1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/errno.h> 10 #include <linux/err.h> 11 #include <linux/kvm_host.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/vmalloc.h> 15 #include <linux/fs.h> 16 #include <linux/mman.h> 17 #include <linux/sched.h> 18 #include <linux/kvm.h> 19 #include <linux/kvm_irqfd.h> 20 #include <linux/irqbypass.h> 21 #include <linux/sched/stat.h> 22 #include <trace/events/kvm.h> 23 24 #define CREATE_TRACE_POINTS 25 #include "trace_arm.h" 26 27 #include <linux/uaccess.h> 28 #include <asm/ptrace.h> 29 #include <asm/mman.h> 30 #include <asm/tlbflush.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpufeature.h> 33 #include <asm/virt.h> 34 #include <asm/kvm_arm.h> 35 #include <asm/kvm_asm.h> 36 #include <asm/kvm_mmu.h> 37 #include <asm/kvm_emulate.h> 38 #include <asm/kvm_coproc.h> 39 #include <asm/sections.h> 40 41 #include <kvm/arm_hypercalls.h> 42 #include <kvm/arm_pmu.h> 43 #include <kvm/arm_psci.h> 44 45 #ifdef REQUIRES_VIRT 46 __asm__(".arch_extension virt"); 47 #endif 48 49 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data); 50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 51 52 /* The VMID used in the VTTBR */ 53 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 54 static u32 kvm_next_vmid; 55 static DEFINE_SPINLOCK(kvm_vmid_lock); 56 57 static bool vgic_present; 58 59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); 60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 61 62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 63 { 64 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 65 } 66 67 int kvm_arch_hardware_setup(void *opaque) 68 { 69 return 0; 70 } 71 72 int kvm_arch_check_processor_compat(void *opaque) 73 { 74 return 0; 75 } 76 77 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 78 struct kvm_enable_cap *cap) 79 { 80 int r; 81 82 if (cap->flags) 83 return -EINVAL; 84 85 switch (cap->cap) { 86 case KVM_CAP_ARM_NISV_TO_USER: 87 r = 0; 88 kvm->arch.return_nisv_io_abort_to_user = true; 89 break; 90 default: 91 r = -EINVAL; 92 break; 93 } 94 95 return r; 96 } 97 98 static int kvm_arm_default_max_vcpus(void) 99 { 100 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 101 } 102 103 /** 104 * kvm_arch_init_vm - initializes a VM data structure 105 * @kvm: pointer to the KVM struct 106 */ 107 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 108 { 109 int ret; 110 111 ret = kvm_arm_setup_stage2(kvm, type); 112 if (ret) 113 return ret; 114 115 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu); 116 if (ret) 117 return ret; 118 119 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); 120 if (ret) 121 goto out_free_stage2_pgd; 122 123 kvm_vgic_early_init(kvm); 124 125 /* The maximum number of VCPUs is limited by the host's GIC model */ 126 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus(); 127 128 return ret; 129 out_free_stage2_pgd: 130 kvm_free_stage2_pgd(&kvm->arch.mmu); 131 return ret; 132 } 133 134 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 135 { 136 return VM_FAULT_SIGBUS; 137 } 138 139 140 /** 141 * kvm_arch_destroy_vm - destroy the VM data structure 142 * @kvm: pointer to the KVM struct 143 */ 144 void kvm_arch_destroy_vm(struct kvm *kvm) 145 { 146 int i; 147 148 kvm_vgic_destroy(kvm); 149 150 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 151 if (kvm->vcpus[i]) { 152 kvm_vcpu_destroy(kvm->vcpus[i]); 153 kvm->vcpus[i] = NULL; 154 } 155 } 156 atomic_set(&kvm->online_vcpus, 0); 157 } 158 159 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 160 { 161 int r; 162 switch (ext) { 163 case KVM_CAP_IRQCHIP: 164 r = vgic_present; 165 break; 166 case KVM_CAP_IOEVENTFD: 167 case KVM_CAP_DEVICE_CTRL: 168 case KVM_CAP_USER_MEMORY: 169 case KVM_CAP_SYNC_MMU: 170 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 171 case KVM_CAP_ONE_REG: 172 case KVM_CAP_ARM_PSCI: 173 case KVM_CAP_ARM_PSCI_0_2: 174 case KVM_CAP_READONLY_MEM: 175 case KVM_CAP_MP_STATE: 176 case KVM_CAP_IMMEDIATE_EXIT: 177 case KVM_CAP_VCPU_EVENTS: 178 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 179 case KVM_CAP_ARM_NISV_TO_USER: 180 case KVM_CAP_ARM_INJECT_EXT_DABT: 181 r = 1; 182 break; 183 case KVM_CAP_ARM_SET_DEVICE_ADDR: 184 r = 1; 185 break; 186 case KVM_CAP_NR_VCPUS: 187 r = num_online_cpus(); 188 break; 189 case KVM_CAP_MAX_VCPUS: 190 case KVM_CAP_MAX_VCPU_ID: 191 if (kvm) 192 r = kvm->arch.max_vcpus; 193 else 194 r = kvm_arm_default_max_vcpus(); 195 break; 196 case KVM_CAP_MSI_DEVID: 197 if (!kvm) 198 r = -EINVAL; 199 else 200 r = kvm->arch.vgic.msis_require_devid; 201 break; 202 case KVM_CAP_ARM_USER_IRQ: 203 /* 204 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 205 * (bump this number if adding more devices) 206 */ 207 r = 1; 208 break; 209 default: 210 r = kvm_arch_vm_ioctl_check_extension(kvm, ext); 211 break; 212 } 213 return r; 214 } 215 216 long kvm_arch_dev_ioctl(struct file *filp, 217 unsigned int ioctl, unsigned long arg) 218 { 219 return -EINVAL; 220 } 221 222 struct kvm *kvm_arch_alloc_vm(void) 223 { 224 if (!has_vhe()) 225 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 226 227 return vzalloc(sizeof(struct kvm)); 228 } 229 230 void kvm_arch_free_vm(struct kvm *kvm) 231 { 232 if (!has_vhe()) 233 kfree(kvm); 234 else 235 vfree(kvm); 236 } 237 238 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 