xref: /openbmc/linux/arch/arm64/kvm/arm.c (revision 0be1511f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27 
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40 
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44 
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension	virt");
47 #endif
48 
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51 
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
53 
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57 
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62 
63 static bool vgic_present;
64 
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
67 
68 extern u64 kvm_nvhe_sym(__cpu_logical_map)[NR_CPUS];
69 extern u32 kvm_nvhe_sym(kvm_host_psci_version);
70 extern struct psci_0_1_function_ids kvm_nvhe_sym(kvm_host_psci_0_1_function_ids);
71 
72 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
73 {
74 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
75 }
76 
77 int kvm_arch_hardware_setup(void *opaque)
78 {
79 	return 0;
80 }
81 
82 int kvm_arch_check_processor_compat(void *opaque)
83 {
84 	return 0;
85 }
86 
87 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
88 			    struct kvm_enable_cap *cap)
89 {
90 	int r;
91 
92 	if (cap->flags)
93 		return -EINVAL;
94 
95 	switch (cap->cap) {
96 	case KVM_CAP_ARM_NISV_TO_USER:
97 		r = 0;
98 		kvm->arch.return_nisv_io_abort_to_user = true;
99 		break;
100 	default:
101 		r = -EINVAL;
102 		break;
103 	}
104 
105 	return r;
106 }
107 
108 static int kvm_arm_default_max_vcpus(void)
109 {
110 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
111 }
112 
113 static void set_default_spectre(struct kvm *kvm)
114 {
115 	/*
116 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
117 	 * Although this is a per-CPU feature, we make it global because
118 	 * asymmetric systems are just a nuisance.
119 	 *
120 	 * Userspace can override this as long as it doesn't promise
121 	 * the impossible.
122 	 */
123 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
124 		kvm->arch.pfr0_csv2 = 1;
125 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
126 		kvm->arch.pfr0_csv3 = 1;
127 }
128 
129 /**
130  * kvm_arch_init_vm - initializes a VM data structure
131  * @kvm:	pointer to the KVM struct
132  */
133 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
134 {
135 	int ret;
136 
137 	ret = kvm_arm_setup_stage2(kvm, type);
138 	if (ret)
139 		return ret;
140 
141 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
142 	if (ret)
143 		return ret;
144 
145 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
146 	if (ret)
147 		goto out_free_stage2_pgd;
148 
149 	kvm_vgic_early_init(kvm);
150 
151 	/* The maximum number of VCPUs is limited by the host's GIC model */
152 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
153 
154 	set_default_spectre(kvm);
155 
156 	return ret;
157 out_free_stage2_pgd:
158 	kvm_free_stage2_pgd(&kvm->arch.mmu);
159 	return ret;
160 }
161 
162 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
163 {
164 	return VM_FAULT_SIGBUS;
165 }
166 
167 
168 /**
169  * kvm_arch_destroy_vm - destroy the VM data structure
170  * @kvm:	pointer to the KVM struct
171  */
172 void kvm_arch_destroy_vm(struct kvm *kvm)
173 {
174 	int i;
175 
176 	bitmap_free(kvm->arch.pmu_filter);
177 
178 	kvm_vgic_destroy(kvm);
179 
180 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
181 		if (kvm->vcpus[i]) {
182 			kvm_vcpu_destroy(kvm->vcpus[i]);
183 			kvm->vcpus[i] = NULL;
184 		}
185 	}
186 	atomic_set(&kvm->online_vcpus, 0);
187 }
188 
189 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
190 {
191 	int r;
192 	switch (ext) {
193 	case KVM_CAP_IRQCHIP:
194 		r = vgic_present;
195 		break;
196 	case KVM_CAP_IOEVENTFD:
197 	case KVM_CAP_DEVICE_CTRL:
198 	case KVM_CAP_USER_MEMORY:
199 	case KVM_CAP_SYNC_MMU:
200 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
201 	case KVM_CAP_ONE_REG:
202 	case KVM_CAP_ARM_PSCI:
203 	case KVM_CAP_ARM_PSCI_0_2:
204 	case KVM_CAP_READONLY_MEM:
205 	case KVM_CAP_MP_STATE:
206 	case KVM_CAP_IMMEDIATE_EXIT:
207 	case KVM_CAP_VCPU_EVENTS:
208 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
209 	case KVM_CAP_ARM_NISV_TO_USER:
210 	case KVM_CAP_ARM_INJECT_EXT_DABT:
211 	case KVM_CAP_SET_GUEST_DEBUG:
212 	case KVM_CAP_VCPU_ATTRIBUTES:
213 		r = 1;
214 		break;
215 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
216 		r = 1;
217 		break;
218 	case KVM_CAP_NR_VCPUS:
219 		r = num_online_cpus();
220 		break;
221 	case KVM_CAP_MAX_VCPUS:
