1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/errno.h> 10 #include <linux/err.h> 11 #include <linux/kvm_host.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/vmalloc.h> 15 #include <linux/fs.h> 16 #include <linux/mman.h> 17 #include <linux/sched.h> 18 #include <linux/kvm.h> 19 #include <linux/kvm_irqfd.h> 20 #include <linux/irqbypass.h> 21 #include <linux/sched/stat.h> 22 #include <trace/events/kvm.h> 23 24 #define CREATE_TRACE_POINTS 25 #include "trace_arm.h" 26 27 #include <linux/uaccess.h> 28 #include <asm/ptrace.h> 29 #include <asm/mman.h> 30 #include <asm/tlbflush.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpufeature.h> 33 #include <asm/virt.h> 34 #include <asm/kvm_arm.h> 35 #include <asm/kvm_asm.h> 36 #include <asm/kvm_mmu.h> 37 #include <asm/kvm_emulate.h> 38 #include <asm/kvm_coproc.h> 39 #include <asm/sections.h> 40 41 #include <kvm/arm_hypercalls.h> 42 #include <kvm/arm_pmu.h> 43 #include <kvm/arm_psci.h> 44 45 #ifdef REQUIRES_VIRT 46 __asm__(".arch_extension virt"); 47 #endif 48 49 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 50 51 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 52 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS]; 53 54 /* The VMID used in the VTTBR */ 55 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 56 static u32 kvm_next_vmid; 57 static DEFINE_SPINLOCK(kvm_vmid_lock); 58 59 static bool vgic_present; 60 61 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); 62 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 63 64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 65 { 66 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 67 } 68 69 int kvm_arch_hardware_setup(void *opaque) 70 { 71 return 0; 72 } 73 74 int kvm_arch_check_processor_compat(void *opaque) 75 { 76 return 0; 77 } 78 79 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 80 struct kvm_enable_cap *cap) 81 { 82 int r; 83 84 if (cap->flags) 85 return -EINVAL; 86 87 switch (cap->cap) { 88 case KVM_CAP_ARM_NISV_TO_USER: 89 r = 0; 90 kvm->arch.return_nisv_io_abort_to_user = true; 91 break; 92 default: 93 r = -EINVAL; 94 break; 95 } 96 97 return r; 98 } 99 100 static int kvm_arm_default_max_vcpus(void) 101 { 102 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 103 } 104 105 /** 106 * kvm_arch_init_vm - initializes a VM data structure 107 * @kvm: pointer to the KVM struct 108 */ 109 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 110 { 111 int ret; 112 113 ret = kvm_arm_setup_stage2(kvm, type); 114 if (ret) 115 return ret; 116 117 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu); 118 if (ret) 119 return ret; 120 121 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); 122 if (ret) 123 goto out_free_stage2_pgd; 124 125 kvm_vgic_early_init(kvm); 126 127 /* The maximum number of VCPUs is limited by the host's GIC model */ 128 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus(); 129 130 return ret; 131 out_free_stage2_pgd: 132 kvm_free_stage2_pgd(&kvm->arch.mmu); 133 return ret; 134 } 135 136 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 137 { 138 return VM_FAULT_SIGBUS; 139 } 140 141 142 /** 143 * kvm_arch_destroy_vm - destroy the VM data structure 144 * @kvm: pointer to the KVM struct 145 */ 146 void kvm_arch_destroy_vm(struct kvm *kvm) 147 { 148 int i; 149 150 bitmap_free(kvm->arch.pmu_filter); 151 152 kvm_vgic_destroy(kvm); 153 154 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 155 if (kvm->vcpus[i]) { 156 kvm_vcpu_destroy(kvm->vcpus[i]); 157 kvm->vcpus[i] = NULL; 158 } 159 } 160 atomic_set(&kvm->online_vcpus, 0); 161 } 162 163 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 164 { 165 int r; 166 switch (ext) { 167 case KVM_CAP_IRQCHIP: 168 r = vgic_present; 169 break; 170 case KVM_CAP_IOEVENTFD: 171 case KVM_CAP_DEVICE_CTRL: 172 case KVM_CAP_USER_MEMORY: 173 case KVM_CAP_SYNC_MMU: 174 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 175 case KVM_CAP_ONE_REG: 176 case KVM_CAP_ARM_PSCI: 177 case KVM_CAP_ARM_PSCI_0_2: 178 case KVM_CAP_READONLY_MEM: 179 case KVM_CAP_MP_STATE: 180 case KVM_CAP_IMMEDIATE_EXIT: 181 case KVM_CAP_VCPU_EVENTS: 182 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 183 case KVM_CAP_ARM_NISV_TO_USER: 184 case KVM_CAP_ARM_INJECT_EXT_DABT: 185 r = 1; 186 break; 187 case KVM_CAP_ARM_SET_DEVICE_ADDR: 188 r = 1; 189 break; 190 case KVM_CAP_NR_VCPUS: 191 r = num_online_cpus(); 192 break; 193 case KVM_CAP_MAX_VCPUS: 194 case KVM_CAP_MAX_VCPU_ID: 195 if (kvm) 196 r = kvm->arch.max_vcpus; 197 else 198 r = kvm_arm_default_max_vcpus(); 199 break; 200 case KVM_CAP_MSI_DEVID: 201 if (!kvm) 202 r = -EINVAL; 203 else 204 r = kvm->arch.vgic.msis_require_devid; 205 break; 206 case KVM_CAP_ARM_USER_IRQ: 207 /* 208 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 209 * (bump this number if adding more devices) 210 */ 211 r = 1; 212 break; 213 case KVM_CAP_STEAL_TIME: 214 r = kvm_arm_pvtime_supported(); 215 break; 216 default: 217 r = kvm_arch_vm_ioctl_check_extension(kvm, ext); 218 break; 219 } 220 return r; 221 } 222 223 long kvm_arch_dev_ioctl(struct file *filp, 224 unsigned int ioctl, unsigned long arg) 225 { 226 return -EINVAL; 227 } 228 229 struct kvm *kvm_arch_alloc_vm(void) 230 { 231 if (!has_vhe()) 232 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 233 234 return vzalloc(sizeof(struct kvm)); 235 } 236 237 void kvm_arch_free_vm(struct kvm *kvm) 238 { 239 if (!has_vhe()) 240 kfree(kvm); 241 else 242 vfree(kvm); 243 } 244 245 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 246 { 247 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 248 return -EBUSY; 249 250 if (id >= kvm->arch.max_vcpus) 251 return -EINVAL; 252 253 return 0; 254 } 255 256 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 