xref: /openbmc/linux/arch/arm64/kvm/arm.c (revision 2a5d2bd1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace_arm.h"
26 
27 #include <linux/uaccess.h>
28 #include <asm/ptrace.h>
29 #include <asm/mman.h>
30 #include <asm/tlbflush.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpufeature.h>
33 #include <asm/virt.h>
34 #include <asm/kvm_arm.h>
35 #include <asm/kvm_asm.h>
36 #include <asm/kvm_mmu.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_coproc.h>
39 #include <asm/sections.h>
40 
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44 
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension	virt");
47 #endif
48 
49 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
51 
52 /* The VMID used in the VTTBR */
53 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54 static u32 kvm_next_vmid;
55 static DEFINE_SPINLOCK(kvm_vmid_lock);
56 
57 static bool vgic_present;
58 
59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61 
62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
63 {
64 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
65 }
66 
67 int kvm_arch_hardware_setup(void *opaque)
68 {
69 	return 0;
70 }
71 
72 int kvm_arch_check_processor_compat(void *opaque)
73 {
74 	return 0;
75 }
76 
77 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
78 			    struct kvm_enable_cap *cap)
79 {
80 	int r;
81 
82 	if (cap->flags)
83 		return -EINVAL;
84 
85 	switch (cap->cap) {
86 	case KVM_CAP_ARM_NISV_TO_USER:
87 		r = 0;
88 		kvm->arch.return_nisv_io_abort_to_user = true;
89 		break;
90 	default:
91 		r = -EINVAL;
92 		break;
93 	}
94 
95 	return r;
96 }
97 
98 static int kvm_arm_default_max_vcpus(void)
99 {
100 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
101 }
102 
103 /**
104  * kvm_arch_init_vm - initializes a VM data structure
105  * @kvm:	pointer to the KVM struct
106  */
107 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
108 {
109 	int ret;
110 
111 	ret = kvm_arm_setup_stage2(kvm, type);
112 	if (ret)
113 		return ret;
114 
115 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
116 	if (ret)
117 		return ret;
118 
119 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
120 	if (ret)
121 		goto out_free_stage2_pgd;
122 
123 	kvm_vgic_early_init(kvm);
124 
125 	/* The maximum number of VCPUs is limited by the host's GIC model */
126 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
127 
128 	return ret;
129 out_free_stage2_pgd:
130 	kvm_free_stage2_pgd(&kvm->arch.mmu);
131 	return ret;
132 }
133 
134 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
135 {
136 	return VM_FAULT_SIGBUS;
137 }
138 
139 
140 /**
141  * kvm_arch_destroy_vm - destroy the VM data structure
142  * @kvm:	pointer to the KVM struct
143  */
144 void kvm_arch_destroy_vm(struct kvm *kvm)
145 {
146 	int i;
147 
148 	kvm_vgic_destroy(kvm);
149 
150 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
151 		if (kvm->vcpus[i]) {
152 			kvm_vcpu_destroy(kvm->vcpus[i]);
153 			kvm->vcpus[i] = NULL;
154 		}
155 	}
156 	atomic_set(&kvm->online_vcpus, 0);
157 }
158 
159 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
160 {
161 	int r;
162 	switch (ext) {
163 	case KVM_CAP_IRQCHIP:
164 		r = vgic_present;
165 		break;
166 	case KVM_CAP_IOEVENTFD:
167 	case KVM_CAP_DEVICE_CTRL:
168 	case KVM_CAP_USER_MEMORY:
169 	case KVM_CAP_SYNC_MMU:
170 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
171 	case KVM_CAP_ONE_REG:
172 	case KVM_CAP_ARM_PSCI:
173 	case KVM_CAP_ARM_PSCI_0_2:
174 	case KVM_CAP_READONLY_MEM:
175 	case KVM_CAP_MP_STATE:
176 	case KVM_CAP_IMMEDIATE_EXIT:
177 	case KVM_CAP_VCPU_EVENTS:
178 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
179 	case KVM_CAP_ARM_NISV_TO_USER:
180 	case KVM_CAP_ARM_INJECT_EXT_DABT:
181 		r = 1;
182 		break;
183 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
184 		r = 1;
185 		break;
186 	case KVM_CAP_NR_VCPUS:
187 		r = num_online_cpus();
188 		break;
189 	case KVM_CAP_MAX_VCPUS:
190 	case KVM_CAP_MAX_VCPU_ID:
191 		if (kvm)
192 			r = kvm->arch.max_vcpus;
193 		else
194 			r = kvm_arm_default_max_vcpus();
195 		break;
196 	case KVM_CAP_MSI_DEVID:
197 		if (!kvm)
198 			r = -EINVAL;
199 		else
200 			r = kvm->arch.vgic.msis_require_devid;
201 		break;
202 	case KVM_CAP_ARM_USER_IRQ:
203 		/*
204 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
205 		 * (bump this number if adding more devices)
206 		 */
207 		r = 1;
208 		break;
209 	default:
210 		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
211 		break;
212 	}
213 	return r;
214 }
215 
216 long kvm_arch_dev_ioctl(struct file *filp,
217 			unsigned int ioctl, unsigned long arg)
218 {
219 	return -EINVAL;
220 }
221 
222 struct kvm *kvm_arch_alloc_vm(void)
223 {
224 	if (!has_vhe())
225 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
226 
227 	return vzalloc(sizeof(struct kvm));
228 }
229 
230 void kvm_arch_free_vm(struct kvm *kvm)
231 {
232 	if (!has_vhe())
233 		kfree(kvm);
234 	else
235 		vfree(kvm);
236 }
237 
238 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
239 {
240 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
241 		return -EBUSY;
242 
243 	if (id >= kvm->arch.max_vcpus)
244 		return -EINVAL;
245 
246 	return 0;
247 }
248 
249 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
250 {
251 	int err;
252 
253 	/* Force users to call KVM_ARM_VCPU_INIT */
254 	vcpu->arch.target = -1;
255 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
256 
257 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
258 
259 	/* Set up the timer */
260 	kvm_timer_vcpu_init(vcpu);
261 
262 	kvm_pmu_vcpu_init(vcpu);
263 
264 	kvm_arm_reset_debug_ptr(vcpu);
265 
266 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
267 
268 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
269 
270 	err = kvm_vgic_vcpu_init(vcpu);
271 	if (err)
272 		return err;
273 
274 	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
275 }
276 
277 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
278 {
279 }
280 
281 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
282 {
283 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
284 		static_branch_dec(&userspace_irqchip_in_use);
285 
286 	kvm_mmu_free_memory_caches(vcpu);
287 	kvm_timer_vcpu_terminate(vcpu);
288 	kvm_pmu_vcpu_destroy(vcpu);
289 
290 	kvm_arm_vcpu_destroy(vcpu);
291 }
292 
293 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
294 {
295 	return kvm_timer_is_pending(vcpu);
296 }
297 
298 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
299 {
300 	/*
301 	 * If we're about to block (most likely because we've just hit a
302 	 * WFI), we need to sync back the state of the GIC CPU interface
303 	 * so that we have the latest PMR and group enables. This ensures
304 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
305 	 * whether we have pending interrupts.