239 { 240 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 241 return -EBUSY; 242 243 if (id >= kvm->arch.max_vcpus) 244 return -EINVAL; 245 246 return 0; 247 } 248 249 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 250 { 251 int err; 252 253 /* Force users to call KVM_ARM_VCPU_INIT */ 254 vcpu->arch.target = -1; 255 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 256 257 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 258 259 /* Set up the timer */ 260 kvm_timer_vcpu_init(vcpu); 261 262 kvm_pmu_vcpu_init(vcpu); 263 264 kvm_arm_reset_debug_ptr(vcpu); 265 266 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 267 268 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 269 270 err = kvm_vgic_vcpu_init(vcpu); 271 if (err) 272 return err; 273 274 return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); 275 } 276 277 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 278 { 279 } 280 281 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 282 { 283 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm))) 284 static_branch_dec(&userspace_irqchip_in_use); 285 286 kvm_mmu_free_memory_caches(vcpu); 287 kvm_timer_vcpu_terminate(vcpu); 288 kvm_pmu_vcpu_destroy(vcpu); 289 290 kvm_arm_vcpu_destroy(vcpu); 291 } 292 293 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 294 { 295 return kvm_timer_is_pending(vcpu); 296 } 297 298 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 299 { 300 /* 301 * If we're about to block (most likely because we've just hit a 302 * WFI), we need to sync back the state of the GIC CPU interface 303 * so that we have the latest PMR and group enables. This ensures 304 * that kvm_arch_vcpu_runnable has up-to-date data to decide 305 * whether we have pending interrupts. 306 * 307 * For the same reason, we want to tell GICv4 that we need 308 * doorbells to be signalled, should an interrupt become pending. 309 */ 310 preempt_disable(); 311 kvm_vgic_vmcr_sync(vcpu); 312 vgic_v4_put(vcpu, true); 313 preempt_enable(); 314 } 315 316 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 317 { 318 preempt_disable(); 319 vgic_v4_load(vcpu); 320 preempt_enable(); 321 } 322 323 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 324 { 325 struct kvm_s2_mmu *mmu; 326 int *last_ran; 327 328 mmu = vcpu->arch.hw_mmu; 329 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 330 331 /* 332 * We might get preempted before the vCPU actually runs, but 333 * over-invalidation doesn't affect correctness. 334 */ 335 if (*last_ran != vcpu->vcpu_id) { 336 kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu); 337 *last_ran = vcpu->vcpu_id; 338 } 339 340 vcpu->cpu = cpu; 341 342 kvm_vgic_load(vcpu); 343 kvm_timer_vcpu_load(vcpu); 344 if (has_vhe()) 345 kvm_vcpu_load_sysregs_vhe(vcpu); 346 kvm_arch_vcpu_load_fp(vcpu); 347 kvm_vcpu_pmu_restore_guest(vcpu); 348 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 349 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 350 351 if (single_task_running()) 352 vcpu_clear_wfx_traps(vcpu); 353 else 354 vcpu_set_wfx_traps(vcpu); 355 356 if (vcpu_has_ptrauth(vcpu)) 357 vcpu_ptrauth_disable(vcpu); 358 } 359 360 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 361 { 362 kvm_arch_vcpu_put_fp(vcpu); 363 if (has_vhe()) 364 kvm_vcpu_put_sysregs_vhe(vcpu); 365 kvm_timer_vcpu_put(vcpu); 366 kvm_vgic_put(vcpu); 367 kvm_vcpu_pmu_restore_host(vcpu); 368 369 vcpu->cpu = -1; 370 } 371 372 static void vcpu_power_off(struct kvm_vcpu *vcpu) 373 { 374 vcpu->arch.power_off = true; 375 kvm_make_request(KVM_REQ_SLEEP, vcpu); 376 kvm_vcpu_kick(vcpu); 377 } 378 379 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 380 struct kvm_mp_state *mp_state) 381 { 382 if (vcpu->arch.power_off) 383 mp_state->mp_state = KVM_MP_STATE_STOPPED; 384 else 385 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 386 387 return 0; 388 } 389 390 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 391 struct kvm_mp_state *mp_state) 392 { 393 int ret = 0; 394 395 switch (mp_state->mp_state) { 396 case KVM_MP_STATE_RUNNABLE: 397 vcpu->arch.power_off = false; 398 break; 399 case KVM_MP_STATE_STOPPED: 400 vcpu_power_off(vcpu); 401 break; 402 default: 403 ret = -EINVAL; 404 } 405 406 return ret; 407 } 408 409 /** 410 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 411 * @v: The VCPU pointer 412 * 413 * If the guest CPU is not waiting for interrupts or an interrupt line is 414 * asserted, the CPU is by definition runnable. 415 */ 416 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 417 { 418 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 419 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 420 && !v->arch.power_off && !v->arch.pause); 421 } 422 423 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 424 { 425 return vcpu_mode_priv(vcpu); 426 } 427 428 /* Just ensure a guest exit from a particular CPU */ 429 static void exit_vm_noop(void *info) 430 { 431 } 432 433 void force_vm_exit(const cpumask_t *mask) 434 { 435 preempt_disable(); 436 smp_call_function_many(mask, exit_vm_noop, NULL, true); 437 preempt_enable(); 438 } 439 440 /** 441 * need_new_vmid_gen - check that the VMID is still valid 442 * @vmid: The VMID to check 443 * 444 * return true if there is a new generation of VMIDs being used 445 * 446 * The hardware supports