222 	case KVM_CAP_MAX_VCPU_ID:
223 		if (kvm)
224 			r = kvm->arch.max_vcpus;
225 		else
226 			r = kvm_arm_default_max_vcpus();
227 		break;
228 	case KVM_CAP_MSI_DEVID:
229 		if (!kvm)
230 			r = -EINVAL;
231 		else
232 			r = kvm->arch.vgic.msis_require_devid;
233 		break;
234 	case KVM_CAP_ARM_USER_IRQ:
235 		/*
236 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
237 		 * (bump this number if adding more devices)
238 		 */
239 		r = 1;
240 		break;
241 	case KVM_CAP_STEAL_TIME:
242 		r = kvm_arm_pvtime_supported();
243 		break;
244 	case KVM_CAP_ARM_EL1_32BIT:
245 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
246 		break;
247 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
248 		r = get_num_brps();
249 		break;
250 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
251 		r = get_num_wrps();
252 		break;
253 	case KVM_CAP_ARM_PMU_V3:
254 		r = kvm_arm_support_pmu_v3();
255 		break;
256 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
257 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
258 		break;
259 	case KVM_CAP_ARM_VM_IPA_SIZE:
260 		r = get_kvm_ipa_limit();
261 		break;
262 	case KVM_CAP_ARM_SVE:
263 		r = system_supports_sve();
264 		break;
265 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
266 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
267 		r = system_has_full_ptr_auth();
268 		break;
269 	default:
270 		r = 0;
271 	}
272 
273 	return r;
274 }
275 
276 long kvm_arch_dev_ioctl(struct file *filp,
277 			unsigned int ioctl, unsigned long arg)
278 {
279 	return -EINVAL;
280 }
281 
282 struct kvm *kvm_arch_alloc_vm(void)
283 {
284 	if (!has_vhe())
285 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
286 
287 	return vzalloc(sizeof(struct kvm));
288 }
289 
290 void kvm_arch_free_vm(struct kvm *kvm)
291 {
292 	if (!has_vhe())
293 		kfree(kvm);
294 	else
295 		vfree(kvm);
296 }
297 
298 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
299 {
300 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
301 		return -EBUSY;
302 
303 	if (id >= kvm->arch.max_vcpus)
304 		return -EINVAL;
305 
306 	return 0;
307 }
308 
309 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
310 {
311 	int err;
312 
313 	/* Force users to call KVM_ARM_VCPU_INIT */
314 	vcpu->arch.target = -1;
315 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
316 
317 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
318 
319 	/* Set up the timer */
320 	kvm_timer_vcpu_init(vcpu);
321 
322 	kvm_pmu_vcpu_init(vcpu);
323 
324 	kvm_arm_reset_debug_ptr(vcpu);
325 
326 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
327 
328 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
329 
330 	err = kvm_vgic_vcpu_init(vcpu);
331 	if (err)
332 		return err;
333 
334 	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
335 }
336 
337 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
338 {
339 }
340 
341 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
342 {
343 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
344 		static_branch_dec(&userspace_irqchip_in_use);
345 
346 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
347 	kvm_timer_vcpu_terminate(vcpu);
348 	kvm_pmu_vcpu_destroy(vcpu);
349 
350 	kvm_arm_vcpu_destroy(vcpu);
351 }
352 
353 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
354 {
355 	return kvm_timer_is_pending(vcpu);
356 }
357 
358 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
359 {
360 	/*
361 	 * If we're about to block (most likely because we've just hit a
362 	 * WFI), we need to sync back the state of the GIC CPU interface
363 	 * so that we have the latest PMR and group enables. This ensures
364 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
365 	 * whether we have pending interrupts.
366 	 *
367 	 * For the same reason, we want to tell GICv4 that we need
368 	 * doorbells to be signalled, should an interrupt become pending.
369 	 */
370 	preempt_disable();
371 	kvm_vgic_vmcr_sync(vcpu);
372 	vgic_v4_put(vcpu, true);
373 	preempt_enable();
374 }
375 
376 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
377 {
378 	preempt_disable();
379 	vgic_v4_load(vcpu);
380 	preempt_enable();
381 }
382 
383 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
384 {
385 	struct kvm_s2_mmu *mmu;
386 	int *last_ran;
387 
388 	mmu = vcpu->arch.hw_mmu;
389 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
390 
391 	/*
392 	 * We might get preempted before the vCPU actually runs, but
393 	 * over-invalidation doesn't affect correctness.