257 { 258 int err; 259 260 /* Force users to call KVM_ARM_VCPU_INIT */ 261 vcpu->arch.target = -1; 262 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 263 264 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 265 266 /* Set up the timer */ 267 kvm_timer_vcpu_init(vcpu); 268 269 kvm_pmu_vcpu_init(vcpu); 270 271 kvm_arm_reset_debug_ptr(vcpu); 272 273 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 274 275 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 276 277 err = kvm_vgic_vcpu_init(vcpu); 278 if (err) 279 return err; 280 281 return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); 282 } 283 284 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 285 { 286 } 287 288 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 289 { 290 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm))) 291 static_branch_dec(&userspace_irqchip_in_use); 292 293 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 294 kvm_timer_vcpu_terminate(vcpu); 295 kvm_pmu_vcpu_destroy(vcpu); 296 297 kvm_arm_vcpu_destroy(vcpu); 298 } 299 300 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 301 { 302 return kvm_timer_is_pending(vcpu); 303 } 304 305 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 306 { 307 /* 308 * If we're about to block (most likely because we've just hit a 309 * WFI), we need to sync back the state of the GIC CPU interface 310 * so that we have the latest PMR and group enables. This ensures 311 * that kvm_arch_vcpu_runnable has up-to-date data to decide 312 * whether we have pending interrupts. 313 * 314 * For the same reason, we want to tell GICv4 that we need 315 * doorbells to be signalled, should an interrupt become pending. 316 */ 317 preempt_disable(); 318 kvm_vgic_vmcr_sync(vcpu); 319 vgic_v4_put(vcpu, true); 320 preempt_enable(); 321 } 322 323 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 324 { 325 preempt_disable(); 326 vgic_v4_load(vcpu); 327 preempt_enable(); 328 } 329 330 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 331 { 332 struct kvm_s2_mmu *mmu; 333 int *last_ran; 334 335 mmu = vcpu->arch.hw_mmu; 336 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 337 338 /* 339 * We might get preempted before the vCPU actually runs, but 340 * over-invalidation doesn't affect correctness. 341 */ 342 if (*last_ran != vcpu->vcpu_id) { 343 kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu); 344 *last_ran = vcpu->vcpu_id; 345 } 346 347 vcpu->cpu = cpu; 348 349 kvm_vgic_load(vcpu); 350 kvm_timer_vcpu_load(vcpu); 351 if (has_vhe()) 352 kvm_vcpu_load_sysregs_vhe(vcpu); 353 kvm_arch_vcpu_load_fp(vcpu); 354 kvm_vcpu_pmu_restore_guest(vcpu); 355 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 356 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 357 358 if (single_task_running()) 359 vcpu_clear_wfx_traps(vcpu); 360 else 361 vcpu_set_wfx_traps(vcpu); 362 363 if (vcpu_has_ptrauth(vcpu)) 364 vcpu_ptrauth_disable(vcpu); 365 } 366 367 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 368 { 369 kvm_arch_vcpu_put_fp(vcpu); 370 if (has_vhe()) 371 kvm_vcpu_put_sysregs_vhe(vcpu); 372 kvm_timer_vcpu_put(vcpu); 373 kvm_vgic_put(vcpu); 374 kvm_vcpu_pmu_restore_host(vcpu); 375 376 vcpu->cpu = -1; 377 } 378 379 static void vcpu_power_off(struct kvm_vcpu *vcpu) 380 { 381 vcpu->arch.power_off = true; 382 kvm_make_request(KVM_REQ_SLEEP, vcpu); 383 kvm_vcpu_kick(vcpu); 384 } 385 386 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 387 struct kvm_mp_state *mp_state) 388 { 389 if (vcpu->arch.power_off) 390 mp_state->mp_state = KVM_MP_STATE_STOPPED; 391 else 392 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 393 394 return 0; 395 } 396 397 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 398 struct kvm_mp_state *mp_state) 399 { 400 int ret = 0; 401 402 switch (mp_state->mp_state) { 403 case KVM_MP_STATE_RUNNABLE: 404 vcpu->arch.power_off = false; 405 break; 406 case KVM_MP_STATE_STOPPED: 407 vcpu_power_off(vcpu); 408 break; 409 default: 410 ret = -EINVAL; 411 } 412 413 return ret; 414 } 415 416 /** 417 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 418 * @v: The VCPU pointer 419 * 420 * If the guest CPU is not waiting for interrupts or an interrupt line is 421 * asserted, the CPU is by definition runnable. 422 */ 423 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 424 { 425 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 426 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 427 && !v->arch.power_off && !v->arch.pause); 428 } 429 430 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 431 { 432 return vcpu_mode_priv(vcpu); 433 } 434 435 /* Just ensure a guest exit from a particular CPU */ 436 static void exit_vm_noop(void *info) 437 { 438 } 439 440 void force_vm_exit(const cpumask_t *mask) 441 { 442 preempt_disable(); 443 smp_call_function_many(mask, exit_vm_noop, NULL, true); 444 preempt_enable(); 445 } 446 447 /** 448 * need_new_vmid_gen - check that the VMID is still valid 449 * @vmid: The VMID to check 450 * 451 * return true if there is a new generation of VMIDs being used 452 * 453 * The hardware supports a limited set of values with the value zero reserved 454 * for the host, so we check if an assigned value belongs to a previous 455 * generation, which requires us to assign a new value. If we're the first to 456 * use a VMID for the new generation, we must flush necessary caches and TLBs 457 * on all CPUs. 458 */ 459 static bool need_new_vmid_gen(struct kvm_vmid *vmid) 460 { 461 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen); 462 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */ 463 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen); 464 } 465 466 /** 467 * update_vmid - Update the vmid with a valid VMID for the current generation 468 * @vmid: The stage-2 VMID information struct 469 */ 470 static void update_vmid(struct kvm_vmid *vmid) 471 { 472 if (!need_new_vmid_gen(vmid)) 473 return; 474 475 spin_lock(&kvm_vmid_lock); 476 477 /* 478 * We need to re-check the vmid_gen here to ensure that if another vcpu 479 * already allocated a valid vmid for this vm, then this vcpu should 480 * use the same vmid. 481 */ 482 if (!need_new_vmid_gen(vmid)) { 483 spin_unlock(&kvm_vmid_lock); 484 return; 485 } 486 487 /* First user of a new VMID generation? */ 488 if (unlikely(kvm_next_vmid == 0)) { 489 atomic64_inc(&kvm_vmid_gen); 490 kvm_next_vmid = 1; 491 492 /* 493 * On SMP we know no other CPUs can use this CPU's or each 494 * other's VMID after force_vm_exit returns since the 495 * kvm_vmid_lock blocks them from reentry to the guest. 