a limited set of values with the value zero reserved 447 * for the host, so we check if an assigned value belongs to a previous 448 * generation, which requires us to assign a new value. If we're the first to 449 * use a VMID for the new generation, we must flush necessary caches and TLBs 450 * on all CPUs. 451 */ 452 static bool need_new_vmid_gen(struct kvm_vmid *vmid) 453 { 454 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen); 455 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */ 456 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen); 457 } 458 459 /** 460 * update_vmid - Update the vmid with a valid VMID for the current generation 461 * @vmid: The stage-2 VMID information struct 462 */ 463 static void update_vmid(struct kvm_vmid *vmid) 464 { 465 if (!need_new_vmid_gen(vmid)) 466 return; 467 468 spin_lock(&kvm_vmid_lock); 469 470 /* 471 * We need to re-check the vmid_gen here to ensure that if another vcpu 472 * already allocated a valid vmid for this vm, then this vcpu should 473 * use the same vmid. 474 */ 475 if (!need_new_vmid_gen(vmid)) { 476 spin_unlock(&kvm_vmid_lock); 477 return; 478 } 479 480 /* First user of a new VMID generation? */ 481 if (unlikely(kvm_next_vmid == 0)) { 482 atomic64_inc(&kvm_vmid_gen); 483 kvm_next_vmid = 1; 484 485 /* 486 * On SMP we know no other CPUs can use this CPU's or each 487 * other's VMID after force_vm_exit returns since the 488 * kvm_vmid_lock blocks them from reentry to the guest. 489 */ 490 force_vm_exit(cpu_all_mask); 491 /* 492 * Now broadcast TLB + ICACHE invalidation over the inner 493 * shareable domain to make sure all data structures are 494 * clean. 495 */ 496 kvm_call_hyp(__kvm_flush_vm_context); 497 } 498 499 vmid->vmid = kvm_next_vmid; 500 kvm_next_vmid++; 501 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1; 502 503 smp_wmb(); 504 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen)); 505 506 spin_unlock(&kvm_vmid_lock); 507 } 508 509 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) 510 { 511 struct kvm *kvm = vcpu->kvm; 512 int ret = 0; 513 514 if (likely(vcpu->arch.has_run_once)) 515 return 0; 516 517 if (!kvm_arm_vcpu_is_finalized(vcpu)) 518 return -EPERM; 519 520 vcpu->arch.has_run_once = true; 521 522 if (likely(irqchip_in_kernel(kvm))) { 523 /* 524 * Map the VGIC hardware resources before running a vcpu the 525 * first time on this VM. 526 */ 527 if (unlikely(!vgic_ready(kvm))) { 528 ret = kvm_vgic_map_resources(kvm); 529 if (ret) 530 return ret; 531 } 532 } else { 533 /* 534 * Tell the rest of the code that there are userspace irqchip 535 * VMs in the wild. 536 */ 537 static_branch_inc(&userspace_irqchip_in_use); 538 } 539 540 ret = kvm_timer_enable(vcpu); 541 if (ret) 542 return ret; 543 544 ret = kvm_arm_pmu_v3_enable(vcpu); 545 546 return ret; 547 } 548 549 bool kvm_arch_intc_initialized(struct kvm *kvm) 550 { 551 return vgic_initialized(kvm); 552 } 553 554 void kvm_arm_halt_guest(struct kvm *kvm) 555 { 556 int i; 557 struct kvm_vcpu *vcpu; 558 559 kvm_for_each_vcpu(i, vcpu, kvm) 560 vcpu->arch.pause = true; 561 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 562 } 563 564 void kvm_arm_resume_guest(struct kvm *kvm) 565 { 566 int i; 567 struct kvm_vcpu *vcpu; 568 569 kvm_for_each_vcpu(i, vcpu, kvm) { 570 vcpu->arch.pause = false; 571 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 572 } 573 } 574 575 static void vcpu_req_sleep(struct kvm_vcpu *vcpu) 576 { 577 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 578 579 rcuwait_wait_event(wait, 580 (!vcpu->arch.power_off) &&(!vcpu->arch.pause), 581 TASK_INTERRUPTIBLE); 582 583 if (vcpu->arch.power_off || vcpu->arch.pause) { 584 /* Awaken to handle a signal, request we sleep again later. */ 585 kvm_make_request(KVM_REQ_SLEEP, vcpu); 586 } 587 588 /* 589 * Make sure we will observe a potential reset request if we've 590 * observed a change to the power state. Pairs with the smp_wmb() in 591 * kvm_psci_vcpu_on(). 592 */ 593 smp_rmb(); 594 } 595 596 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 597 { 598 return vcpu->arch.target >= 0; 599 } 600 601 static void check_vcpu_requests(struct kvm_vcpu *vcpu) 602 { 603 if (kvm_request_pending(vcpu)) { 604 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 605 vcpu_req_sleep(vcpu); 606 607 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 608 kvm_reset_vcpu(vcpu); 609 610 /* 611 * Clear IRQ_PENDING requests that were made to guarantee 612 * that a VCPU sees new virtual interrupts. 613 */ 614 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 615 616 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 617 kvm_update_stolen_time(vcpu); 618 619 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 620 /* The distributor enable bits were changed */ 621 preempt_disable(); 622 vgic_v4_put(vcpu, false); 623 vgic_v4_load(vcpu); 624 preempt_enable(); 625 } 626 } 627 } 628 629 /** 630 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 631 * @vcpu: The VCPU pointer 632 * 633 * This function is called through the VCPU_RUN ioctl called from user space. It 634 * will execute VM code in a loop until the time slice for the process is used 635 * or some emulation is needed from user space in which case the function will 636 * return with return value 0 and with the kvm_run structure filled in with the 637 * required data for the requested emulation. 