394 	 */
395 	if (*last_ran != vcpu->vcpu_id) {
396 		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
397 		*last_ran = vcpu->vcpu_id;
398 	}
399 
400 	vcpu->cpu = cpu;
401 
402 	kvm_vgic_load(vcpu);
403 	kvm_timer_vcpu_load(vcpu);
404 	if (has_vhe())
405 		kvm_vcpu_load_sysregs_vhe(vcpu);
406 	kvm_arch_vcpu_load_fp(vcpu);
407 	kvm_vcpu_pmu_restore_guest(vcpu);
408 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
409 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
410 
411 	if (single_task_running())
412 		vcpu_clear_wfx_traps(vcpu);
413 	else
414 		vcpu_set_wfx_traps(vcpu);
415 
416 	if (vcpu_has_ptrauth(vcpu))
417 		vcpu_ptrauth_disable(vcpu);
418 }
419 
420 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
421 {
422 	kvm_arch_vcpu_put_fp(vcpu);
423 	if (has_vhe())
424 		kvm_vcpu_put_sysregs_vhe(vcpu);
425 	kvm_timer_vcpu_put(vcpu);
426 	kvm_vgic_put(vcpu);
427 	kvm_vcpu_pmu_restore_host(vcpu);
428 
429 	vcpu->cpu = -1;
430 }
431 
432 static void vcpu_power_off(struct kvm_vcpu *vcpu)
433 {
434 	vcpu->arch.power_off = true;
435 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
436 	kvm_vcpu_kick(vcpu);
437 }
438 
439 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
440 				    struct kvm_mp_state *mp_state)
441 {
442 	if (vcpu->arch.power_off)
443 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
444 	else
445 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
446 
447 	return 0;
448 }
449 
450 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
451 				    struct kvm_mp_state *mp_state)
452 {
453 	int ret = 0;
454 
455 	switch (mp_state->mp_state) {
456 	case KVM_MP_STATE_RUNNABLE:
457 		vcpu->arch.power_off = false;
458 		break;
459 	case KVM_MP_STATE_STOPPED:
460 		vcpu_power_off(vcpu);
461 		break;
462 	default:
463 		ret = -EINVAL;
464 	}
465 
466 	return ret;
467 }
468 
469 /**
470  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
471  * @v:		The VCPU pointer
472  *
473  * If the guest CPU is not waiting for interrupts or an interrupt line is
474  * asserted, the CPU is by definition runnable.
475  */
476 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
477 {
478 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
479 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
480 		&& !v->arch.power_off && !v->arch.pause);
481 }
482 
483 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
484 {
485 	return vcpu_mode_priv(vcpu);
486 }
487 
488 /* Just ensure a guest exit from a particular CPU */
489 static void exit_vm_noop(void *info)
490 {
491 }
492 
493 void force_vm_exit(const cpumask_t *mask)
494 {
495 	preempt_disable();
496 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
497 	preempt_enable();
498 }
499 
500 /**
501  * need_new_vmid_gen - check that the VMID is still valid
502  * @vmid: The VMID to check
503  *
504  * return true if there is a new generation of VMIDs being used
505  *
506  * The hardware supports a limited set of values with the value zero reserved
507  * for the host, so we check if an assigned value belongs to a previous
508  * generation, which requires us to assign a new value. If we're the first to
509  * use a VMID for the new generation, we must flush necessary caches and TLBs
510  * on all CPUs.
511  */
512 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
513 {
514 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
515 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
516 	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
517 }
518 
519 /**
520  * update_vmid - Update the vmid with a valid VMID for the current generation
521  * @vmid: The stage-2 VMID information struct
522  */
523 static void update_vmid(struct kvm_vmid *vmid)
524 {
525 	if (!need_new_vmid_gen(vmid))
526 		return;
527 
528 	spin_lock(&kvm_vmid_lock);
529 
530 	/*
531 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
532 	 * already allocated a valid vmid for this vm, then this vcpu should
533 	 * use the same vmid.
534 	 */
535 	if (!need_new_vmid_gen(vmid)) {
536 		spin_unlock(&kvm_vmid_lock);
537 		return;
538 	}
539 
540 	/* First user of a new VMID generation? */
541 	if (unlikely(kvm_next_vmid == 0)) {
542 		atomic64_inc(&kvm_vmid_gen);
543 		kvm_next_vmid = 1;
544 
545 		/*
546 		 * On SMP we know no other CPUs can use this CPU's or each
547 		 * other's VMID after force_vm_exit returns since the
548 		 * kvm_vmid_lock blocks them from reentry to the guest.
549 		 */
550 		force_vm_exit(cpu_all_mask);
551 		/*
552 		 * Now broadcast TLB + ICACHE invalidation over the inner
553 		 * shareable domain to make sure all data structures are
554 		 * clean.
555 		 */
556 		kvm_call_hyp(__kvm_flush_vm_context);
557 	}
558 
559 	vmid->vmid = kvm_next_vmid;
560 	kvm_next_vmid++;
561 	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
562 
563 	smp_wmb();
564 	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
565 
566 	spin_unlock(&kvm_vmid_lock);
567 }
568 
569 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
570 {
571 	struct kvm *kvm = vcpu->kvm;
572 	int ret = 0;
573 
574 	if (likely(vcpu->arch.has_run_once))
575 		return 0;
576 
577 	if (!kvm_arm_vcpu_is_finalized(vcpu))
578 		return -EPERM;
579 
580 	vcpu->arch.has_run_once = true;
581 
582 	if (likely(irqchip_in_kernel(kvm))) {
583 		/*
584 		 * Map the VGIC hardware resources before running a vcpu the
585 		 * first time on this VM.
586 		 */
587 		if (unlikely(!vgic_ready(kvm))) {
588 			ret = kvm_vgic_map_resources(kvm);
589 			if (ret)
590 				return ret;
591 		}
592 	} else {
593 		/*
594 		 * Tell the rest of the code that there are userspace irqchip
595 		 * VMs in the wild.