306 	 *
307 	 * For the same reason, we want to tell GICv4 that we need
308 	 * doorbells to be signalled, should an interrupt become pending.
309 	 */
310 	preempt_disable();
311 	kvm_vgic_vmcr_sync(vcpu);
312 	vgic_v4_put(vcpu, true);
313 	preempt_enable();
314 }
315 
316 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
317 {
318 	preempt_disable();
319 	vgic_v4_load(vcpu);
320 	preempt_enable();
321 }
322 
323 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
324 {
325 	struct kvm_s2_mmu *mmu;
326 	int *last_ran;
327 
328 	mmu = vcpu->arch.hw_mmu;
329 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
330 
331 	/*
332 	 * We might get preempted before the vCPU actually runs, but
333 	 * over-invalidation doesn't affect correctness.
334 	 */
335 	if (*last_ran != vcpu->vcpu_id) {
336 		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
337 		*last_ran = vcpu->vcpu_id;
338 	}
339 
340 	vcpu->cpu = cpu;
341 
342 	kvm_vgic_load(vcpu);
343 	kvm_timer_vcpu_load(vcpu);
344 	if (has_vhe())
345 		kvm_vcpu_load_sysregs_vhe(vcpu);
346 	kvm_arch_vcpu_load_fp(vcpu);
347 	kvm_vcpu_pmu_restore_guest(vcpu);
348 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
349 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
350 
351 	if (single_task_running())
352 		vcpu_clear_wfx_traps(vcpu);
353 	else
354 		vcpu_set_wfx_traps(vcpu);
355 
356 	if (vcpu_has_ptrauth(vcpu))
357 		vcpu_ptrauth_disable(vcpu);
358 }
359 
360 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
361 {
362 	kvm_arch_vcpu_put_fp(vcpu);
363 	if (has_vhe())
364 		kvm_vcpu_put_sysregs_vhe(vcpu);
365 	kvm_timer_vcpu_put(vcpu);
366 	kvm_vgic_put(vcpu);
367 	kvm_vcpu_pmu_restore_host(vcpu);
368 
369 	vcpu->cpu = -1;
370 }
371 
372 static void vcpu_power_off(struct kvm_vcpu *vcpu)
373 {
374 	vcpu->arch.power_off = true;
375 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
376 	kvm_vcpu_kick(vcpu);
377 }
378 
379 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
380 				    struct kvm_mp_state *mp_state)
381 {
382 	if (vcpu->arch.power_off)
383 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
384 	else
385 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
386 
387 	return 0;
388 }
389 
390 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
391 				    struct kvm_mp_state *mp_state)
392 {
393 	int ret = 0;
394 
395 	switch (mp_state->mp_state) {
396 	case KVM_MP_STATE_RUNNABLE:
397 		vcpu->arch.power_off = false;
398 		break;
399 	case KVM_MP_STATE_STOPPED:
400 		vcpu_power_off(vcpu);
401 		break;
402 	default:
403 		ret = -EINVAL;
404 	}
405 
406 	return ret;
407 }
408 
409 /**
410  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
411  * @v:		The VCPU pointer
412  *
413  * If the guest CPU is not waiting for interrupts or an interrupt line is
414  * asserted, the CPU is by definition runnable.
415  */
416 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
417 {
418 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
419 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
420 		&& !v->arch.power_off && !v->arch.pause);
421 }
422 
423 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
424 {
425 	return vcpu_mode_priv(vcpu);
426 }
427 
428 /* Just ensure a guest exit from a particular CPU */
429 static void exit_vm_noop(void *info)
430 {
431 }
432 
433 void force_vm_exit(const cpumask_t *mask)
434 {
435 	preempt_disable();
436 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
437 	preempt_enable();
438 }
439 
440 /**
441  * need_new_vmid_gen - check that the VMID is still valid
442  * @vmid: The VMID to check
443  *
444  * return true if there is a new generation of VMIDs being used
445  *
446  * The hardware supports a limited set of values with the value zero reserved
447  * for the host, so we check if an assigned value belongs to a previous
448  * generation, which requires us to assign a new value. If we're the first to
449  * use a VMID for the new generation, we must flush necessary caches and TLBs
450  * on all CPUs.
451  */
452 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
453 {
454 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
455 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
456 	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
457 }
458 
459 /**
460  * update_vmid - Update the vmid with a valid VMID for the current generation
461  * @vmid: The stage-2 VMID information struct
462  */
463 static void update_vmid(struct kvm_vmid *vmid)
464 {
465 	if (!need_new_vmid_gen(vmid))
466 		return;
467 
468 	spin_lock(&kvm_vmid_lock);
469 
470 	/*
471 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
472 	 * already allocated a valid vmid for this vm, then this vcpu should
473 	 * use the same vmid.