638 */ 639 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 640 { 641 struct kvm_run *run = vcpu->run; 642 int ret; 643 644 if (unlikely(!kvm_vcpu_initialized(vcpu))) 645 return -ENOEXEC; 646 647 ret = kvm_vcpu_first_run_init(vcpu); 648 if (ret) 649 return ret; 650 651 if (run->exit_reason == KVM_EXIT_MMIO) { 652 ret = kvm_handle_mmio_return(vcpu); 653 if (ret) 654 return ret; 655 } 656 657 if (run->immediate_exit) 658 return -EINTR; 659 660 vcpu_load(vcpu); 661 662 kvm_sigset_activate(vcpu); 663 664 ret = 1; 665 run->exit_reason = KVM_EXIT_UNKNOWN; 666 while (ret > 0) { 667 /* 668 * Check conditions before entering the guest 669 */ 670 cond_resched(); 671 672 update_vmid(&vcpu->arch.hw_mmu->vmid); 673 674 check_vcpu_requests(vcpu); 675 676 /* 677 * Preparing the interrupts to be injected also 678 * involves poking the GIC, which must be done in a 679 * non-preemptible context. 680 */ 681 preempt_disable(); 682 683 kvm_pmu_flush_hwstate(vcpu); 684 685 local_irq_disable(); 686 687 kvm_vgic_flush_hwstate(vcpu); 688 689 /* 690 * Exit if we have a signal pending so that we can deliver the 691 * signal to user space. 692 */ 693 if (signal_pending(current)) { 694 ret = -EINTR; 695 run->exit_reason = KVM_EXIT_INTR; 696 } 697 698 /* 699 * If we're using a userspace irqchip, then check if we need 700 * to tell a userspace irqchip about timer or PMU level 701 * changes and if so, exit to userspace (the actual level 702 * state gets updated in kvm_timer_update_run and 703 * kvm_pmu_update_run below). 704 */ 705 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 706 if (kvm_timer_should_notify_user(vcpu) || 707 kvm_pmu_should_notify_user(vcpu)) { 708 ret = -EINTR; 709 run->exit_reason = KVM_EXIT_INTR; 710 } 711 } 712 713 /* 714 * Ensure we set mode to IN_GUEST_MODE after we disable 715 * interrupts and before the final VCPU requests check. 716 * See the comment in kvm_vcpu_exiting_guest_mode() and 717 * Documentation/virt/kvm/vcpu-requests.rst 718 */ 719 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 720 721 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) || 722 kvm_request_pending(vcpu)) { 723 vcpu->mode = OUTSIDE_GUEST_MODE; 724 isb(); /* Ensure work in x_flush_hwstate is committed */ 725 kvm_pmu_sync_hwstate(vcpu); 726 if (static_branch_unlikely(&userspace_irqchip_in_use)) 727 kvm_timer_sync_user(vcpu); 728 kvm_vgic_sync_hwstate(vcpu); 729 local_irq_enable(); 730 preempt_enable(); 731 continue; 732 } 733 734 kvm_arm_setup_debug(vcpu); 735 736 /************************************************************** 737 * Enter the guest 738 */ 739 trace_kvm_entry(*vcpu_pc(vcpu)); 740 guest_enter_irqoff(); 741 742 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 743 744 vcpu->mode = OUTSIDE_GUEST_MODE; 745 vcpu->stat.exits++; 746 /* 747 * Back from guest 748 *************************************************************/ 749 750 kvm_arm_clear_debug(vcpu); 751 752 /* 753 * We must sync the PMU state before the vgic state so 754 * that the vgic can properly sample the updated state of the 755 * interrupt line. 756 */ 757 kvm_pmu_sync_hwstate(vcpu); 758 759 /* 760 * Sync the vgic state before syncing the timer state because 761 * the timer code needs to know if the virtual timer 762 * interrupts are active. 763 */ 764 kvm_vgic_sync_hwstate(vcpu); 765 766 /* 767 * Sync the timer hardware state before enabling interrupts as 768 * we don't want vtimer interrupts to race with syncing the 769 * timer virtual interrupt state. 770 */ 771 if (static_branch_unlikely(&userspace_irqchip_in_use)) 772 kvm_timer_sync_user(vcpu); 773 774 kvm_arch_vcpu_ctxsync_fp(vcpu); 775 776 /* 777 * We may have taken a host interrupt in HYP mode (ie 778 * while executing the guest). This interrupt is still 779 * pending, as we haven't serviced it yet! 780 * 781 * We're now back in SVC mode, with interrupts 782 * disabled. Enabling the interrupts now will have 783 * the effect of taking the interrupt again, in SVC 784 * mode this time. 785 */ 786 local_irq_enable(); 787 788 /* 789 * We do local_irq_enable() before calling guest_exit() so 790 * that if a timer interrupt hits while running the guest we 791 * account that tick as being spent in the guest. We enable 792 * preemption after calling guest_exit() so that if we get 793 * preempted we make sure ticks after that is not counted as 794 * guest time. 795 */ 796 guest_exit(); 797 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 798 799 /* Exit types that need handling before we can be preempted */ 800 handle_exit_early(vcpu, ret); 801 802 preempt_enable(); 803 804 ret = handle_exit(vcpu, ret); 805 } 806 807 /* Tell userspace about in-kernel device output levels */ 808 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 809 kvm_timer_update_run(vcpu); 810 kvm_pmu_update_run(vcpu); 811 } 812 813 kvm_sigset_deactivate(vcpu); 814 815 vcpu_put(vcpu); 816 return ret; 817 } 818 819 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 820 { 821 int bit_index; 822 bool set; 823 unsigned long *hcr; 824 825 if (number == KVM_ARM_IRQ_CPU_IRQ) 826 bit_index = __ffs(HCR_VI); 827 else /* KVM_ARM_IRQ_CPU_FIQ */ 828 bit_index = __ffs(HCR_VF); 829 830 hcr = vcpu_hcr(vcpu); 831 if (level) 832 set = test_and_set_bit(bit_index, hcr); 833 else 834 set = test_and_clear_bit(bit_index, hcr); 835 836 /* 837 * If we didn't change anything, no need to wake up or kick other CPUs 838 */ 839 if (set == level) 840 return 0; 841 842 /* 843 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 844 * trigger a world-switch round on the running physical CPU to set the 845 * virtual IRQ/FIQ fields in the HCR appropriately. 