596 		 */
597 		static_branch_inc(&userspace_irqchip_in_use);
598 	}
599 
600 	ret = kvm_timer_enable(vcpu);
601 	if (ret)
602 		return ret;
603 
604 	ret = kvm_arm_pmu_v3_enable(vcpu);
605 
606 	return ret;
607 }
608 
609 bool kvm_arch_intc_initialized(struct kvm *kvm)
610 {
611 	return vgic_initialized(kvm);
612 }
613 
614 void kvm_arm_halt_guest(struct kvm *kvm)
615 {
616 	int i;
617 	struct kvm_vcpu *vcpu;
618 
619 	kvm_for_each_vcpu(i, vcpu, kvm)
620 		vcpu->arch.pause = true;
621 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
622 }
623 
624 void kvm_arm_resume_guest(struct kvm *kvm)
625 {
626 	int i;
627 	struct kvm_vcpu *vcpu;
628 
629 	kvm_for_each_vcpu(i, vcpu, kvm) {
630 		vcpu->arch.pause = false;
631 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
632 	}
633 }
634 
635 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
636 {
637 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
638 
639 	rcuwait_wait_event(wait,
640 			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
641 			   TASK_INTERRUPTIBLE);
642 
643 	if (vcpu->arch.power_off || vcpu->arch.pause) {
644 		/* Awaken to handle a signal, request we sleep again later. */
645 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
646 	}
647 
648 	/*
649 	 * Make sure we will observe a potential reset request if we've
650 	 * observed a change to the power state. Pairs with the smp_wmb() in
651 	 * kvm_psci_vcpu_on().
652 	 */
653 	smp_rmb();
654 }
655 
656 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
657 {
658 	return vcpu->arch.target >= 0;
659 }
660 
661 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
662 {
663 	if (kvm_request_pending(vcpu)) {
664 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
665 			vcpu_req_sleep(vcpu);
666 
667 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
668 			kvm_reset_vcpu(vcpu);
669 
670 		/*
671 		 * Clear IRQ_PENDING requests that were made to guarantee
672 		 * that a VCPU sees new virtual interrupts.
673 		 */
674 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
675 
676 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
677 			kvm_update_stolen_time(vcpu);
678 
679 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
680 			/* The distributor enable bits were changed */
681 			preempt_disable();
682 			vgic_v4_put(vcpu, false);
683 			vgic_v4_load(vcpu);
684 			preempt_enable();
685 		}
686 	}
687 }
688 
689 /**
690  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
691  * @vcpu:	The VCPU pointer
692  *
693  * This function is called through the VCPU_RUN ioctl called from user space. It
694  * will execute VM code in a loop until the time slice for the process is used
695  * or some emulation is needed from user space in which case the function will
696  * return with return value 0 and with the kvm_run structure filled in with the
697  * required data for the requested emulation.
698  */
699 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
700 {
701 	struct kvm_run *run = vcpu->run;
702 	int ret;
703 
704 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
705 		return -ENOEXEC;
706 
707 	ret = kvm_vcpu_first_run_init(vcpu);
708 	if (ret)
709 		return ret;
710 
711 	if (run->exit_reason == KVM_EXIT_MMIO) {
712 		ret = kvm_handle_mmio_return(vcpu);
713 		if (ret)
714 			return ret;
715 	}
716 
717 	if (run->immediate_exit)
718 		return -EINTR;
719 
720 	vcpu_load(vcpu);
721 
722 	kvm_sigset_activate(vcpu);
723 
724 	ret = 1;
725 	run->exit_reason = KVM_EXIT_UNKNOWN;
726 	while (ret > 0) {
727 		/*
728 		 * Check conditions before entering the guest
729 		 */
730 		cond_resched();
731 
732 		update_vmid(&vcpu->arch.hw_mmu->vmid);
733 
734 		check_vcpu_requests(vcpu);
735 
736 		/*
737 		 * Preparing the interrupts to be injected also
738 		 * involves poking the GIC, which must be done in a
739 		 * non-preemptible context.
740 		 */
741 		preempt_disable();
742 
743 		kvm_pmu_flush_hwstate(vcpu);
744 
745 		local_irq_disable();
746 
747 		kvm_vgic_flush_hwstate(vcpu);
748 
749 		/*
750 		 * Exit if we have a signal pending so that we can deliver the
751 		 * signal to user space.
752 		 */
753 		if (signal_pending(current)) {
754 			ret = -EINTR;
755 			run->exit_reason = KVM_EXIT_INTR;
756 		}
757 
758 		/*
759 		 * If we're using a userspace irqchip, then check if we need
760 		 * to tell a userspace irqchip about timer or PMU level
761 		 * changes and if so, exit to userspace (the actual level
762 		 * state gets updated in kvm_timer_update_run and
763 		 * kvm_pmu_update_run below).
764 		 */
765 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
766 			if (kvm_timer_should_notify_user(vcpu) ||
767 			    kvm_pmu_should_notify_user(vcpu)) {
768 				ret = -EINTR;
769 				run->exit_reason = KVM_EXIT_INTR;
770 			}
771 		}
772 
773 		/*
774 		 * Ensure we set mode to IN_GUEST_MODE after we disable
775 		 * interrupts and before the final VCPU requests check.