496 */ 497 force_vm_exit(cpu_all_mask); 498 /* 499 * Now broadcast TLB + ICACHE invalidation over the inner 500 * shareable domain to make sure all data structures are 501 * clean. 502 */ 503 kvm_call_hyp(__kvm_flush_vm_context); 504 } 505 506 vmid->vmid = kvm_next_vmid; 507 kvm_next_vmid++; 508 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1; 509 510 smp_wmb(); 511 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen)); 512 513 spin_unlock(&kvm_vmid_lock); 514 } 515 516 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) 517 { 518 struct kvm *kvm = vcpu->kvm; 519 int ret = 0; 520 521 if (likely(vcpu->arch.has_run_once)) 522 return 0; 523 524 if (!kvm_arm_vcpu_is_finalized(vcpu)) 525 return -EPERM; 526 527 vcpu->arch.has_run_once = true; 528 529 if (likely(irqchip_in_kernel(kvm))) { 530 /* 531 * Map the VGIC hardware resources before running a vcpu the 532 * first time on this VM. 533 */ 534 if (unlikely(!vgic_ready(kvm))) { 535 ret = kvm_vgic_map_resources(kvm); 536 if (ret) 537 return ret; 538 } 539 } else { 540 /* 541 * Tell the rest of the code that there are userspace irqchip 542 * VMs in the wild. 543 */ 544 static_branch_inc(&userspace_irqchip_in_use); 545 } 546 547 ret = kvm_timer_enable(vcpu); 548 if (ret) 549 return ret; 550 551 ret = kvm_arm_pmu_v3_enable(vcpu); 552 553 return ret; 554 } 555 556 bool kvm_arch_intc_initialized(struct kvm *kvm) 557 { 558 return vgic_initialized(kvm); 559 } 560 561 void kvm_arm_halt_guest(struct kvm *kvm) 562 { 563 int i; 564 struct kvm_vcpu *vcpu; 565 566 kvm_for_each_vcpu(i, vcpu, kvm) 567 vcpu->arch.pause = true; 568 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 569 } 570 571 void kvm_arm_resume_guest(struct kvm *kvm) 572 { 573 int i; 574 struct kvm_vcpu *vcpu; 575 576 kvm_for_each_vcpu(i, vcpu, kvm) { 577 vcpu->arch.pause = false; 578 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 579 } 580 } 581 582 static void vcpu_req_sleep(struct kvm_vcpu *vcpu) 583 { 584 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 585 586 rcuwait_wait_event(wait, 587 (!vcpu->arch.power_off) &&(!vcpu->arch.pause), 588 TASK_INTERRUPTIBLE); 589 590 if (vcpu->arch.power_off || vcpu->arch.pause) { 591 /* Awaken to handle a signal, request we sleep again later. */ 592 kvm_make_request(KVM_REQ_SLEEP, vcpu); 593 } 594 595 /* 596 * Make sure we will observe a potential reset request if we've 597 * observed a change to the power state. Pairs with the smp_wmb() in 598 * kvm_psci_vcpu_on(). 599 */ 600 smp_rmb(); 601 } 602 603 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 604 { 605 return vcpu->arch.target >= 0; 606 } 607 608 static void check_vcpu_requests(struct kvm_vcpu *vcpu) 609 { 610 if (kvm_request_pending(vcpu)) { 611 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 612 vcpu_req_sleep(vcpu); 613 614 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 615 kvm_reset_vcpu(vcpu); 616 617 /* 618 * Clear IRQ_PENDING requests that were made to guarantee 619 * that a VCPU sees new virtual interrupts. 620 */ 621 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 622 623 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 624 kvm_update_stolen_time(vcpu); 625 626 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 627 /* The distributor enable bits were changed */ 628 preempt_disable(); 629 vgic_v4_put(vcpu, false); 630 vgic_v4_load(vcpu); 631 preempt_enable(); 632 } 633 } 634 } 635 636 /** 637 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 638 * @vcpu: The VCPU pointer 639 * 640 * This function is called through the VCPU_RUN ioctl called from user space. It 641 * will execute VM code in a loop until the time slice for the process is used 642 * or some emulation is needed from user space in which case the function will 643 * return with return value 0 and with the kvm_run structure filled in with the 644 * required data for the requested emulation. 645 */ 646 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 647 { 648 struct kvm_run *run = vcpu->run; 649 int ret; 650 651 if (unlikely(!kvm_vcpu_initialized(vcpu))) 652 return -ENOEXEC; 653 654 ret = kvm_vcpu_first_run_init(vcpu); 655 if (ret) 656 return ret; 657 658 if (run->exit_reason == KVM_EXIT_MMIO) { 659 ret = kvm_handle_mmio_return(vcpu); 660 if (ret) 661 return ret; 662 } 663 664 if (run->immediate_exit) 665 return -EINTR; 666 667 vcpu_load(vcpu); 668 669 kvm_sigset_activate(vcpu); 670 671 ret = 1; 672 run->exit_reason = KVM_EXIT_UNKNOWN; 673 while (ret > 0) { 674 /* 675 * Check conditions before entering the guest 676 */ 677 cond_resched(); 678 679 update_vmid(&vcpu->arch.hw_mmu->vmid); 680 681 check_vcpu_requests(vcpu); 682 683 /* 684 * Preparing the interrupts to be injected also 685 * involves poking the GIC, which must be done in a 686 * non-preemptible context. 