846 */ 847 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 848 kvm_vcpu_kick(vcpu); 849 850 return 0; 851 } 852 853 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 854 bool line_status) 855 { 856 u32 irq = irq_level->irq; 857 unsigned int irq_type, vcpu_idx, irq_num; 858 int nrcpus = atomic_read(&kvm->online_vcpus); 859 struct kvm_vcpu *vcpu = NULL; 860 bool level = irq_level->level; 861 862 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 863 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 864 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 865 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 866 867 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 868 869 switch (irq_type) { 870 case KVM_ARM_IRQ_TYPE_CPU: 871 if (irqchip_in_kernel(kvm)) 872 return -ENXIO; 873 874 if (vcpu_idx >= nrcpus) 875 return -EINVAL; 876 877 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 878 if (!vcpu) 879 return -EINVAL; 880 881 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 882 return -EINVAL; 883 884 return vcpu_interrupt_line(vcpu, irq_num, level); 885 case KVM_ARM_IRQ_TYPE_PPI: 886 if (!irqchip_in_kernel(kvm)) 887 return -ENXIO; 888 889 if (vcpu_idx >= nrcpus) 890 return -EINVAL; 891 892 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 893 if (!vcpu) 894 return -EINVAL; 895 896 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 897 return -EINVAL; 898 899 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); 900 case KVM_ARM_IRQ_TYPE_SPI: 901 if (!irqchip_in_kernel(kvm)) 902 return -ENXIO; 903 904 if (irq_num < VGIC_NR_PRIVATE_IRQS) 905 return -EINVAL; 906 907 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); 908 } 909 910 return -EINVAL; 911 } 912 913 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 914 const struct kvm_vcpu_init *init) 915 { 916 unsigned int i, ret; 917 int phys_target = kvm_target_cpu(); 918 919 if (init->target != phys_target) 920 return -EINVAL; 921 922 /* 923 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 924 * use the same target. 925 */ 926 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) 927 return -EINVAL; 928 929 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 930 for (i = 0; i < sizeof(init->features) * 8; i++) { 931 bool set = (init->features[i / 32] & (1 << (i % 32))); 932 933 if (set && i >= KVM_VCPU_MAX_FEATURES) 934 return -ENOENT; 935 936 /* 937 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 938 * use the same feature set. 939 */ 940 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && 941 test_bit(i, vcpu->arch.features) != set) 942 return -EINVAL; 943 944 if (set) 945 set_bit(i, vcpu->arch.features); 946 } 947 948 vcpu->arch.target = phys_target; 949 950 /* Now we know what it is, we can reset it. */ 951 ret = kvm_reset_vcpu(vcpu); 952 if (ret) { 953 vcpu->arch.target = -1; 954 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 955 } 956 957 return ret; 958 } 959 960 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 961 struct kvm_vcpu_init *init) 962 { 963 int ret; 964 965 ret = kvm_vcpu_set_target(vcpu, init); 966 if (ret) 967 return ret; 968 969 /* 970 * Ensure a rebooted VM will fault in RAM pages and detect if the 971 * guest MMU is turned off and flush the caches as needed. 972 * 973 * S2FWB enforces all memory accesses to RAM being cacheable, 974 * ensuring that the data side is always coherent. We still 975 * need to invalidate the I-cache though, as FWB does *not* 976 * imply CTR_EL0.DIC. 977 */ 978 if (vcpu->arch.has_run_once) { 979 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 980 stage2_unmap_vm(vcpu->kvm); 981 else 982 __flush_icache_all(); 983 } 984 985 vcpu_reset_hcr(vcpu); 986 987 /* 988 * Handle the "start in power-off" case. 989 */ 990 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) 991 vcpu_power_off(vcpu); 992 else 993 vcpu->arch.power_off = false; 994 995 return 0; 996 } 997 998 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 999 struct kvm_device_attr *attr) 1000 { 1001 int ret = -ENXIO; 1002 1003 switch (attr->group) { 1004 default: 1005 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1006 break; 1007 } 1008 1009 return ret; 1010 } 1011 1012 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1013 struct kvm_device_attr *attr) 1014 { 1015 int ret = -ENXIO; 1016 1017 switch (attr->group) { 1018 default: 1019 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1020 break; 1021 } 1022 1023 return ret; 1024 } 1025 1026 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1027 struct kvm_device_attr *attr) 1028 { 1029 int ret = -ENXIO; 1030 1031 switch (attr->group) { 1032 default: 1033 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1034 break; 1035 } 1036 1037 return ret; 1038 } 1039 1040 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1041 struct kvm_vcpu_events *events) 1042 { 1043 memset(events, 0, sizeof(*events)); 1044 1045 return __kvm_arm_vcpu_get_events(vcpu, events); 