776 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
777 		 * Documentation/virt/kvm/vcpu-requests.rst
778 		 */
779 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
780 
781 		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
782 		    kvm_request_pending(vcpu)) {
783 			vcpu->mode = OUTSIDE_GUEST_MODE;
784 			isb(); /* Ensure work in x_flush_hwstate is committed */
785 			kvm_pmu_sync_hwstate(vcpu);
786 			if (static_branch_unlikely(&userspace_irqchip_in_use))
787 				kvm_timer_sync_user(vcpu);
788 			kvm_vgic_sync_hwstate(vcpu);
789 			local_irq_enable();
790 			preempt_enable();
791 			continue;
792 		}
793 
794 		kvm_arm_setup_debug(vcpu);
795 
796 		/**************************************************************
797 		 * Enter the guest
798 		 */
799 		trace_kvm_entry(*vcpu_pc(vcpu));
800 		guest_enter_irqoff();
801 
802 		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
803 
804 		vcpu->mode = OUTSIDE_GUEST_MODE;
805 		vcpu->stat.exits++;
806 		/*
807 		 * Back from guest
808 		 *************************************************************/
809 
810 		kvm_arm_clear_debug(vcpu);
811 
812 		/*
813 		 * We must sync the PMU state before the vgic state so
814 		 * that the vgic can properly sample the updated state of the
815 		 * interrupt line.
816 		 */
817 		kvm_pmu_sync_hwstate(vcpu);
818 
819 		/*
820 		 * Sync the vgic state before syncing the timer state because
821 		 * the timer code needs to know if the virtual timer
822 		 * interrupts are active.
823 		 */
824 		kvm_vgic_sync_hwstate(vcpu);
825 
826 		/*
827 		 * Sync the timer hardware state before enabling interrupts as
828 		 * we don't want vtimer interrupts to race with syncing the
829 		 * timer virtual interrupt state.
830 		 */
831 		if (static_branch_unlikely(&userspace_irqchip_in_use))
832 			kvm_timer_sync_user(vcpu);
833 
834 		kvm_arch_vcpu_ctxsync_fp(vcpu);
835 
836 		/*
837 		 * We may have taken a host interrupt in HYP mode (ie
838 		 * while executing the guest). This interrupt is still
839 		 * pending, as we haven't serviced it yet!
840 		 *
841 		 * We're now back in SVC mode, with interrupts
842 		 * disabled.  Enabling the interrupts now will have
843 		 * the effect of taking the interrupt again, in SVC
844 		 * mode this time.
845 		 */
846 		local_irq_enable();
847 
848 		/*
849 		 * We do local_irq_enable() before calling guest_exit() so
850 		 * that if a timer interrupt hits while running the guest we
851 		 * account that tick as being spent in the guest.  We enable
852 		 * preemption after calling guest_exit() so that if we get
853 		 * preempted we make sure ticks after that is not counted as
854 		 * guest time.
855 		 */
856 		guest_exit();
857 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
858 
859 		/* Exit types that need handling before we can be preempted */
860 		handle_exit_early(vcpu, ret);
861 
862 		preempt_enable();
863 
864 		/*
865 		 * The ARMv8 architecture doesn't give the hypervisor
866 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
867 		 * if implemented by the CPU. If we spot the guest in such
868 		 * state and that we decided it wasn't supposed to do so (like
869 		 * with the asymmetric AArch32 case), return to userspace with
870 		 * a fatal error.
871 		 */
872 		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
873 			/*
874 			 * As we have caught the guest red-handed, decide that
875 			 * it isn't fit for purpose anymore by making the vcpu
876 			 * invalid. The VMM can try and fix it by issuing  a
877 			 * KVM_ARM_VCPU_INIT if it really wants to.
878 			 */
879 			vcpu->arch.target = -1;
880 			ret = ARM_EXCEPTION_IL;
881 		}
882 
883 		ret = handle_exit(vcpu, ret);
884 	}
885 
886 	/* Tell userspace about in-kernel device output levels */
887 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
888 		kvm_timer_update_run(vcpu);
889 		kvm_pmu_update_run(vcpu);
890 	}
891 
892 	kvm_sigset_deactivate(vcpu);
893 
894 	vcpu_put(vcpu);
895 	return ret;
896 }
897 
898 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
899 {
900 	int bit_index;
901 	bool set;
902 	unsigned long *hcr;
903 
904 	if (number == KVM_ARM_IRQ_CPU_IRQ)
905 		bit_index = __ffs(HCR_VI);
906 	else /* KVM_ARM_IRQ_CPU_FIQ */
907 		bit_index = __ffs(HCR_VF);
908 
909 	hcr = vcpu_hcr(vcpu);
910 	if (level)
911 		set = test_and_set_bit(bit_index, hcr);
912 	else
913 		set = test_and_clear_bit(bit_index, hcr);
914 
915 	/*
916 	 * If we didn't change anything, no need to wake up or kick other CPUs
917 	 */
918 	if (set == level)
919 		return 0;
920 
921 	/*
922 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
923 	 * trigger a world-switch round on the running physical CPU to set the
924 	 * virtual IRQ/FIQ fields in the HCR appropriately.