687 */ 688 preempt_disable(); 689 690 kvm_pmu_flush_hwstate(vcpu); 691 692 local_irq_disable(); 693 694 kvm_vgic_flush_hwstate(vcpu); 695 696 /* 697 * Exit if we have a signal pending so that we can deliver the 698 * signal to user space. 699 */ 700 if (signal_pending(current)) { 701 ret = -EINTR; 702 run->exit_reason = KVM_EXIT_INTR; 703 } 704 705 /* 706 * If we're using a userspace irqchip, then check if we need 707 * to tell a userspace irqchip about timer or PMU level 708 * changes and if so, exit to userspace (the actual level 709 * state gets updated in kvm_timer_update_run and 710 * kvm_pmu_update_run below). 711 */ 712 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 713 if (kvm_timer_should_notify_user(vcpu) || 714 kvm_pmu_should_notify_user(vcpu)) { 715 ret = -EINTR; 716 run->exit_reason = KVM_EXIT_INTR; 717 } 718 } 719 720 /* 721 * Ensure we set mode to IN_GUEST_MODE after we disable 722 * interrupts and before the final VCPU requests check. 723 * See the comment in kvm_vcpu_exiting_guest_mode() and 724 * Documentation/virt/kvm/vcpu-requests.rst 725 */ 726 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 727 728 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) || 729 kvm_request_pending(vcpu)) { 730 vcpu->mode = OUTSIDE_GUEST_MODE; 731 isb(); /* Ensure work in x_flush_hwstate is committed */ 732 kvm_pmu_sync_hwstate(vcpu); 733 if (static_branch_unlikely(&userspace_irqchip_in_use)) 734 kvm_timer_sync_user(vcpu); 735 kvm_vgic_sync_hwstate(vcpu); 736 local_irq_enable(); 737 preempt_enable(); 738 continue; 739 } 740 741 kvm_arm_setup_debug(vcpu); 742 743 /************************************************************** 744 * Enter the guest 745 */ 746 trace_kvm_entry(*vcpu_pc(vcpu)); 747 guest_enter_irqoff(); 748 749 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 750 751 vcpu->mode = OUTSIDE_GUEST_MODE; 752 vcpu->stat.exits++; 753 /* 754 * Back from guest 755 *************************************************************/ 756 757 kvm_arm_clear_debug(vcpu); 758 759 /* 760 * We must sync the PMU state before the vgic state so 761 * that the vgic can properly sample the updated state of the 762 * interrupt line. 763 */ 764 kvm_pmu_sync_hwstate(vcpu); 765 766 /* 767 * Sync the vgic state before syncing the timer state because 768 * the timer code needs to know if the virtual timer 769 * interrupts are active. 770 */ 771 kvm_vgic_sync_hwstate(vcpu); 772 773 /* 774 * Sync the timer hardware state before enabling interrupts as 775 * we don't want vtimer interrupts to race with syncing the 776 * timer virtual interrupt state. 777 */ 778 if (static_branch_unlikely(&userspace_irqchip_in_use)) 779 kvm_timer_sync_user(vcpu); 780 781 kvm_arch_vcpu_ctxsync_fp(vcpu); 782 783 /* 784 * We may have taken a host interrupt in HYP mode (ie 785 * while executing the guest). This interrupt is still 786 * pending, as we haven't serviced it yet! 787 * 788 * We're now back in SVC mode, with interrupts 789 * disabled. Enabling the interrupts now will have 790 * the effect of taking the interrupt again, in SVC 791 * mode this time. 792 */ 793 local_irq_enable(); 794 795 /* 796 * We do local_irq_enable() before calling guest_exit() so 797 * that if a timer interrupt hits while running the guest we 798 * account that tick as being spent in the guest. We enable 799 * preemption after calling guest_exit() so that if we get 800 * preempted we make sure ticks after that is not counted as 801 * guest time. 802 */ 803 guest_exit(); 804 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 805 806 /* Exit types that need handling before we can be preempted */ 807 handle_exit_early(vcpu, ret); 808 809 preempt_enable(); 810 811 /* 812 * The ARMv8 architecture doesn't give the hypervisor 813 * a mechanism to prevent a guest from dropping to AArch32 EL0 814 * if implemented by the CPU. If we spot the guest in such 815 * state and that we decided it wasn't supposed to do so (like 816 * with the asymmetric AArch32 case), return to userspace with 817 * a fatal error. 818 */ 819 if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) { 820 /* 821 * As we have caught the guest red-handed, decide that 822 * it isn't fit for purpose anymore by making the vcpu 823 * invalid. The VMM can try and fix it by issuing a 824 * KVM_ARM_VCPU_INIT if it really wants to. 825 */ 826 vcpu->arch.target = -1; 827 ret = ARM_EXCEPTION_IL; 828 } 829 830 ret = handle_exit(vcpu, ret); 831 } 832 833 /* Tell userspace about in-kernel device output levels */ 834 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 835 kvm_timer_update_run(vcpu); 836 kvm_pmu_update_run(vcpu); 837 } 838 839 kvm_sigset_deactivate(vcpu); 840 841 vcpu_put(vcpu); 842 return ret; 843 } 844 845 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 846 { 847 int bit_index; 848 bool set; 849 unsigned long *hcr; 850 851 if (number == KVM_ARM_IRQ_CPU_IRQ) 852 bit_index = __ffs(HCR_VI); 853 else /* KVM_ARM_IRQ_CPU_FIQ */ 854 bit_index = __ffs(HCR_VF); 855 856 hcr = vcpu_hcr(vcpu); 857 if (level) 858 set = test_and_set_bit(bit_index, hcr); 859 else 860 set = test_and_clear_bit(bit_index, hcr); 861 862 /* 863 * If we didn't change anything, no need to wake up or kick other CPUs 864 */ 865 if (set == level) 866 return 0; 867 868 /* 869 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 870 * trigger a world-switch round on the running physical CPU to set the 871 * virtual IRQ/FIQ fields in the HCR appropriately. 