474 	 */
475 	if (!need_new_vmid_gen(vmid)) {
476 		spin_unlock(&kvm_vmid_lock);
477 		return;
478 	}
479 
480 	/* First user of a new VMID generation? */
481 	if (unlikely(kvm_next_vmid == 0)) {
482 		atomic64_inc(&kvm_vmid_gen);
483 		kvm_next_vmid = 1;
484 
485 		/*
486 		 * On SMP we know no other CPUs can use this CPU's or each
487 		 * other's VMID after force_vm_exit returns since the
488 		 * kvm_vmid_lock blocks them from reentry to the guest.
489 		 */
490 		force_vm_exit(cpu_all_mask);
491 		/*
492 		 * Now broadcast TLB + ICACHE invalidation over the inner
493 		 * shareable domain to make sure all data structures are
494 		 * clean.
495 		 */
496 		kvm_call_hyp(__kvm_flush_vm_context);
497 	}
498 
499 	vmid->vmid = kvm_next_vmid;
500 	kvm_next_vmid++;
501 	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
502 
503 	smp_wmb();
504 	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
505 
506 	spin_unlock(&kvm_vmid_lock);
507 }
508 
509 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
510 {
511 	struct kvm *kvm = vcpu->kvm;
512 	int ret = 0;
513 
514 	if (likely(vcpu->arch.has_run_once))
515 		return 0;
516 
517 	if (!kvm_arm_vcpu_is_finalized(vcpu))
518 		return -EPERM;
519 
520 	vcpu->arch.has_run_once = true;
521 
522 	if (likely(irqchip_in_kernel(kvm))) {
523 		/*
524 		 * Map the VGIC hardware resources before running a vcpu the
525 		 * first time on this VM.
526 		 */
527 		if (unlikely(!vgic_ready(kvm))) {
528 			ret = kvm_vgic_map_resources(kvm);
529 			if (ret)
530 				return ret;
531 		}
532 	} else {
533 		/*
534 		 * Tell the rest of the code that there are userspace irqchip
535 		 * VMs in the wild.
536 		 */
537 		static_branch_inc(&userspace_irqchip_in_use);
538 	}
539 
540 	ret = kvm_timer_enable(vcpu);
541 	if (ret)
542 		return ret;
543 
544 	ret = kvm_arm_pmu_v3_enable(vcpu);
545 
546 	return ret;
547 }
548 
549 bool kvm_arch_intc_initialized(struct kvm *kvm)
550 {
551 	return vgic_initialized(kvm);
552 }
553 
554 void kvm_arm_halt_guest(struct kvm *kvm)
555 {
556 	int i;
557 	struct kvm_vcpu *vcpu;
558 
559 	kvm_for_each_vcpu(i, vcpu, kvm)
560 		vcpu->arch.pause = true;
561 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
562 }
563 
564 void kvm_arm_resume_guest(struct kvm *kvm)
565 {
566 	int i;
567 	struct kvm_vcpu *vcpu;
568 
569 	kvm_for_each_vcpu(i, vcpu, kvm) {
570 		vcpu->arch.pause = false;
571 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
572 	}
573 }
574 
575 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
576 {
577 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
578 
579 	rcuwait_wait_event(wait,
580 			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
581 			   TASK_INTERRUPTIBLE);
582 
583 	if (vcpu->arch.power_off || vcpu->arch.pause) {
584 		/* Awaken to handle a signal, request we sleep again later. */
585 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
586 	}
587 
588 	/*
589 	 * Make sure we will observe a potential reset request if we've
590 	 * observed a change to the power state. Pairs with the smp_wmb() in
591 	 * kvm_psci_vcpu_on().
592 	 */
593 	smp_rmb();
594 }
595 
596 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
597 {
598 	return vcpu->arch.target >= 0;
599 }
600 
601 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
602 {
603 	if (kvm_request_pending(vcpu)) {
604 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
605 			vcpu_req_sleep(vcpu);
606 
607 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
608 			kvm_reset_vcpu(vcpu);
609 
610 		/*
611 		 * Clear IRQ_PENDING requests that were made to guarantee
612 		 * that a VCPU sees new virtual interrupts.
613 		 */
614 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
615 
616 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
617 			kvm_update_stolen_time(vcpu);
618 
619 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
620 			/* The distributor enable bits were changed */
621 			preempt_disable();
622 			vgic_v4_put(vcpu, false);
623 			vgic_v4_load(vcpu);
624 			preempt_enable();
625 		}
626 	}
627 }
628 
629 /**
630  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
631  * @vcpu:	The VCPU pointer
632  *
633  * This function is called through the VCPU_RUN ioctl called from user space. It
634  * will execute VM code in a loop until the time slice for the process is used
635  * or some emulation is needed from user space in which case the function will
636  * return with return value 0 and with the kvm_run structure filled in with the
637  * required data for the requested emulation.
638  */
639 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
640 {
641 	struct kvm_run *run = vcpu->run;
642 	int ret;
643 
644 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
645 		return -ENOEXEC;
646 
647 	ret = kvm_vcpu_first_run_init(vcpu);
648 	if (ret)
649 		return ret;
650 
651 	if (run->exit_reason == KVM_EXIT_MMIO) {
652 		ret = kvm_handle_mmio_return(vcpu);
653 		if (ret)
654 			return ret;
655 	}
656 
657 	if (run->immediate_exit)
658 		return -EINTR;
659 
660 	vcpu_load(vcpu);
661 
662 	kvm_sigset_activate(vcpu);
663 
664 	ret = 1;
665 	run->exit_reason = KVM_EXIT_UNKNOWN;
666 	while (ret > 0) {
667 		/*
668 		 * Check conditions before entering the guest
669 		 */
670 		cond_resched();
671 
672 		update_vmid(&vcpu->arch.hw_mmu->vmid);
673 
674 		check_vcpu_requests(vcpu);
675 
676 		/*
677 		 * Preparing the interrupts to be injected also
678 		 * involves poking the GIC, which must be done in a
679 		 * non-preemptible context.