925 	 */
926 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
927 	kvm_vcpu_kick(vcpu);
928 
929 	return 0;
930 }
931 
932 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
933 			  bool line_status)
934 {
935 	u32 irq = irq_level->irq;
936 	unsigned int irq_type, vcpu_idx, irq_num;
937 	int nrcpus = atomic_read(&kvm->online_vcpus);
938 	struct kvm_vcpu *vcpu = NULL;
939 	bool level = irq_level->level;
940 
941 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
942 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
943 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
944 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
945 
946 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
947 
948 	switch (irq_type) {
949 	case KVM_ARM_IRQ_TYPE_CPU:
950 		if (irqchip_in_kernel(kvm))
951 			return -ENXIO;
952 
953 		if (vcpu_idx >= nrcpus)
954 			return -EINVAL;
955 
956 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
957 		if (!vcpu)
958 			return -EINVAL;
959 
960 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
961 			return -EINVAL;
962 
963 		return vcpu_interrupt_line(vcpu, irq_num, level);
964 	case KVM_ARM_IRQ_TYPE_PPI:
965 		if (!irqchip_in_kernel(kvm))
966 			return -ENXIO;
967 
968 		if (vcpu_idx >= nrcpus)
969 			return -EINVAL;
970 
971 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
972 		if (!vcpu)
973 			return -EINVAL;
974 
975 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
976 			return -EINVAL;
977 
978 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
979 	case KVM_ARM_IRQ_TYPE_SPI:
980 		if (!irqchip_in_kernel(kvm))
981 			return -ENXIO;
982 
983 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
984 			return -EINVAL;
985 
986 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
987 	}
988 
989 	return -EINVAL;
990 }
991 
992 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
993 			       const struct kvm_vcpu_init *init)
994 {
995 	unsigned int i, ret;
996 	int phys_target = kvm_target_cpu();
997 
998 	if (init->target != phys_target)
999 		return -EINVAL;
1000 
1001 	/*
1002 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1003 	 * use the same target.
1004 	 */
1005 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1006 		return -EINVAL;
1007 
1008 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1009 	for (i = 0; i < sizeof(init->features) * 8; i++) {
1010 		bool set = (init->features[i / 32] & (1 << (i % 32)));
1011 
1012 		if (set && i >= KVM_VCPU_MAX_FEATURES)
1013 			return -ENOENT;
1014 
1015 		/*
1016 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1017 		 * use the same feature set.
1018 		 */
1019 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1020 		    test_bit(i, vcpu->arch.features) != set)
1021 			return -EINVAL;
1022 
1023 		if (set)
1024 			set_bit(i, vcpu->arch.features);
1025 	}
1026 
1027 	vcpu->arch.target = phys_target;
1028 
1029 	/* Now we know what it is, we can reset it. */
1030 	ret = kvm_reset_vcpu(vcpu);
1031 	if (ret) {
1032 		vcpu->arch.target = -1;
1033 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1034 	}
1035 
1036 	return ret;
1037 }
1038 
1039 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1040 					 struct kvm_vcpu_init *init)
1041 {
1042 	int ret;
1043 
1044 	ret = kvm_vcpu_set_target(vcpu, init);
1045 	if (ret)
1046 		return ret;
1047 
1048 	/*
1049 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1050 	 * guest MMU is turned off and flush the caches as needed.
1051 	 *
1052 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1053 	 * ensuring that the data side is always coherent. We still
1054 	 * need to invalidate the I-cache though, as FWB does *not*
1055 	 * imply CTR_EL0.DIC.
1056 	 */
1057 	if (vcpu->arch.has_run_once) {
1058 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1059 			stage2_unmap_vm(vcpu->kvm);
1060 		else
1061 			__flush_icache_all();
1062 	}
1063 
1064 	vcpu_reset_hcr(vcpu);
1065 
1066 	/*
1067 	 * Handle the "start in power-off" case.