1046 } 1047 1048 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1049 struct kvm_vcpu_events *events) 1050 { 1051 int i; 1052 1053 /* check whether the reserved field is zero */ 1054 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1055 if (events->reserved[i]) 1056 return -EINVAL; 1057 1058 /* check whether the pad field is zero */ 1059 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1060 if (events->exception.pad[i]) 1061 return -EINVAL; 1062 1063 return __kvm_arm_vcpu_set_events(vcpu, events); 1064 } 1065 1066 long kvm_arch_vcpu_ioctl(struct file *filp, 1067 unsigned int ioctl, unsigned long arg) 1068 { 1069 struct kvm_vcpu *vcpu = filp->private_data; 1070 void __user *argp = (void __user *)arg; 1071 struct kvm_device_attr attr; 1072 long r; 1073 1074 switch (ioctl) { 1075 case KVM_ARM_VCPU_INIT: { 1076 struct kvm_vcpu_init init; 1077 1078 r = -EFAULT; 1079 if (copy_from_user(&init, argp, sizeof(init))) 1080 break; 1081 1082 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1083 break; 1084 } 1085 case KVM_SET_ONE_REG: 1086 case KVM_GET_ONE_REG: { 1087 struct kvm_one_reg reg; 1088 1089 r = -ENOEXEC; 1090 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1091 break; 1092 1093 r = -EFAULT; 1094 if (copy_from_user(®, argp, sizeof(reg))) 1095 break; 1096 1097 if (ioctl == KVM_SET_ONE_REG) 1098 r = kvm_arm_set_reg(vcpu, ®); 1099 else 1100 r = kvm_arm_get_reg(vcpu, ®); 1101 break; 1102 } 1103 case KVM_GET_REG_LIST: { 1104 struct kvm_reg_list __user *user_list = argp; 1105 struct kvm_reg_list reg_list; 1106 unsigned n; 1107 1108 r = -ENOEXEC; 1109 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1110 break; 1111 1112 r = -EPERM; 1113 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1114 break; 1115 1116 r = -EFAULT; 1117 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1118 break; 1119 n = reg_list.n; 1120 reg_list.n = kvm_arm_num_regs(vcpu); 1121 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1122 break; 1123 r = -E2BIG; 1124 if (n < reg_list.n) 1125 break; 1126 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1127 break; 1128 } 1129 case KVM_SET_DEVICE_ATTR: { 1130 r = -EFAULT; 1131 if (copy_from_user(&attr, argp, sizeof(attr))) 1132 break; 1133 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1134 break; 1135 } 1136 case KVM_GET_DEVICE_ATTR: { 1137 r = -EFAULT; 1138 if (copy_from_user(&attr, argp, sizeof(attr))) 1139 break; 1140 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1141 break; 1142 } 1143 case KVM_HAS_DEVICE_ATTR: { 1144 r = -EFAULT; 1145 if (copy_from_user(&attr, argp, sizeof(attr))) 1146 break; 1147 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1148 break; 1149 } 1150 case KVM_GET_VCPU_EVENTS: { 1151 struct kvm_vcpu_events events; 1152 1153 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1154 return -EINVAL; 1155 1156 if (copy_to_user(argp, &events, sizeof(events))) 1157 return -EFAULT; 1158 1159 return 0; 1160 } 1161 case KVM_SET_VCPU_EVENTS: { 1162 struct kvm_vcpu_events events; 1163 1164 if (copy_from_user(&events, argp, sizeof(events))) 1165 return -EFAULT; 1166 1167 return kvm_arm_vcpu_set_events(vcpu, &events); 1168 } 1169 case KVM_ARM_VCPU_FINALIZE: { 1170 int what; 1171 1172 if (!kvm_vcpu_initialized(vcpu)) 1173 return -ENOEXEC; 1174 1175 if (get_user(what, (const int __user *)argp)) 1176 return -EFAULT; 1177 1178 return kvm_arm_vcpu_finalize(vcpu, what); 1179 } 1180 default: 1181 r = -EINVAL; 1182 } 1183 1184 return r; 1185 } 1186 1187 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1188 { 1189 1190 } 1191 1192 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1193 struct kvm_memory_slot *memslot) 1194 { 1195 kvm_flush_remote_tlbs(kvm); 1196 } 1197 1198 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1199 struct kvm_arm_device_addr *dev_addr) 1200 { 1201 unsigned long dev_id, type; 1202 1203 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> 1204 KVM_ARM_DEVICE_ID_SHIFT; 1205 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> 1206 KVM_ARM_DEVICE_TYPE_SHIFT; 1207 1208 switch (dev_id) { 1209 case KVM_ARM_DEVICE_VGIC_V2: 1210 if (!vgic_present) 1211 return -ENXIO; 1212 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); 1213 default: 1214 return -ENODEV; 1215 } 1216 } 1217 1218 long kvm_arch_vm_ioctl(struct file *filp, 1219 unsigned int ioctl, unsigned long arg) 1220 { 1221 struct kvm *kvm = filp->private_data; 1222 void __user *argp = (void __user *)arg; 1223 1224 switch (ioctl) { 1225 case KVM_CREATE_IRQCHIP: { 1226 int ret; 1227 if (!vgic_present) 1228 return -ENXIO; 1229 mutex_lock(&kvm->lock); 1230 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1231 mutex_unlock(&kvm->lock); 1232 return ret; 1233 } 1234 case KVM_ARM_SET_DEVICE_ADDR: { 1235 struct kvm_arm_device_addr dev_addr; 1236 1237 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1238 return -EFAULT; 1239 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1240 } 1241 case KVM_ARM_PREFERRED_TARGET: { 1242 int err; 1243 struct kvm_vcpu_init init; 1244 1245 err = kvm_vcpu_preferred_target(&init); 1246 if (err) 1247 return err; 1248 1249 if (copy_to_user(argp, &init, sizeof(init))) 1250 return -EFAULT; 1251 1252 return 0; 1253 } 1254 default: 1255 return -EINVAL; 1256 } 1257 } 1258 1259 static void cpu_init_hyp_mode(void) 1260 { 1261 phys_addr_t pgd_ptr; 1262 unsigned long hyp_stack_ptr; 1263 unsigned long vector_ptr; 1264 unsigned long tpidr_el2; 1265 1266 /* Switch from the HYP stub to our own HYP init vector */ 1267 __hyp_set_vectors(kvm_get_idmap_vector()); 1268 1269 /* 1270 * Calculate the raw per-cpu offset without a translation from the 1271 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1272 * so that we can use adr_l to access per-cpu variables in EL2. 