680 		 */
681 		preempt_disable();
682 
683 		kvm_pmu_flush_hwstate(vcpu);
684 
685 		local_irq_disable();
686 
687 		kvm_vgic_flush_hwstate(vcpu);
688 
689 		/*
690 		 * Exit if we have a signal pending so that we can deliver the
691 		 * signal to user space.
692 		 */
693 		if (signal_pending(current)) {
694 			ret = -EINTR;
695 			run->exit_reason = KVM_EXIT_INTR;
696 		}
697 
698 		/*
699 		 * If we're using a userspace irqchip, then check if we need
700 		 * to tell a userspace irqchip about timer or PMU level
701 		 * changes and if so, exit to userspace (the actual level
702 		 * state gets updated in kvm_timer_update_run and
703 		 * kvm_pmu_update_run below).
704 		 */
705 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
706 			if (kvm_timer_should_notify_user(vcpu) ||
707 			    kvm_pmu_should_notify_user(vcpu)) {
708 				ret = -EINTR;
709 				run->exit_reason = KVM_EXIT_INTR;
710 			}
711 		}
712 
713 		/*
714 		 * Ensure we set mode to IN_GUEST_MODE after we disable
715 		 * interrupts and before the final VCPU requests check.
716 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
717 		 * Documentation/virt/kvm/vcpu-requests.rst
718 		 */
719 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
720 
721 		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
722 		    kvm_request_pending(vcpu)) {
723 			vcpu->mode = OUTSIDE_GUEST_MODE;
724 			isb(); /* Ensure work in x_flush_hwstate is committed */
725 			kvm_pmu_sync_hwstate(vcpu);
726 			if (static_branch_unlikely(&userspace_irqchip_in_use))
727 				kvm_timer_sync_user(vcpu);
728 			kvm_vgic_sync_hwstate(vcpu);
729 			local_irq_enable();
730 			preempt_enable();
731 			continue;
732 		}
733 
734 		kvm_arm_setup_debug(vcpu);
735 
736 		/**************************************************************
737 		 * Enter the guest
738 		 */
739 		trace_kvm_entry(*vcpu_pc(vcpu));
740 		guest_enter_irqoff();
741 
742 		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
743 
744 		vcpu->mode = OUTSIDE_GUEST_MODE;
745 		vcpu->stat.exits++;
746 		/*
747 		 * Back from guest
748 		 *************************************************************/
749 
750 		kvm_arm_clear_debug(vcpu);
751 
752 		/*
753 		 * We must sync the PMU state before the vgic state so
754 		 * that the vgic can properly sample the updated state of the
755 		 * interrupt line.
756 		 */
757 		kvm_pmu_sync_hwstate(vcpu);
758 
759 		/*
760 		 * Sync the vgic state before syncing the timer state because
761 		 * the timer code needs to know if the virtual timer
762 		 * interrupts are active.
763 		 */
764 		kvm_vgic_sync_hwstate(vcpu);
765 
766 		/*
767 		 * Sync the timer hardware state before enabling interrupts as
768 		 * we don't want vtimer interrupts to race with syncing the
769 		 * timer virtual interrupt state.
770 		 */
771 		if (static_branch_unlikely(&userspace_irqchip_in_use))
772 			kvm_timer_sync_user(vcpu);
773 
774 		kvm_arch_vcpu_ctxsync_fp(vcpu);
775 
776 		/*
777 		 * We may have taken a host interrupt in HYP mode (ie
778 		 * while executing the guest). This interrupt is still
779 		 * pending, as we haven't serviced it yet!
780 		 *
781 		 * We're now back in SVC mode, with interrupts
782 		 * disabled.  Enabling the interrupts now will have
783 		 * the effect of taking the interrupt again, in SVC
784 		 * mode this time.
785 		 */
786 		local_irq_enable();
787 
788 		/*
789 		 * We do local_irq_enable() before calling guest_exit() so
790 		 * that if a timer interrupt hits while running the guest we
791 		 * account that tick as being spent in the guest.  We enable
792 		 * preemption after calling guest_exit() so that if we get
793 		 * preempted we make sure ticks after that is not counted as
794 		 * guest time.
795 		 */
796 		guest_exit();
797 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
798 
799 		/* Exit types that need handling before we can be preempted */
800 		handle_exit_early(vcpu, ret);
801 
802 		preempt_enable();
803 
804 		ret = handle_exit(vcpu, ret);
805 	}
806 
807 	/* Tell userspace about in-kernel device output levels */
808 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
809 		kvm_timer_update_run(vcpu);
810 		kvm_pmu_update_run(vcpu);
811 	}
812 
813 	kvm_sigset_deactivate(vcpu);
814 
815 	vcpu_put(vcpu);
816 	return ret;
817 }
818 
819 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
820 {
821 	int bit_index;
822 	bool set;
823 	unsigned long *hcr;
824 
825 	if (number == KVM_ARM_IRQ_CPU_IRQ)
826 		bit_index = __ffs(HCR_VI);
827 	else /* KVM_ARM_IRQ_CPU_FIQ */
828 		bit_index = __ffs(HCR_VF);
829 
830 	hcr = vcpu_hcr(vcpu);
831 	if (level)
832 		set = test_and_set_bit(bit_index, hcr);
833 	else
834 		set = test_and_clear_bit(bit_index, hcr);
835 
836 	/*
837 	 * If we didn't change anything, no need to wake up or kick other CPUs
838 	 */
839 	if (set == level)
840 		return 0;
841 
842 	/*
843 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
844 	 * trigger a world-switch round on the running physical CPU to set the
845 	 * virtual IRQ/FIQ fields in the HCR appropriately.