872 */ 873 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 874 kvm_vcpu_kick(vcpu); 875 876 return 0; 877 } 878 879 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 880 bool line_status) 881 { 882 u32 irq = irq_level->irq; 883 unsigned int irq_type, vcpu_idx, irq_num; 884 int nrcpus = atomic_read(&kvm->online_vcpus); 885 struct kvm_vcpu *vcpu = NULL; 886 bool level = irq_level->level; 887 888 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 889 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 890 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 891 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 892 893 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 894 895 switch (irq_type) { 896 case KVM_ARM_IRQ_TYPE_CPU: 897 if (irqchip_in_kernel(kvm)) 898 return -ENXIO; 899 900 if (vcpu_idx >= nrcpus) 901 return -EINVAL; 902 903 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 904 if (!vcpu) 905 return -EINVAL; 906 907 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 908 return -EINVAL; 909 910 return vcpu_interrupt_line(vcpu, irq_num, level); 911 case KVM_ARM_IRQ_TYPE_PPI: 912 if (!irqchip_in_kernel(kvm)) 913 return -ENXIO; 914 915 if (vcpu_idx >= nrcpus) 916 return -EINVAL; 917 918 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 919 if (!vcpu) 920 return -EINVAL; 921 922 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 923 return -EINVAL; 924 925 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); 926 case KVM_ARM_IRQ_TYPE_SPI: 927 if (!irqchip_in_kernel(kvm)) 928 return -ENXIO; 929 930 if (irq_num < VGIC_NR_PRIVATE_IRQS) 931 return -EINVAL; 932 933 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); 934 } 935 936 return -EINVAL; 937 } 938 939 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 940 const struct kvm_vcpu_init *init) 941 { 942 unsigned int i, ret; 943 int phys_target = kvm_target_cpu(); 944 945 if (init->target != phys_target) 946 return -EINVAL; 947 948 /* 949 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 950 * use the same target. 951 */ 952 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) 953 return -EINVAL; 954 955 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 956 for (i = 0; i < sizeof(init->features) * 8; i++) { 957 bool set = (init->features[i / 32] & (1 << (i % 32))); 958 959 if (set && i >= KVM_VCPU_MAX_FEATURES) 960 return -ENOENT; 961 962 /* 963 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 964 * use the same feature set. 965 */ 966 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && 967 test_bit(i, vcpu->arch.features) != set) 968 return -EINVAL; 969 970 if (set) 971 set_bit(i, vcpu->arch.features); 972 } 973 974 vcpu->arch.target = phys_target; 975 976 /* Now we know what it is, we can reset it. */ 977 ret = kvm_reset_vcpu(vcpu); 978 if (ret) { 979 vcpu->arch.target = -1; 980 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 981 } 982 983 return ret; 984 } 985 986 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 987 struct kvm_vcpu_init *init) 988 { 989 int ret; 990 991 ret = kvm_vcpu_set_target(vcpu, init); 992 if (ret) 993 return ret; 994 995 /* 996 * Ensure a rebooted VM will fault in RAM pages and detect if the 997 * guest MMU is turned off and flush the caches as needed. 998 * 999 * S2FWB enforces all memory accesses to RAM being cacheable, 1000 * ensuring that the data side is always coherent. We still 1001 * need to invalidate the I-cache though, as FWB does *not* 1002 * imply CTR_EL0.DIC. 1003 */ 1004 if (vcpu->arch.has_run_once) { 1005 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1006 stage2_unmap_vm(vcpu->kvm); 1007 else 1008 __flush_icache_all(); 1009 } 1010 1011 vcpu_reset_hcr(vcpu); 1012 1013 /* 1014 * Handle the "start in power-off" case. 1015 */ 1016 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) 1017 vcpu_power_off(vcpu); 1018 else 1019 vcpu->arch.power_off = false; 1020 1021 return 0; 1022 } 1023 1024 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1025 struct kvm_device_attr *attr) 1026 { 1027 int ret = -ENXIO; 1028 1029 switch (attr->group) { 1030 default: 1031 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1032 break; 1033 } 1034 1035 return ret; 1036 } 1037 1038 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1039 struct kvm_device_attr *attr) 1040 { 1041 int ret = -ENXIO; 1042 1043 switch (attr->group) { 1044 default: 1045 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1046 break; 1047 } 1048 1049 return ret; 1050 } 1051 1052 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1053 struct kvm_device_attr *attr) 1054 { 1055 int ret = -ENXIO; 1056 1057 switch (attr->group) { 1058 default: 1059 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1060 break; 1061 } 1062 1063 return ret; 1064 } 1065 1066 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1067 struct kvm_vcpu_events *events) 1068 { 1069 memset(events, 0, sizeof(*events)); 1070 1071 return __kvm_arm_vcpu_get_events(vcpu, events); 1072 } 1073 1074 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1075 struct kvm_vcpu_events *events) 1076 { 1077 int i; 1078 1079 /* check whether the reserved field is zero */ 1080 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1081 if (events->reserved[i]) 1082 return -EINVAL; 1083 1084 /* check whether the pad field is zero */ 1085 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1086 if (events->exception.pad[i]) 1087 return -EINVAL; 1088 1089 return __kvm_arm_vcpu_set_events(vcpu, events); 1090 } 1091 1092 long kvm_arch_vcpu_ioctl(struct file *filp, 1093 unsigned int ioctl, unsigned long arg) 1094 { 1095 struct kvm_vcpu *vcpu = filp->private_data; 1096 void __user *argp = (void __user *)arg; 1097 struct kvm_device_attr attr; 1098 long r; 1099 1100 switch (ioctl) { 1101 case KVM_ARM_VCPU_INIT: { 1102 struct kvm_vcpu_init init; 1103 1104 r = -EFAULT; 1105 if (copy_from_user(&init, argp, sizeof(init))) 1106 break; 1107 1108 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1109 break; 1110 } 1111 case KVM_SET_ONE_REG: 1112 case KVM_GET_ONE_REG: { 1113 struct