1273 */ 1274 tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) - 1275 (unsigned long)kvm_ksym_ref(&kvm_host_data)); 1276 1277 pgd_ptr = kvm_mmu_get_httbr(); 1278 hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE; 1279 vector_ptr = (unsigned long)kvm_get_hyp_vector(); 1280 1281 /* 1282 * Call initialization code, and switch to the full blown HYP code. 1283 * If the cpucaps haven't been finalized yet, something has gone very 1284 * wrong, and hyp will crash and burn when it uses any 1285 * cpus_have_const_cap() wrapper. 1286 */ 1287 BUG_ON(!system_capabilities_finalized()); 1288 __kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2); 1289 1290 /* 1291 * Disabling SSBD on a non-VHE system requires us to enable SSBS 1292 * at EL2. 1293 */ 1294 if (this_cpu_has_cap(ARM64_SSBS) && 1295 arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) { 1296 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 1297 } 1298 } 1299 1300 static void cpu_hyp_reset(void) 1301 { 1302 if (!is_kernel_in_hyp_mode()) 1303 __hyp_reset_vectors(); 1304 } 1305 1306 static void cpu_hyp_reinit(void) 1307 { 1308 kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt); 1309 1310 cpu_hyp_reset(); 1311 1312 if (is_kernel_in_hyp_mode()) 1313 kvm_timer_init_vhe(); 1314 else 1315 cpu_init_hyp_mode(); 1316 1317 kvm_arm_init_debug(); 1318 1319 if (vgic_present) 1320 kvm_vgic_init_cpu_hardware(); 1321 } 1322 1323 static void _kvm_arch_hardware_enable(void *discard) 1324 { 1325 if (!__this_cpu_read(kvm_arm_hardware_enabled)) { 1326 cpu_hyp_reinit(); 1327 __this_cpu_write(kvm_arm_hardware_enabled, 1); 1328 } 1329 } 1330 1331 int kvm_arch_hardware_enable(void) 1332 { 1333 _kvm_arch_hardware_enable(NULL); 1334 return 0; 1335 } 1336 1337 static void _kvm_arch_hardware_disable(void *discard) 1338 { 1339 if (__this_cpu_read(kvm_arm_hardware_enabled)) { 1340 cpu_hyp_reset(); 1341 __this_cpu_write(kvm_arm_hardware_enabled, 0); 1342 } 1343 } 1344 1345 void kvm_arch_hardware_disable(void) 1346 { 1347 _kvm_arch_hardware_disable(NULL); 1348 } 1349 1350 #ifdef CONFIG_CPU_PM 1351 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 1352 unsigned long cmd, 1353 void *v) 1354 { 1355 /* 1356 * kvm_arm_hardware_enabled is left with its old value over 1357 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 1358 * re-enable hyp. 1359 */ 1360 switch (cmd) { 1361 case CPU_PM_ENTER: 1362 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1363 /* 1364 * don't update kvm_arm_hardware_enabled here 1365 * so that the hardware will be re-enabled 1366 * when we resume. See below. 1367 */ 1368 cpu_hyp_reset(); 1369 1370 return NOTIFY_OK; 1371 case CPU_PM_ENTER_FAILED: 1372 case CPU_PM_EXIT: 1373 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1374 /* The hardware was enabled before suspend. */ 1375 cpu_hyp_reinit(); 1376 1377 return NOTIFY_OK; 1378 1379 default: 1380 return NOTIFY_DONE; 1381 } 1382 } 1383 1384 static struct notifier_block hyp_init_cpu_pm_nb = { 1385 .notifier_call = hyp_init_cpu_pm_notifier, 1386 }; 1387 1388 static void __init hyp_cpu_pm_init(void) 1389 { 1390 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 1391 } 1392 static void __init hyp_cpu_pm_exit(void) 1393 { 1394 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 1395 } 1396 #else 1397 static inline void hyp_cpu_pm_init(void) 1398 { 1399 } 1400 static inline void hyp_cpu_pm_exit(void) 1401 { 1402 } 1403 #endif 1404 1405 static int init_common_resources(void) 1406 { 1407 return kvm_set_ipa_limit(); 1408 } 1409 1410 static int init_subsystems(void) 1411 { 1412 int err = 0; 1413 1414 /* 1415 * Enable hardware so that subsystem initialisation can access EL2. 1416 */ 1417 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); 1418 1419 /* 1420 * Register CPU lower-power notifier 1421 */ 1422 hyp_cpu_pm_init(); 1423 1424 /* 1425 * Init HYP view of VGIC 1426 */ 1427 err = kvm_vgic_hyp_init(); 1428 switch (err) { 1429 case 0: 1430 vgic_present = true; 1431 break; 1432 case -ENODEV: 1433 case -ENXIO: 1434 vgic_present = false; 1435 err = 0; 1436 break; 1437 default: 1438 goto out; 1439 } 1440 1441 /* 1442 * Init HYP architected timer support 1443 */ 1444 err = kvm_timer_hyp_init(vgic_present); 1445 if (err) 1446 goto out; 1447 1448 kvm_perf_init(); 1449 kvm_coproc_table_init(); 1450 1451 out: 1452 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); 1453 1454 return err; 1455 } 1456 1457 static void teardown_hyp_mode(void) 1458 { 1459 int cpu; 1460 1461 free_hyp_pgds(); 1462 for_each_possible_cpu(cpu) 1463 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 1464 } 1465 1466 /** 1467 * Inits Hyp-mode on all online CPUs 1468 */ 1469 static int init_hyp_mode(void) 1470 { 1471 int cpu; 1472 int err = 0; 1473 1474 /* 1475 * Allocate Hyp PGD and setup Hyp identity mapping 1476 */ 1477 err = kvm_mmu_init(); 1478 if (err) 1479 goto out_err; 