846 	 */
847 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
848 	kvm_vcpu_kick(vcpu);
849 
850 	return 0;
851 }
852 
853 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
854 			  bool line_status)
855 {
856 	u32 irq = irq_level->irq;
857 	unsigned int irq_type, vcpu_idx, irq_num;
858 	int nrcpus = atomic_read(&kvm->online_vcpus);
859 	struct kvm_vcpu *vcpu = NULL;
860 	bool level = irq_level->level;
861 
862 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
863 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
864 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
865 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
866 
867 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
868 
869 	switch (irq_type) {
870 	case KVM_ARM_IRQ_TYPE_CPU:
871 		if (irqchip_in_kernel(kvm))
872 			return -ENXIO;
873 
874 		if (vcpu_idx >= nrcpus)
875 			return -EINVAL;
876 
877 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
878 		if (!vcpu)
879 			return -EINVAL;
880 
881 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
882 			return -EINVAL;
883 
884 		return vcpu_interrupt_line(vcpu, irq_num, level);
885 	case KVM_ARM_IRQ_TYPE_PPI:
886 		if (!irqchip_in_kernel(kvm))
887 			return -ENXIO;
888 
889 		if (vcpu_idx >= nrcpus)
890 			return -EINVAL;
891 
892 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
893 		if (!vcpu)
894 			return -EINVAL;
895 
896 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
897 			return -EINVAL;
898 
899 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
900 	case KVM_ARM_IRQ_TYPE_SPI:
901 		if (!irqchip_in_kernel(kvm))
902 			return -ENXIO;
903 
904 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
905 			return -EINVAL;
906 
907 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
908 	}
909 
910 	return -EINVAL;
911 }
912 
913 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
914 			       const struct kvm_vcpu_init *init)
915 {
916 	unsigned int i, ret;
917 	int phys_target = kvm_target_cpu();
918 
919 	if (init->target != phys_target)
920 		return -EINVAL;
921 
922 	/*
923 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
924 	 * use the same target.
925 	 */
926 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
927 		return -EINVAL;
928 
929 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
930 	for (i = 0; i < sizeof(init->features) * 8; i++) {
931 		bool set = (init->features[i / 32] & (1 << (i % 32)));
932 
933 		if (set && i >= KVM_VCPU_MAX_FEATURES)
934 			return -ENOENT;
935 
936 		/*
937 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
938 		 * use the same feature set.
939 		 */
940 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
941 		    test_bit(i, vcpu->arch.features) != set)
942 			return -EINVAL;
943 
944 		if (set)
945 			set_bit(i, vcpu->arch.features);
946 	}
947 
948 	vcpu->arch.target = phys_target;
949 
950 	/* Now we know what it is, we can reset it. */
951 	ret = kvm_reset_vcpu(vcpu);
952 	if (ret) {
953 		vcpu->arch.target = -1;
954 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
955 	}
956 
957 	return ret;
958 }
959 
960 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
961 					 struct kvm_vcpu_init *init)
962 {
963 	int ret;
964 
965 	ret = kvm_vcpu_set_target(vcpu, init);
966 	if (ret)
967 		return ret;
968 
969 	/*
970 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
971 	 * guest MMU is turned off and flush the caches as needed.
972 	 *
973 	 * S2FWB enforces all memory accesses to RAM being cacheable,
974 	 * ensuring that the data side is always coherent. We still
975 	 * need to invalidate the I-cache though, as FWB does *not*
976 	 * imply CTR_EL0.DIC.
977 	 */
978 	if (vcpu->arch.has_run_once) {
979 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
980 			stage2_unmap_vm(vcpu->kvm);
981 		else
982 			__flush_icache_all();
983 	}
984 
985 	vcpu_reset_hcr(vcpu);
986 
987 	/*
988 	 * Handle the "start in power-off" case.
989 	 */
990 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
991 		vcpu_power_off(vcpu);
992 	else
993 		vcpu->arch.power_off = false;
994 
995 	return 0;
996 }
997 
998 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
999 				 struct kvm_device_attr *attr)
1000 {
1001 	int ret = -ENXIO;
1002 
1003 	switch (attr->group) {
1004 	default:
1005 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1006 		break;
1007 	}
1008 
1009 	return ret;
1010 }
1011 
1012 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1013 				 struct kvm_device_attr *attr)
1014 {
1015 	int ret = -ENXIO;
1016 
1017 	switch (attr->group) {
1018 	default:
1019 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1020 		break;
1021 	}
1022 
1023 	return ret;
1024 }
1025 
1026 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1027 				 struct kvm_device_attr *attr)
1028 {
1029 	int ret = -ENXIO;
1030 
1031 	switch (attr->group) {
1032 	default:
1033 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1034 		break;
1035 	}
1036 
1037 	return ret;
1038 }
1039 
1040 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1041 				   struct kvm_vcpu_events *events)
1042 {
1043 	memset(events, 0, sizeof(*events));
1044 
1045 	return __kvm_arm_vcpu_get_events(vcpu, events);
1046 }
1047 
1048 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1049 				   struct kvm_vcpu_events *events)
1050 {
1051 	int i;
1052 
1053 	/* check whether the reserved field is zero */
1054 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1055 		if (events->reserved[i])
1056 			return -EINVAL;
1057 
1058 	/* check whether the pad field is zero */
1059 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1060 		if (events->exception.pad[i])