kvm_one_reg reg; 1114 1115 r = -ENOEXEC; 1116 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1117 break; 1118 1119 r = -EFAULT; 1120 if (copy_from_user(®, argp, sizeof(reg))) 1121 break; 1122 1123 if (ioctl == KVM_SET_ONE_REG) 1124 r = kvm_arm_set_reg(vcpu, ®); 1125 else 1126 r = kvm_arm_get_reg(vcpu, ®); 1127 break; 1128 } 1129 case KVM_GET_REG_LIST: { 1130 struct kvm_reg_list __user *user_list = argp; 1131 struct kvm_reg_list reg_list; 1132 unsigned n; 1133 1134 r = -ENOEXEC; 1135 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1136 break; 1137 1138 r = -EPERM; 1139 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1140 break; 1141 1142 r = -EFAULT; 1143 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1144 break; 1145 n = reg_list.n; 1146 reg_list.n = kvm_arm_num_regs(vcpu); 1147 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1148 break; 1149 r = -E2BIG; 1150 if (n < reg_list.n) 1151 break; 1152 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1153 break; 1154 } 1155 case KVM_SET_DEVICE_ATTR: { 1156 r = -EFAULT; 1157 if (copy_from_user(&attr, argp, sizeof(attr))) 1158 break; 1159 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1160 break; 1161 } 1162 case KVM_GET_DEVICE_ATTR: { 1163 r = -EFAULT; 1164 if (copy_from_user(&attr, argp, sizeof(attr))) 1165 break; 1166 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1167 break; 1168 } 1169 case KVM_HAS_DEVICE_ATTR: { 1170 r = -EFAULT; 1171 if (copy_from_user(&attr, argp, sizeof(attr))) 1172 break; 1173 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1174 break; 1175 } 1176 case KVM_GET_VCPU_EVENTS: { 1177 struct kvm_vcpu_events events; 1178 1179 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1180 return -EINVAL; 1181 1182 if (copy_to_user(argp, &events, sizeof(events))) 1183 return -EFAULT; 1184 1185 return 0; 1186 } 1187 case KVM_SET_VCPU_EVENTS: { 1188 struct kvm_vcpu_events events; 1189 1190 if (copy_from_user(&events, argp, sizeof(events))) 1191 return -EFAULT; 1192 1193 return kvm_arm_vcpu_set_events(vcpu, &events); 1194 } 1195 case KVM_ARM_VCPU_FINALIZE: { 1196 int what; 1197 1198 if (!kvm_vcpu_initialized(vcpu)) 1199 return -ENOEXEC; 1200 1201 if (get_user(what, (const int __user *)argp)) 1202 return -EFAULT; 1203 1204 return kvm_arm_vcpu_finalize(vcpu, what); 1205 } 1206 default: 1207 r = -EINVAL; 1208 } 1209 1210 return r; 1211 } 1212 1213 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1214 { 1215 1216 } 1217 1218 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1219 struct kvm_memory_slot *memslot) 1220 { 1221 kvm_flush_remote_tlbs(kvm); 1222 } 1223 1224 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1225 struct kvm_arm_device_addr *dev_addr) 1226 { 1227 unsigned long dev_id, type; 1228 1229 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> 1230 KVM_ARM_DEVICE_ID_SHIFT; 1231 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> 1232 KVM_ARM_DEVICE_TYPE_SHIFT; 1233 1234 switch (dev_id) { 1235 case KVM_ARM_DEVICE_VGIC_V2: 1236 if (!vgic_present) 1237 return -ENXIO; 1238 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); 1239 default: 1240 return -ENODEV; 1241 } 1242 } 1243 1244 long kvm_arch_vm_ioctl(struct file *filp, 1245 unsigned int ioctl, unsigned long arg) 1246 { 1247 struct kvm *kvm = filp->private_data; 1248 void __user *argp = (void __user *)arg; 1249 1250 switch (ioctl) { 1251 case KVM_CREATE_IRQCHIP: { 1252 int ret; 1253 if (!vgic_present) 1254 return -ENXIO; 1255 mutex_lock(&kvm->lock); 1256 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1257 mutex_unlock(&kvm->lock); 1258 return ret; 1259 } 1260 case KVM_ARM_SET_DEVICE_ADDR: { 1261 struct kvm_arm_device_addr dev_addr; 1262 1263 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1264 return -EFAULT; 1265 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1266 } 1267 case KVM_ARM_PREFERRED_TARGET: { 1268 int err; 1269 struct kvm_vcpu_init init; 1270 1271 err = kvm_vcpu_preferred_target(&init); 1272 if (err) 1273 return err; 1274 1275 if (copy_to_user(argp, &init, sizeof(init))) 1276 return -EFAULT; 1277 1278 return 0; 1279 } 1280 default: 1281 return -EINVAL; 1282 } 1283 } 1284 1285 static unsigned long nvhe_percpu_size(void) 1286 { 1287 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1288 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1289 } 1290 1291 static unsigned long nvhe_percpu_order(void) 1292 { 1293 unsigned long size = nvhe_percpu_size(); 1294 1295 return size ? get_order(size) : 0; 1296 } 1297 1298 static int kvm_map_vectors(void) 1299 { 1300 /* 1301 * SV2 = ARM64_SPECTRE_V2 1302 * HEL2 = ARM64_HARDEN_EL2_VECTORS 1303 * 1304 * !SV2 + !HEL2 -> use direct vectors 1305 * SV2 + !HEL2 -> use hardened vectors in place 1306 * !SV2 + HEL2 -> allocate one vector slot and use exec mapping 1307 * SV2 + HEL2 -> use hardened vectors and use exec mapping 1308 */ 1309 if (cpus_have_const_cap(ARM64_SPECTRE_V2)) { 1310 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs); 1311 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base); 1312 } 1313 1314 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { 1315 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs); 1316 unsigned long size = __BP_HARDEN_HYP_VECS_SZ; 1317 1318 /* 1319 * Always allocate a spare vector slot, as we don't 1320 * know yet which CPUs have a BP hardening slot that 1321 * we can reuse. 