1068 	 */
1069 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1070 		vcpu_power_off(vcpu);
1071 	else
1072 		vcpu->arch.power_off = false;
1073 
1074 	return 0;
1075 }
1076 
1077 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1078 				 struct kvm_device_attr *attr)
1079 {
1080 	int ret = -ENXIO;
1081 
1082 	switch (attr->group) {
1083 	default:
1084 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1085 		break;
1086 	}
1087 
1088 	return ret;
1089 }
1090 
1091 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1092 				 struct kvm_device_attr *attr)
1093 {
1094 	int ret = -ENXIO;
1095 
1096 	switch (attr->group) {
1097 	default:
1098 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1099 		break;
1100 	}
1101 
1102 	return ret;
1103 }
1104 
1105 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1106 				 struct kvm_device_attr *attr)
1107 {
1108 	int ret = -ENXIO;
1109 
1110 	switch (attr->group) {
1111 	default:
1112 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1113 		break;
1114 	}
1115 
1116 	return ret;
1117 }
1118 
1119 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1120 				   struct kvm_vcpu_events *events)
1121 {
1122 	memset(events, 0, sizeof(*events));
1123 
1124 	return __kvm_arm_vcpu_get_events(vcpu, events);
1125 }
1126 
1127 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1128 				   struct kvm_vcpu_events *events)
1129 {
1130 	int i;
1131 
1132 	/* check whether the reserved field is zero */
1133 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1134 		if (events->reserved[i])
1135 			return -EINVAL;
1136 
1137 	/* check whether the pad field is zero */
1138 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1139 		if (events->exception.pad[i])
1140 			return -EINVAL;
1141 
1142 	return __kvm_arm_vcpu_set_events(vcpu, events);
1143 }
1144 
1145 long kvm_arch_vcpu_ioctl(struct file *filp,
1146 			 unsigned int ioctl, unsigned long arg)
1147 {
1148 	struct kvm_vcpu *vcpu = filp->private_data;
1149 	void __user *argp = (void __user *)arg;
1150 	struct kvm_device_attr attr;
1151 	long r;
1152 
1153 	switch (ioctl) {
1154 	case KVM_ARM_VCPU_INIT: {
1155 		struct kvm_vcpu_init init;
1156 
1157 		r = -EFAULT;
1158 		if (copy_from_user(&init, argp, sizeof(init)))
1159 			break;
1160 
1161 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1162 		break;
1163 	}
1164 	case KVM_SET_ONE_REG:
1165 	case KVM_GET_ONE_REG: {
1166 		struct kvm_one_reg reg;
1167 
1168 		r = -ENOEXEC;
1169 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1170 			break;
1171 
1172 		r = -EFAULT;
1173 		if (copy_from_user(&reg, argp, sizeof(reg)))
1174 			break;
1175 
1176 		if (ioctl == KVM_SET_ONE_REG)
1177 			r = kvm_arm_set_reg(vcpu, &reg);
1178 		else
1179 			r = kvm_arm_get_reg(vcpu, &reg);
1180 		break;
1181 	}
1182 	case KVM_GET_REG_LIST: {
1183 		struct kvm_reg_list __user *user_list = argp;
1184 		struct kvm_reg_list reg_list;
1185 		unsigned n;
1186 
1187 		r = -ENOEXEC;
1188 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1189 			break;
1190 
1191 		r = -EPERM;
1192 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1193 			break;
1194 
1195 		r = -EFAULT;
1196 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1197 			break;
1198 		n = reg_list.n;
1199 		reg_list.n = kvm_arm_num_regs(vcpu);
1200 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1201 			break;
1202 		r = -E2BIG;
1203 		if (n < reg_list.n)
1204 			break;
1205 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1206 		break;
1207 	}
1208 	case KVM_SET_DEVICE_ATTR: {
1209 		r = -EFAULT;
1210 		if (copy_from_user(&attr, argp, sizeof(attr)))
1211 			break;
1212 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1213 		break;
1214 	}
1215 	case KVM_GET_DEVICE_ATTR: {
1216 		r = -EFAULT;
1217 		if (copy_from_user(&attr, argp, sizeof(attr)))
1218 			break;
1219 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1220 		break;
1221 	}
1222 	case KVM_HAS_DEVICE_ATTR: {
1223 		r = -EFAULT;
1224 		if (copy_from_user(&attr, argp, sizeof(attr)))
1225 			break;
1226 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1227 		break;
1228 	}
1229 	case KVM_GET_VCPU_EVENTS: {
1230 		struct kvm_vcpu_events events;
1231 
1232 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1233 			return -EINVAL;
1234 
1235 		if (copy_to_user(argp, &events, sizeof(events)))
1236 			return -EFAULT;
1237 
1238 		return 0;
1239 	}
1240 	case KVM_SET_VCPU_EVENTS: {
1241 		struct kvm_vcpu_events events;
1242 
1243 		if (copy_from_user(&events, argp, sizeof(events)))
1244 			return -EFAULT;
1245 
1246 		return kvm_arm_vcpu_set_events(vcpu, &events);
1247 	}
1248 	case KVM_ARM_VCPU_FINALIZE: {
1249 		int what;
1250 
1251 		if (!kvm_vcpu_initialized(vcpu))
1252 			return -ENOEXEC;
1253 
1254 		if (get_user(what, (const int __user *)argp))
1255 			return -EFAULT;
1256 
1257 		return kvm_arm_vcpu_finalize(vcpu, what);
1258 	}
1259 	default:
1260 		r = -EINVAL;
1261 	}
1262 
1263 	return r;
1264 }
1265 
1266 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1267 {
1268 
1269 }
1270 
1271 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1272 					struct kvm_memory_slot *memslot)
1273 {
1274 	kvm_flush_remote_tlbs(kvm);
1275 }
1276 
1277 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1278 					struct kvm_arm_device_addr *dev_addr)
1279 {
1280 	unsigned long dev_id, type;
1281 
1282 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1283 		KVM_ARM_DEVICE_ID_SHIFT;
1284 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1285 		KVM_ARM_DEVICE_TYPE_SHIFT;
1286 
1287 	switch (dev_id) {
1288 	case KVM_ARM_DEVICE_VGIC_V2:
1289 		if (!vgic_present)