1061 			return -EINVAL;
1062 
1063 	return __kvm_arm_vcpu_set_events(vcpu, events);
1064 }
1065 
1066 long kvm_arch_vcpu_ioctl(struct file *filp,
1067 			 unsigned int ioctl, unsigned long arg)
1068 {
1069 	struct kvm_vcpu *vcpu = filp->private_data;
1070 	void __user *argp = (void __user *)arg;
1071 	struct kvm_device_attr attr;
1072 	long r;
1073 
1074 	switch (ioctl) {
1075 	case KVM_ARM_VCPU_INIT: {
1076 		struct kvm_vcpu_init init;
1077 
1078 		r = -EFAULT;
1079 		if (copy_from_user(&init, argp, sizeof(init)))
1080 			break;
1081 
1082 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1083 		break;
1084 	}
1085 	case KVM_SET_ONE_REG:
1086 	case KVM_GET_ONE_REG: {
1087 		struct kvm_one_reg reg;
1088 
1089 		r = -ENOEXEC;
1090 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1091 			break;
1092 
1093 		r = -EFAULT;
1094 		if (copy_from_user(&reg, argp, sizeof(reg)))
1095 			break;
1096 
1097 		if (ioctl == KVM_SET_ONE_REG)
1098 			r = kvm_arm_set_reg(vcpu, &reg);
1099 		else
1100 			r = kvm_arm_get_reg(vcpu, &reg);
1101 		break;
1102 	}
1103 	case KVM_GET_REG_LIST: {
1104 		struct kvm_reg_list __user *user_list = argp;
1105 		struct kvm_reg_list reg_list;
1106 		unsigned n;
1107 
1108 		r = -ENOEXEC;
1109 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1110 			break;
1111 
1112 		r = -EPERM;
1113 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1114 			break;
1115 
1116 		r = -EFAULT;
1117 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1118 			break;
1119 		n = reg_list.n;
1120 		reg_list.n = kvm_arm_num_regs(vcpu);
1121 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1122 			break;
1123 		r = -E2BIG;
1124 		if (n < reg_list.n)
1125 			break;
1126 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1127 		break;
1128 	}
1129 	case KVM_SET_DEVICE_ATTR: {
1130 		r = -EFAULT;
1131 		if (copy_from_user(&attr, argp, sizeof(attr)))
1132 			break;
1133 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1134 		break;
1135 	}
1136 	case KVM_GET_DEVICE_ATTR: {
1137 		r = -EFAULT;
1138 		if (copy_from_user(&attr, argp, sizeof(attr)))
1139 			break;
1140 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1141 		break;
1142 	}
1143 	case KVM_HAS_DEVICE_ATTR: {
1144 		r = -EFAULT;
1145 		if (copy_from_user(&attr, argp, sizeof(attr)))
1146 			break;
1147 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1148 		break;
1149 	}
1150 	case KVM_GET_VCPU_EVENTS: {
1151 		struct kvm_vcpu_events events;
1152 
1153 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1154 			return -EINVAL;
1155 
1156 		if (copy_to_user(argp, &events, sizeof(events)))
1157 			return -EFAULT;
1158 
1159 		return 0;
1160 	}
1161 	case KVM_SET_VCPU_EVENTS: {
1162 		struct kvm_vcpu_events events;
1163 
1164 		if (copy_from_user(&events, argp, sizeof(events)))
1165 			return -EFAULT;
1166 
1167 		return kvm_arm_vcpu_set_events(vcpu, &events);
1168 	}
1169 	case KVM_ARM_VCPU_FINALIZE: {
1170 		int what;
1171 
1172 		if (!kvm_vcpu_initialized(vcpu))
1173 			return -ENOEXEC;
1174 
1175 		if (get_user(what, (const int __user *)argp))
1176 			return -EFAULT;
1177 
1178 		return kvm_arm_vcpu_finalize(vcpu, what);
1179 	}
1180 	default:
1181 		r = -EINVAL;
1182 	}
1183 
1184 	return r;
1185 }
1186 
1187 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1188 {
1189 
1190 }
1191 
1192 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1193 					struct kvm_memory_slot *memslot)
1194 {
1195 	kvm_flush_remote_tlbs(kvm);
1196 }
1197 
1198 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1199 					struct kvm_arm_device_addr *dev_addr)
1200 {
1201 	unsigned long dev_id, type;
1202 
1203 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1204 		KVM_ARM_DEVICE_ID_SHIFT;
1205 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1206 		KVM_ARM_DEVICE_TYPE_SHIFT;
1207 
1208 	switch (dev_id) {
1209 	case KVM_ARM_DEVICE_VGIC_V2:
1210 		if (!vgic_present)
1211 			return -ENXIO;
1212 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1213 	default:
1214 		return -ENODEV;
1215 	}
1216 }
1217 
1218 long kvm_arch_vm_ioctl(struct file *filp,
1219 		       unsigned int ioctl, unsigned long arg)
1220 {
1221 	struct kvm *kvm = filp->private_data;
1222 	void __user *argp = (void __user *)arg;
1223 
1224 	switch (ioctl) {
1225 	case KVM_CREATE_IRQCHIP: {
1226 		int ret;
1227 		if (!vgic_present)
1228 			return -ENXIO;
1229 		mutex_lock(&kvm->lock);
1230 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1231 		mutex_unlock(&kvm->lock);
1232 		return ret;
1233 	}
1234 	case KVM_ARM_SET_DEVICE_ADDR: {
1235 		struct kvm_arm_device_addr dev_addr;
1236 
1237 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1238 			return -EFAULT;
1239 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1240 	}
1241 	case KVM_ARM_PREFERRED_TARGET: {
1242 		int err;
1243 		struct kvm_vcpu_init init;
1244 
1245 		err = kvm_vcpu_preferred_target(&init);
1246 		if (err)
1247 			return err;
1248 
1249 		if (copy_to_user(argp, &init, sizeof(init)))
1250 			return -EFAULT;
1251 
1252 		return 0;
1253 	}
1254 	default:
1255 		return -EINVAL;
1256 	}
1257 }
1258 
1259 static void cpu_init_hyp_mode(void)
1260 {
1261 	phys_addr_t pgd_ptr;
1262 	unsigned long hyp_stack_ptr;
1263 	unsigned long vector_ptr;
1264 	unsigned long tpidr_el2;
1265 
1266 	/* Switch from the HYP stub to our own HYP init vector */
1267 	__hyp_set_vectors(kvm_get_idmap_vector());
1268 
1269 	/*
1270 	 * Calculate the raw per-cpu offset without a translation from the
1271 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1272 	 * so that we can use adr_l to access per-cpu variables in EL2.