1322 */ 1323 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot); 1324 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS); 1325 return create_hyp_exec_mappings(vect_pa, size, 1326 &__kvm_bp_vect_base); 1327 } 1328 1329 return 0; 1330 } 1331 1332 static void cpu_init_hyp_mode(void) 1333 { 1334 phys_addr_t pgd_ptr; 1335 unsigned long hyp_stack_ptr; 1336 unsigned long vector_ptr; 1337 unsigned long tpidr_el2; 1338 struct arm_smccc_res res; 1339 1340 /* Switch from the HYP stub to our own HYP init vector */ 1341 __hyp_set_vectors(kvm_get_idmap_vector()); 1342 1343 /* 1344 * Calculate the raw per-cpu offset without a translation from the 1345 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1346 * so that we can use adr_l to access per-cpu variables in EL2. 1347 */ 1348 tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) - 1349 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 1350 1351 pgd_ptr = kvm_mmu_get_httbr(); 1352 hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE; 1353 hyp_stack_ptr = kern_hyp_va(hyp_stack_ptr); 1354 vector_ptr = (unsigned long)kern_hyp_va(kvm_ksym_ref(__kvm_hyp_host_vector)); 1355 1356 /* 1357 * Call initialization code, and switch to the full blown HYP code. 1358 * If the cpucaps haven't been finalized yet, something has gone very 1359 * wrong, and hyp will crash and burn when it uses any 1360 * cpus_have_const_cap() wrapper. 1361 */ 1362 BUG_ON(!system_capabilities_finalized()); 1363 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), 1364 pgd_ptr, tpidr_el2, hyp_stack_ptr, vector_ptr, &res); 1365 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 1366 1367 /* 1368 * Disabling SSBD on a non-VHE system requires us to enable SSBS 1369 * at EL2. 1370 */ 1371 if (this_cpu_has_cap(ARM64_SSBS) && 1372 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 1373 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 1374 } 1375 } 1376 1377 static void cpu_hyp_reset(void) 1378 { 1379 if (!is_kernel_in_hyp_mode()) 1380 __hyp_reset_vectors(); 1381 } 1382 1383 static void cpu_hyp_reinit(void) 1384 { 1385 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt); 1386 1387 cpu_hyp_reset(); 1388 1389 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)kvm_get_hyp_vector(); 1390 1391 if (is_kernel_in_hyp_mode()) 1392 kvm_timer_init_vhe(); 1393 else 1394 cpu_init_hyp_mode(); 1395 1396 kvm_arm_init_debug(); 1397 1398 if (vgic_present) 1399 kvm_vgic_init_cpu_hardware(); 1400 } 1401 1402 static void _kvm_arch_hardware_enable(void *discard) 1403 { 1404 if (!__this_cpu_read(kvm_arm_hardware_enabled)) { 1405 cpu_hyp_reinit(); 1406 __this_cpu_write(kvm_arm_hardware_enabled, 1); 1407 } 1408 } 1409 1410 int kvm_arch_hardware_enable(void) 1411 { 1412 _kvm_arch_hardware_enable(NULL); 1413 return 0; 1414 } 1415 1416 static void _kvm_arch_hardware_disable(void *discard) 1417 { 1418 if (__this_cpu_read(kvm_arm_hardware_enabled)) { 1419 cpu_hyp_reset(); 1420 __this_cpu_write(kvm_arm_hardware_enabled, 0); 1421 } 1422 } 1423 1424 void kvm_arch_hardware_disable(void) 1425 { 1426 _kvm_arch_hardware_disable(NULL); 1427 } 1428 1429 #ifdef CONFIG_CPU_PM 1430 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 1431 unsigned long cmd, 1432 void *v) 1433 { 1434 /* 1435 * kvm_arm_hardware_enabled is left with its old value over 1436 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 1437 * re-enable hyp. 1438 */ 1439 switch (cmd) { 1440 case CPU_PM_ENTER: 1441 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1442 /* 1443 * don't update kvm_arm_hardware_enabled here 1444 * so that the hardware will be re-enabled 1445 * when we resume. See below. 1446 */ 1447 cpu_hyp_reset(); 1448 1449 return NOTIFY_OK; 1450 case CPU_PM_ENTER_FAILED: 1451 case CPU_PM_EXIT: 1452 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1453 /* The hardware was enabled before suspend. */ 1454 cpu_hyp_reinit(); 1455 1456 return NOTIFY_OK; 1457 1458 default: 1459 return NOTIFY_DONE; 1460 } 1461 } 1462 1463 static struct notifier_block hyp_init_cpu_pm_nb = { 1464 .notifier_call = hyp_init_cpu_pm_notifier, 1465 }; 1466 1467 static void __init hyp_cpu_pm_init(void) 1468 { 1469 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 1470 } 1471 static void __init hyp_cpu_pm_exit(void) 1472 { 1473 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 1474 } 1475 #else 1476 static inline void hyp_cpu_pm_init(void) 1477 { 1478 } 1479 static inline void hyp_cpu_pm_exit(void) 1480 { 1481 } 1482 #endif 1483 1484 static int init_common_resources(void) 1485 { 1486 return kvm_set_ipa_limit(); 1487 } 1488 1489 static int init_subsystems(void) 1490 { 1491 int err = 0; 1492 1493 /* 1494 * Enable hardware so that subsystem initialisation can access EL2. 1495 */ 1496 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); 1497 1498 /* 1499 * Register CPU lower-power notifier 1500 */ 1501 hyp_cpu_pm_init(); 1502 1503 /* 1504 * Init HYP view of VGIC 1505 */ 1506 err = kvm_vgic_hyp_init(); 1507 switch (err) { 1508 case 0: 1509 vgic_present = true; 1510 break; 1511 case -ENODEV: 1512 case -ENXIO: 1513 vgic_present = false; 1514 err = 0; 1515 break; 1516 default: 1517 goto out; 1518 } 1519 1520 /* 1521 * Init HYP architected timer support 1522 */ 1523 err = kvm_timer_hyp_init(vgic_present); 1524 if (err) 1525 goto out; 1526 1527 kvm_perf_init(); 1528 kvm_coproc_table_init(); 1529 1530 out: 1531 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); 1532 1533 return err; 1534 } 1535 1536 static void teardown_hyp_mode(void) 1537 { 1538 int cpu; 1539 1540 free_hyp_pgds(); 1541 for_each_possible_cpu(cpu) { 1542 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 1543 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order()); 1544 } 1545 } 1546 1547 /** 1548 * Inits Hyp-mode on all online CPUs 1549 */ 1550 static int init_hyp_mode(void) 1551 { 1552 int cpu; 1553 int err = 0; 1554 1555 /* 1556 * Allocate Hyp PGD and setup Hyp identity mapping 1557 */ 1558 err = kvm_mmu_init(); 1559 if (err) 1560 goto out_err; 1561 1562 /* 1563 * Allocate stack pages for Hypervisor-mode 1564 */ 1565 for_each_possible_cpu(cpu) { 1566 unsigned long stack_page; 1567 1568 stack_page = __get_free_page(GFP_KERNEL); 1569 if (!stack_page) { 1570 err = -ENOMEM; 1571 goto out_err; 1572 } 1573 1574 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 1575 } 1576 1577 /* 1578 * Allocate and initialize pages for Hypervisor-mode percpu regions. 