1480 1481 /* 1482 * Allocate stack pages for Hypervisor-mode 1483 */ 1484 for_each_possible_cpu(cpu) { 1485 unsigned long stack_page; 1486 1487 stack_page = __get_free_page(GFP_KERNEL); 1488 if (!stack_page) { 1489 err = -ENOMEM; 1490 goto out_err; 1491 } 1492 1493 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 1494 } 1495 1496 /* 1497 * Map the Hyp-code called directly from the host 1498 */ 1499 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 1500 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 1501 if (err) { 1502 kvm_err("Cannot map world-switch code\n"); 1503 goto out_err; 1504 } 1505 1506 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 1507 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 1508 if (err) { 1509 kvm_err("Cannot map rodata section\n"); 1510 goto out_err; 1511 } 1512 1513 err = create_hyp_mappings(kvm_ksym_ref(__bss_start), 1514 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 1515 if (err) { 1516 kvm_err("Cannot map bss section\n"); 1517 goto out_err; 1518 } 1519 1520 err = kvm_map_vectors(); 1521 if (err) { 1522 kvm_err("Cannot map vectors\n"); 1523 goto out_err; 1524 } 1525 1526 /* 1527 * Map the Hyp stack pages 1528 */ 1529 for_each_possible_cpu(cpu) { 1530 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 1531 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, 1532 PAGE_HYP); 1533 1534 if (err) { 1535 kvm_err("Cannot map hyp stack\n"); 1536 goto out_err; 1537 } 1538 } 1539 1540 for_each_possible_cpu(cpu) { 1541 kvm_host_data_t *cpu_data; 1542 1543 cpu_data = per_cpu_ptr(&kvm_host_data, cpu); 1544 err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP); 1545 1546 if (err) { 1547 kvm_err("Cannot map host CPU state: %d\n", err); 1548 goto out_err; 1549 } 1550 } 1551 1552 err = hyp_map_aux_data(); 1553 if (err) 1554 kvm_err("Cannot map host auxiliary data: %d\n", err); 1555 1556 return 0; 1557 1558 out_err: 1559 teardown_hyp_mode(); 1560 kvm_err("error initializing Hyp mode: %d\n", err); 1561 return err; 1562 } 1563 1564 static void check_kvm_target_cpu(void *ret) 1565 { 1566 *(int *)ret = kvm_target_cpu(); 1567 } 1568 1569 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 1570 { 1571 struct kvm_vcpu *vcpu; 1572 int i; 1573 1574 mpidr &= MPIDR_HWID_BITMASK; 1575 kvm_for_each_vcpu(i, vcpu, kvm) { 1576 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 1577 return vcpu; 1578 } 1579 return NULL; 1580 } 1581 1582 bool kvm_arch_has_irq_bypass(void) 1583 { 1584 return true; 1585 } 1586 1587 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 1588 struct irq_bypass_producer *prod) 1589 { 1590 struct kvm_kernel_irqfd *irqfd = 1591 container_of(cons, struct kvm_kernel_irqfd, consumer); 1592 1593 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 1594 &irqfd->irq_entry); 1595 } 1596 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 1597 struct irq_bypass_producer *prod) 1598 { 1599 struct kvm_kernel_irqfd *irqfd = 1600 container_of(cons, struct kvm_kernel_irqfd, consumer); 1601 1602 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 1603 &irqfd->irq_entry); 1604 } 1605 1606 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 1607 { 1608 struct kvm_kernel_irqfd *irqfd = 1609 container_of(cons, struct kvm_kernel_irqfd, consumer); 1610 1611 kvm_arm_halt_guest(irqfd->kvm); 1612 } 1613 1614 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 1615 { 1616 struct kvm_kernel_irqfd *irqfd = 1617 container_of(cons, struct kvm_kernel_irqfd, consumer); 1618 1619 kvm_arm_resume_guest(irqfd->kvm); 1620 } 1621 1622 /** 1623 * Initialize Hyp-mode and memory mappings on all CPUs. 1624 */ 1625 int kvm_arch_init(void *opaque) 1626 { 1627 int err; 1628 int ret, cpu; 1629 bool in_hyp_mode; 1630 1631 if (!is_hyp_mode_available()) { 1632 kvm_info("HYP mode not available\n"); 1633 return -ENODEV; 1634 } 1635 1636 in_hyp_mode = is_kernel_in_hyp_mode(); 1637 1638 if (!in_hyp_mode && kvm_arch_requires_vhe()) { 1639 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n"); 1640 return -ENODEV; 1641 } 1642 1643 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE)) 1644 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 1645 "Only trusted guests should be used on this system.\n"); 1646 1647 for_each_online_cpu(cpu) { 1648 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); 1649 if (ret < 0) { 1650 kvm_err("Error, CPU %d not supported!\n", cpu); 1651 return -ENODEV; 1652 } 1653 } 1654 1655 err = init_common_resources(); 1656 if (err) 1657 return err; 1658 1659 err = kvm_arm_init_sve(); 1660 if (err) 1661 return err; 1662 1663 if (!in_hyp_mode) { 1664 err = init_hyp_mode(); 1665 if (err) 1666 goto out_err; 1667 } 1668 1669 err = init_subsystems(); 1670 if (err) 1671 goto out_hyp; 1672 1673 if (in_hyp_mode) 1674 kvm_info("VHE mode initialized successfully\n"); 1675 else 1676 kvm_info("Hyp mode initialized successfully\n"); 1677 1678 return 0; 1679 1680 out_hyp: 1681 hyp_cpu_pm_exit(); 1682 if (!in_hyp_mode) 1683 teardown_hyp_mode(); 1684 out_err: 1685 return err; 1686 } 1687 1688 /* NOP: Compiling as a module not supported */ 1689 void kvm_arch_exit(void) 1690 { 1691 kvm_perf_teardown(); 1692 } 1693 1694 static int arm_init(void) 1695 { 1696 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1697 return rc; 1698 } 1699 1700 module_init(arm_init); 1701