this_cpu_read(kvm_arm_hardware_enabled)) { 1329 cpu_hyp_reinit(); 1330 __this_cpu_write(kvm_arm_hardware_enabled, 1); 1331 } 1332 } 1333 1334 int kvm_arch_hardware_enable(void) 1335 { 1336 _kvm_arch_hardware_enable(NULL); 1337 return 0; 1338 } 1339 1340 static void _kvm_arch_hardware_disable(void *discard) 1341 { 1342 if (__this_cpu_read(kvm_arm_hardware_enabled)) { 1343 cpu_hyp_reset(); 1344 __this_cpu_write(kvm_arm_hardware_enabled, 0); 1345 } 1346 } 1347 1348 void kvm_arch_hardware_disable(void) 1349 { 1350 _kvm_arch_hardware_disable(NULL); 1351 } 1352 1353 #ifdef CONFIG_CPU_PM 1354 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 1355 unsigned long cmd, 1356 void *v) 1357 { 1358 /* 1359 * kvm_arm_hardware_enabled is left with its old value over 1360 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 1361 * re-enable hyp. 1362 */ 1363 switch (cmd) { 1364 case CPU_PM_ENTER: 1365 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1366 /* 1367 * don't update kvm_arm_hardware_enabled here 1368 * so that the hardware will be re-enabled 1369 * when we resume. See below. 1370 */ 1371 cpu_hyp_reset(); 1372 1373 return NOTIFY_OK; 1374 case CPU_PM_ENTER_FAILED: 1375 case CPU_PM_EXIT: 1376 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1377 /* The hardware was enabled before suspend. */ 1378 cpu_hyp_reinit(); 1379 1380 return NOTIFY_OK; 1381 1382 default: 1383 return NOTIFY_DONE; 1384 } 1385 } 1386 1387 static struct notifier_block hyp_init_cpu_pm_nb = { 1388 .notifier_call = hyp_init_cpu_pm_notifier, 1389 }; 1390 1391 static void __init hyp_cpu_pm_init(void) 1392 { 1393 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 1394 } 1395 static void __init hyp_cpu_pm_exit(void) 1396 { 1397 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 1398 } 1399 #else 1400 static inline void hyp_cpu_pm_init(void) 1401 { 1402 } 1403 static inline void hyp_cpu_pm_exit(void) 1404 { 1405 } 1406 #endif 1407 1408 static int init_common_resources(void) 1409 { 1410 return kvm_set_ipa_limit(); 1411 } 1412 1413 static int init_subsystems(void) 1414 { 1415 int err = 0; 1416 1417 /* 1418 * Enable hardware so that subsystem initialisation can access EL2. 1419 */ 1420 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); 1421 1422 /* 1423 * Register CPU lower-power notifier 1424 */ 1425 hyp_cpu_pm_init(); 1426 1427 /* 1428 * Init HYP view of VGIC 1429 */ 1430 err = kvm_vgic_hyp_init(); 1431 switch (err) { 1432 case 0: 1433 vgic_present = true; 1434 break; 1435 case -ENODEV: 1436 case -ENXIO: 1437 vgic_present = false; 1438 err = 0; 1439 break; 1440 default: 1441 goto out; 1442 } 1443 1444 /* 1445 * Init HYP architected timer support 1446 */ 1447 err = kvm_timer_hyp_init(vgic_present); 1448 if (err) 1449 goto out; 1450 1451 kvm_perf_init(); 1452 kvm_coproc_table_init(); 1453 1454 out: 1455 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); 1456 1457 return err; 1458 } 1459 1460 static void teardown_hyp_mode(void) 1461 { 1462 int cpu; 1463 1464 free_hyp_pgds(); 1465 for_each_possible_cpu(cpu) 1466 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 1467 } 1468 1469 /** 1470 * Inits Hyp-mode on all online CPUs 1471 */ 1472 static int init_hyp_mode(void) 1473 { 1474 int cpu; 1475 int err = 0; 1476 1477 /* 1478 * Allocate Hyp PGD and setup Hyp identity mapping 1479 */ 1480 err = kvm_mmu_init(); 1481 if (err) 1482 goto out_err; 1483 1484 /* 1485 * Allocate stack pages for Hypervisor-mode 1486 */ 1487 for_each_possible_cpu(cpu) { 1488 unsigned long stack_page; 1489 1490 stack_page = __get_free_page(GFP_KERNEL); 1491 if (!stack_page) { 1492 err = -ENOMEM; 1493 goto out_err; 1494 } 1495 1496 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 1497 } 1498 1499 /* 1500 * Map the Hyp-code called directly from the host 1501 */ 1502 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 1503 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 1504 if (err) { 1505 kvm_err("Cannot map world-switch code\n"); 1506 goto out_err; 1507 } 1508 1509 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 1510 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 1511 if (err) { 1512 kvm_err("Cannot map rodata section\n"); 1513 goto out_err; 1514 } 1515 1516 err = create_hyp_mappings(kvm_ksym_ref(__bss_start), 1517 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 1518 if (err) { 1519 