1579 */ 1580 for_each_possible_cpu(cpu) { 1581 struct page *page; 1582 void *page_addr; 1583 1584 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 1585 if (!page) { 1586 err = -ENOMEM; 1587 goto out_err; 1588 } 1589 1590 page_addr = page_address(page); 1591 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 1592 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr; 1593 } 1594 1595 /* 1596 * Map the Hyp-code called directly from the host 1597 */ 1598 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 1599 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 1600 if (err) { 1601 kvm_err("Cannot map world-switch code\n"); 1602 goto out_err; 1603 } 1604 1605 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 1606 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 1607 if (err) { 1608 kvm_err("Cannot map rodata section\n"); 1609 goto out_err; 1610 } 1611 1612 err = create_hyp_mappings(kvm_ksym_ref(__bss_start), 1613 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 1614 if (err) { 1615 kvm_err("Cannot map bss section\n"); 1616 goto out_err; 1617 } 1618 1619 err = kvm_map_vectors(); 1620 if (err) { 1621 kvm_err("Cannot map vectors\n"); 1622 goto out_err; 1623 } 1624 1625 /* 1626 * Map the Hyp stack pages 1627 */ 1628 for_each_possible_cpu(cpu) { 1629 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 1630 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, 1631 PAGE_HYP); 1632 1633 if (err) { 1634 kvm_err("Cannot map hyp stack\n"); 1635 goto out_err; 1636 } 1637 } 1638 1639 /* 1640 * Map Hyp percpu pages 1641 */ 1642 for_each_possible_cpu(cpu) { 1643 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu]; 1644 char *percpu_end = percpu_begin + nvhe_percpu_size(); 1645 1646 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 1647 1648 if (err) { 1649 kvm_err("Cannot map hyp percpu region\n"); 1650 goto out_err; 1651 } 1652 } 1653 1654 return 0; 1655 1656 out_err: 1657 teardown_hyp_mode(); 1658 kvm_err("error initializing Hyp mode: %d\n", err); 1659 return err; 1660 } 1661 1662 static void check_kvm_target_cpu(void *ret) 1663 { 1664 *(int *)ret = kvm_target_cpu(); 1665 } 1666 1667 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 1668 { 1669 struct kvm_vcpu *vcpu; 1670 int i; 1671 1672 mpidr &= MPIDR_HWID_BITMASK; 1673 kvm_for_each_vcpu(i, vcpu, kvm) { 1674 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 1675 return vcpu; 1676 } 1677 return NULL; 1678 } 1679 1680 bool kvm_arch_has_irq_bypass(void) 1681 { 1682 return true; 1683 } 1684 1685 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 1686 struct irq_bypass_producer *prod) 1687 { 1688 struct kvm_kernel_irqfd *irqfd = 1689 container_of(cons, struct kvm_kernel_irqfd, consumer); 1690 1691 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 1692 &irqfd->irq_entry); 1693 } 1694 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 1695 struct irq_bypass_producer *prod) 1696 { 1697 struct kvm_kernel_irqfd *irqfd = 1698 container_of(cons, struct kvm_kernel_irqfd, consumer); 1699 1700 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 1701 &irqfd->irq_entry); 1702 } 1703 1704 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 1705 { 1706 struct kvm_kernel_irqfd *irqfd = 1707 container_of(cons, struct kvm_kernel_irqfd, consumer); 1708 1709 kvm_arm_halt_guest(irqfd->kvm); 1710 } 1711 1712 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 1713 { 1714 struct kvm_kernel_irqfd *irqfd = 1715 container_of(cons, struct kvm_kernel_irqfd, consumer); 1716 1717 kvm_arm_resume_guest(irqfd->kvm); 1718 } 1719 1720 /** 1721 * Initialize Hyp-mode and memory mappings on all CPUs. 1722 */ 1723 int kvm_arch_init(void *opaque) 1724 { 1725 int err; 1726 int ret, cpu; 1727 bool in_hyp_mode; 1728 1729 if (!is_hyp_mode_available()) { 1730 kvm_info("HYP mode not available\n"); 1731 return -ENODEV; 1732 } 1733 1734 in_hyp_mode = is_kernel_in_hyp_mode(); 1735 1736 if (!in_hyp_mode && kvm_arch_requires_vhe()) { 1737 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n"); 1738 return -ENODEV; 1739 } 1740 1741 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 1742 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 1743 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 1744 "Only trusted guests should be used on this system.\n"); 1745 1746 for_each_online_cpu(cpu) { 1747 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); 1748 if (ret < 0) { 1749 kvm_err("Error, CPU %d not supported!\n", cpu); 1750 return -ENODEV; 1751 } 1752 } 1753 1754 err = init_common_resources(); 1755 if (err) 1756 return err; 1757 1758 err = kvm_arm_init_sve(); 1759 if (err) 1760 return err; 1761 1762 if (!in_hyp_mode) { 1763 err = init_hyp_mode(); 1764 if (err) 1765 goto out_err; 1766 } 1767 1768 err = init_subsystems(); 1769 if (err) 1770 goto out_hyp; 1771 1772 if (in_hyp_mode) 1773 kvm_info("VHE mode initialized successfully\n"); 1774 else 1775 kvm_info("Hyp mode initialized successfully\n"); 1776 1777 return 0; 1778 1779 out_hyp: 1780 hyp_cpu_pm_exit(); 1781 if (!in_hyp_mode) 1782 teardown_hyp_mode(); 1783 out_err: 1784 return err; 1785 } 1786 1787 /* NOP: Compiling as a module not supported */ 1788 void kvm_arch_exit(void) 1789 { 1790 kvm_perf_teardown(); 1791 } 1792 1793 static int arm_init(void) 1794 { 1795 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1796 return rc; 1797 } 1798 1799 module_init(arm_init); 1800