1273 	 */
1274 	tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
1275 		     (unsigned long)kvm_ksym_ref(&kvm_host_data));
1276 
1277 	pgd_ptr = kvm_mmu_get_httbr();
1278 	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1279 	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1280 
1281 	/*
1282 	 * Call initialization code, and switch to the full blown HYP code.
1283 	 * If the cpucaps haven't been finalized yet, something has gone very
1284 	 * wrong, and hyp will crash and burn when it uses any
1285 	 * cpus_have_const_cap() wrapper.
1286 	 */
1287 	BUG_ON(!system_capabilities_finalized());
1288 	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
1289 
1290 	/*
1291 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1292 	 * at EL2.
1293 	 */
1294 	if (this_cpu_has_cap(ARM64_SSBS) &&
1295 	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1296 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1297 	}
1298 }
1299 
1300 static void cpu_hyp_reset(void)
1301 {
1302 	if (!is_kernel_in_hyp_mode())
1303 		__hyp_reset_vectors();
1304 }
1305 
1306 static void cpu_hyp_reinit(void)
1307 {
1308 	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1309 
1310 	cpu_hyp_reset();
1311 
1312 	if (is_kernel_in_hyp_mode())
1313 		kvm_timer_init_vhe();
1314 	else
1315 		cpu_init_hyp_mode();
1316 
1317 	kvm_arm_init_debug();
1318 
1319 	if (vgic_present)
1320 		kvm_vgic_init_cpu_hardware();
1321 }
1322 
1323 static void _kvm_arch_hardware_enable(void *discard)
1324 {
1325 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1326 		cpu_hyp_reinit();
1327 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1328 	}
1329 }
1330 
1331 int kvm_arch_hardware_enable(void)
1332 {
1333 	_kvm_arch_hardware_enable(NULL);
1334 	return 0;
1335 }
1336 
1337 static void _kvm_arch_hardware_disable(void *discard)
1338 {
1339 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1340 		cpu_hyp_reset();
1341 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1342 	}
1343 }
1344 
1345 void kvm_arch_hardware_disable(void)
1346 {
1347 	_kvm_arch_hardware_disable(NULL);
1348 }
1349 
1350 #ifdef CONFIG_CPU_PM
1351 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1352 				    unsigned long cmd,
1353 				    void *v)
1354 {
1355 	/*
1356 	 * kvm_arm_hardware_enabled is left with its old value over
1357 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1358 	 * re-enable hyp.
1359 	 */
1360 	switch (cmd) {
1361 	case CPU_PM_ENTER:
1362 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1363 			/*
1364 			 * don't update kvm_arm_hardware_enabled here
1365 			 * so that the hardware will be re-enabled
1366 			 * when we resume. See below.
1367 			 */
1368 			cpu_hyp_reset();
1369 
1370 		return NOTIFY_OK;
1371 	case CPU_PM_ENTER_FAILED:
1372 	case CPU_PM_EXIT:
1373 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1374 			/* The hardware was enabled before suspend. */
1375 			cpu_hyp_reinit();
1376 
1377 		return NOTIFY_OK;
1378 
1379 	default:
1380 		return NOTIFY_DONE;
1381 	}
1382 }
1383 
1384 static struct notifier_block hyp_init_cpu_pm_nb = {
1385 	.notifier_call = hyp_init_cpu_pm_notifier,
1386 };
1387 
1388 static void __init hyp_cpu_pm_init(void)
1389 {
1390 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1391 }
1392 static void __init hyp_cpu_pm_exit(void)
1393 {
1394 	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1395 }
1396 #else
1397 static inline void hyp_cpu_pm_init(void)
1398 {
1399 }
1400 static inline void hyp_cpu_pm_exit(void)
1401 {
1402 }
1403 #endif
1404 
1405 static int init_common_resources(void)
1406 {
1407 	return kvm_set_ipa_limit();
1408 }
1409 
1410 static int init_subsystems(void)
1411 {
1412 	int err = 0;
1413 
1414 	/*
1415 	 * Enable hardware so that subsystem initialisation can access EL2.