kvm_err("Cannot map bss section\n"); 1520 goto out_err; 1521 } 1522 1523 err = kvm_map_vectors(); 1524 if (err) { 1525 kvm_err("Cannot map vectors\n"); 1526 goto out_err; 1527 } 1528 1529 /* 1530 * Map the Hyp stack pages 1531 */ 1532 for_each_possible_cpu(cpu) { 1533 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 1534 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, 1535 PAGE_HYP); 1536 1537 if (err) { 1538 kvm_err("Cannot map hyp stack\n"); 1539 goto out_err; 1540 } 1541 } 1542 1543 for_each_possible_cpu(cpu) { 1544 kvm_host_data_t *cpu_data; 1545 1546 cpu_data = per_cpu_ptr(&kvm_host_data, cpu); 1547 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP); 1548 1549 if (err) { 1550 kvm_err("Cannot map host CPU state: %d\n", err); 1551 goto out_err; 1552 } 1553 } 1554 1555 err = hyp_map_aux_data(); 1556 if (err) 1557 kvm_err("Cannot map host auxiliary data: %d\n", err); 1558 1559 return 0; 1560 1561 out_err: 1562 teardown_hyp_mode(); 1563 kvm_err("error initializing Hyp mode: %d\n", err); 1564 return err; 1565 } 1566 1567 static void check_kvm_target_cpu(void *ret) 1568 { 1569 *(int *)ret = kvm_target_cpu(); 1570 } 1571 1572 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 1573 { 1574 struct kvm_vcpu *vcpu; 1575 int i; 1576 1577 mpidr &= MPIDR_HWID_BITMASK; 1578 kvm_for_each_vcpu(i, vcpu, kvm) { 1579 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 1580 return vcpu; 1581 } 1582 return NULL; 1583 } 1584 1585 bool kvm_arch_has_irq_bypass(void) 1586 { 1587 return true; 1588 } 1589 1590 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 1591 struct irq_bypass_producer *prod) 1592 { 1593 struct kvm_kernel_irqfd *irqfd = 1594 container_of(cons, struct kvm_kernel_irqfd, consumer); 1595 1596 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 1597 &irqfd->irq_entry); 1598 } 1599 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 1600 struct irq_bypass_producer *prod) 1601 { 1602 struct kvm_kernel_irqfd *irqfd = 1603 container_of(cons, struct kvm_kernel_irqfd, consumer); 1604 1605 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 1606 &irqfd->irq_entry); 1607 } 1608 1609 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 1610 { 1611 struct kvm_kernel_irqfd *irqfd = 1612 container_of(cons, struct kvm_kernel_irqfd, consumer); 1613 1614 kvm_arm_halt_guest(irqfd->kvm); 1615 } 1616 1617 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 1618 { 1619 struct kvm_kernel_irqfd *irqfd = 1620 container_of(cons, struct kvm_kernel_irqfd, consumer); 1621 1622 kvm_arm_resume_guest(irqfd->kvm); 1623 } 1624 1625 /** 1626 * Initialize Hyp-mode and memory mappings on all CPUs. 1627 */ 1628 int kvm_arch_init(void *opaque) 1629 { 1630 int err; 1631 int ret, cpu; 1632 bool in_hyp_mode; 1633 1634 if (!is_hyp_mode_available()) { 1635 kvm_info("HYP mode not available\n"); 1636 return -ENODEV; 1637 } 1638 1639 in_hyp_mode = is_kernel_in_hyp_mode(); 1640 1641 if (!in_hyp_mode && kvm_arch_requires_vhe()) { 1642 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n"); 1643 return -ENODEV; 1644 } 1645 1646 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE)) 1647 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 1648 "Only trusted guests should be used on this system.\n"); 1649 1650 for_each_online_cpu(cpu) { 1651 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); 1652 if (ret < 0) { 1653 kvm_err("Error, CPU %d not supported!\n", cpu); 1654 return -ENODEV; 1655 } 1656 } 1657 1658 err = init_common_resources(); 1659 if (err) 1660 return err; 1661 1662 err = kvm_arm_init_sve(); 1663 if (err) 1664 return err; 1665 1666 if (!in_hyp_mode) { 1667 err = init_hyp_mode(); 1668 if (err) 1669 goto out_err; 1670 } 1671 1672 err = init_subsystems(); 1673 if (err) 1674 goto out_hyp; 1675 1676 if (in_hyp_mode) 1677 kvm_info("VHE mode initialized successfully\n"); 1678 else 1679 kvm_info("Hyp mode initialized successfully\n"); 1680 1681 return 0; 1682 1683 out_hyp: 1684 hyp_cpu_pm_exit(); 1685 if (!in_hyp_mode) 1686 teardown_hyp_mode(); 1687 out_err: 1688 return err; 1689 } 1690 1691 /* NOP: Compiling as a module not supported */ 1692 void kvm_arch_exit(void) 1693 { 1694 kvm_perf_teardown(); 1695 } 1696 1697 static int arm_init(void) 1698 { 1699 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1700 return rc; 1701 } 1702 1703 module_init(arm_init); 1704