1416 	 */
1417 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1418 
1419 	/*
1420 	 * Register CPU lower-power notifier
1421 	 */
1422 	hyp_cpu_pm_init();
1423 
1424 	/*
1425 	 * Init HYP view of VGIC
1426 	 */
1427 	err = kvm_vgic_hyp_init();
1428 	switch (err) {
1429 	case 0:
1430 		vgic_present = true;
1431 		break;
1432 	case -ENODEV:
1433 	case -ENXIO:
1434 		vgic_present = false;
1435 		err = 0;
1436 		break;
1437 	default:
1438 		goto out;
1439 	}
1440 
1441 	/*
1442 	 * Init HYP architected timer support
1443 	 */
1444 	err = kvm_timer_hyp_init(vgic_present);
1445 	if (err)
1446 		goto out;
1447 
1448 	kvm_perf_init();
1449 	kvm_coproc_table_init();
1450 
1451 out:
1452 	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1453 
1454 	return err;
1455 }
1456 
1457 static void teardown_hyp_mode(void)
1458 {
1459 	int cpu;
1460 
1461 	free_hyp_pgds();
1462 	for_each_possible_cpu(cpu)
1463 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1464 }
1465 
1466 /**
1467  * Inits Hyp-mode on all online CPUs
1468  */
1469 static int init_hyp_mode(void)
1470 {
1471 	int cpu;
1472 	int err = 0;
1473 
1474 	/*
1475 	 * Allocate Hyp PGD and setup Hyp identity mapping
1476 	 */
1477 	err = kvm_mmu_init();
1478 	if (err)
1479 		goto out_err;
1480 
1481 	/*
1482 	 * Allocate stack pages for Hypervisor-mode
1483 	 */
1484 	for_each_possible_cpu(cpu) {
1485 		unsigned long stack_page;
1486 
1487 		stack_page = __get_free_page(GFP_KERNEL);
1488 		if (!stack_page) {
1489 			err = -ENOMEM;
1490 			goto out_err;
1491 		}
1492 
1493 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1494 	}
1495 
1496 	/*
1497 	 * Map the Hyp-code called directly from the host
1498 	 */
1499 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1500 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1501 	if (err) {
1502 		kvm_err("Cannot map world-switch code\n");
1503 		goto out_err;
1504 	}
1505 
1506 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1507 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1508 	if (err) {
1509 		kvm_err("Cannot map rodata section\n");
1510 		goto out_err;
1511 	}
1512 
1513 	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1514 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1515 	if (err) {
1516 		kvm_err("Cannot map bss section\n");
1517 		goto out_err;
1518 	}
1519 
1520 	err = kvm_map_vectors();
1521 	if (err) {
1522 		kvm_err("Cannot map vectors\n");
1523 		goto out_err;
1524 	}
1525 
1526 	/*
1527 	 * Map the Hyp stack pages
1528 	 */
1529 	for_each_possible_cpu(cpu) {
1530 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1531 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1532 					  PAGE_HYP);
1533 
1534 		if (err) {
1535 			kvm_err("Cannot map hyp stack\n");
1536 			goto out_err;
1537 		}
1538 	}
1539 
1540 	for_each_possible_cpu(cpu) {
1541 		kvm_host_data_t *cpu_data;
1542 
1543 		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1544 		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1545 
1546 		if (err) {
1547 			kvm_err("Cannot map host CPU state: %d\n", err);
1548 			goto out_err;
1549 		}
1550 	}
1551 
1552 	err = hyp_map_aux_data();
1553 	if (err)
1554 		kvm_err("Cannot map host auxiliary data: %d\n", err);
1555 
1556 	return 0;
1557 
1558 out_err:
1559 	teardown_hyp_mode();
1560 	kvm_err("error initializing Hyp mode: %d\n", err);
1561 	return err;
1562 }
1563 
1564 static void check_kvm_target_cpu(void *ret)
1565 {
1566 	*(int *)ret = kvm_target_cpu();
1567 }
1568 
1569 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1570 {
1571 	struct kvm_vcpu *vcpu;
1572 	int i;
1573 
1574 	mpidr &= MPIDR_HWID_BITMASK;
1575 	kvm_for_each_vcpu(i, vcpu, kvm) {
1576 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1577 			return vcpu;
1578 	}
1579 	return NULL;
1580 }
1581 
1582 bool kvm_arch_has_irq_bypass(void)
1583 {
1584 	return true;
1585 }
1586 
1587 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1588 				      struct irq_bypass_producer *prod)
1589 {
1590 	struct kvm_kernel_irqfd *irqfd =
1591 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1592 
1593 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1594 					  &irqfd->irq_entry);
1595 }
1596 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1597 				      struct irq_bypass_producer *prod)
1598 {
1599 	struct kvm_kernel_irqfd *irqfd =
1600 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1601 
1602 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1603 				     &irqfd->irq_entry);
1604 }
1605 
1606 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1607 {
1608 	struct kvm_kernel_irqfd *irqfd =
1609 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1610 
1611 	kvm_arm_halt_guest(irqfd->kvm);
1612 }
1613 
1614 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1615 {
1616 	struct kvm_kernel_irqfd *irqfd =
1617 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1618 
1619 	kvm_arm_resume_guest(irqfd->kvm);
1620 }
1621 
1622 /**
1623  * Initialize Hyp-mode and memory mappings on all CPUs.
1624  */
1625 int kvm_arch_init(void *opaque)
1626 {
1627 	int err;
1628 	int ret, cpu;
1629 	bool in_hyp_mode;
1630 
1631 	if (!is_hyp_mode_available()) {
1632 		kvm_info("HYP mode not available\n");
1633 		return -ENODEV;
1634 	}
1635 
1636 	in_hyp_mode = is_kernel_in_hyp_mode();
1637 
1638 	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1639 		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1640 		return -ENODEV;
1641 	}
1642 
1643 	for_each_online_cpu(cpu) {
1644 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1645 		if (ret < 0) {
1646 			kvm_err("Error, CPU %d not supported!\n", cpu);
1647 			return -ENODEV;
1648 		}
1649 	}
1650 
1651 	err = init_common_resources();
1652 	if (err)
1653 		return err;
1654 
1655 	err = kvm_arm_init_sve();
1656 	if (err)
1657 		return err;
1658 
1659 	if (!in_hyp_mode) {
1660 		err = init_hyp_mode();
1661 		if (err)
1662 			goto out_err;
1663 	}
1664 
1665 	err = init_subsystems();
1666 	if (err)
1667 		goto out_hyp;
1668 
1669 	if (in_hyp_mode)
1670 		kvm_info("VHE mode initialized successfully\n");
1671 	else
1672 		kvm_info("Hyp mode initialized successfully\n");
1673 
1674 	return 0;
1675 
1676 out_hyp:
1677 	hyp_cpu_pm_exit();
1678 	if (!in_hyp_mode)
1679 		teardown_hyp_mode();
1680 out_err:
1681 	return err;
1682 }
1683 
1684 /* NOP: Compiling as a module not supported */
1685 void kvm_arch_exit(void)
1686 {
1687 	kvm_perf_teardown();
1688 }
1689 
1690 static int arm_init(void)
1691 {
1692 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1693 	return rc;
1694 }
1695 
1696 module_init(arm_init);
1697