1290 			return -ENXIO;
1291 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1292 	default:
1293 		return -ENODEV;
1294 	}
1295 }
1296 
1297 long kvm_arch_vm_ioctl(struct file *filp,
1298 		       unsigned int ioctl, unsigned long arg)
1299 {
1300 	struct kvm *kvm = filp->private_data;
1301 	void __user *argp = (void __user *)arg;
1302 
1303 	switch (ioctl) {
1304 	case KVM_CREATE_IRQCHIP: {
1305 		int ret;
1306 		if (!vgic_present)
1307 			return -ENXIO;
1308 		mutex_lock(&kvm->lock);
1309 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1310 		mutex_unlock(&kvm->lock);
1311 		return ret;
1312 	}
1313 	case KVM_ARM_SET_DEVICE_ADDR: {
1314 		struct kvm_arm_device_addr dev_addr;
1315 
1316 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1317 			return -EFAULT;
1318 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1319 	}
1320 	case KVM_ARM_PREFERRED_TARGET: {
1321 		int err;
1322 		struct kvm_vcpu_init init;
1323 
1324 		err = kvm_vcpu_preferred_target(&init);
1325 		if (err)
1326 			return err;
1327 
1328 		if (copy_to_user(argp, &init, sizeof(init)))
1329 			return -EFAULT;
1330 
1331 		return 0;
1332 	}
1333 	default:
1334 		return -EINVAL;
1335 	}
1336 }
1337 
1338 static unsigned long nvhe_percpu_size(void)
1339 {
1340 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1341 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1342 }
1343 
1344 static unsigned long nvhe_percpu_order(void)
1345 {
1346 	unsigned long size = nvhe_percpu_size();
1347 
1348 	return size ? get_order(size) : 0;
1349 }
1350 
1351 /* A lookup table holding the hypervisor VA for each vector slot */
1352 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1353 
1354 static int __kvm_vector_slot2idx(enum arm64_hyp_spectre_vector slot)
1355 {
1356 	return slot - (slot != HYP_VECTOR_DIRECT);
1357 }
1358 
1359 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1360 {
1361 	int idx = __kvm_vector_slot2idx(slot);
1362 
1363 	hyp_spectre_vector_selector[slot] = base + (idx * SZ_2K);
1364 }
1365 
1366 static int kvm_init_vector_slots(void)
1367 {
1368 	int err;
1369 	void *base;
1370 
1371 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1372 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1373 
1374 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1375 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1376 
1377 	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1378 		return 0;
1379 
1380 	if (!has_vhe()) {
1381 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1382 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1383 		if (err)
1384 			return err;
1385 	}
1386 
1387 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1388 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1389 	return 0;
1390 }
1391 
1392 static void cpu_init_hyp_mode(void)
1393 {
1394 	struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1395 	struct arm_smccc_res res;
1396 	unsigned long tcr;
1397 
1398 	/* Switch from the HYP stub to our own HYP init vector */
1399 	__hyp_set_vectors(kvm_get_idmap_vector());
1400 
1401 	/*
1402 	 * Calculate the raw per-cpu offset without a translation from the
1403 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1404 	 * so that we can use adr_l to access per-cpu variables in EL2.
1405 	 */
1406 	params->tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) -
1407 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1408 
1409 	params->mair_el2 = read_sysreg(mair_el1);
1410 
1411 	/*
1412 	 * The ID map may be configured to use an extended virtual address
1413 	 * range. This is only the case if system RAM is out of range for the
1414 	 * currently configured page size and VA_BITS, in which case we will
1415 	 * also need the extended virtual range for the HYP ID map, or we won't
1416 	 * be able to enable the EL2 MMU.
1417 	 *
1418 	 * However, at EL2, there is only one TTBR register, and we can't switch
1419 	 * between translation tables *and* update TCR_EL2.T0SZ at the same
1420 	 * time. Bottom line: we need to use the extended range with *both* our
1421 	 * translation tables.
1422 	 *
1423 	 * So use the same T0SZ value we use for the ID map.
1424 	 */
1425 	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1426 	tcr &= ~TCR_T0SZ_MASK;
1427 	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1428 	params->tcr_el2 = tcr;
1429 
1430 	params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
1431 	params->pgd_pa = kvm_mmu_get_httbr();
1432 
1433 	/*
1434 	 * Flush the init params from the data cache because the struct will
1435 	 * be read while the MMU is off.
1436 	 */
1437 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1438 
1439 	/*
1440 	 * Call initialization code, and switch to the full blown HYP code.
1441 	 * If the cpucaps haven't been finalized yet, something has gone very
1442 	 * wrong, and hyp will crash and burn when it uses any
1443 	 * cpus_have_const_cap() wrapper.
1444 	 */
1445 	BUG_ON(!system_capabilities_finalized());
1446 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1447 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1448 
1449 	/*
1450 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1451 	 * at EL2.
1452 	 */
1453 	if (this_cpu_has_cap(ARM64_SSBS) &&
1454 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1455 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1456 	}
1457 }
1458 
1459 static void cpu_hyp_reset(void)
1460 {
1461 	if (!is_kernel_in_hyp_mode())
1462 		__hyp_reset_vectors();
1463 }
1464 
1465 /*
1466  * EL2 vectors can be mapped and rerouted in a number of ways,
1467  * depending on the kernel configuration and CPU present:
1468  *
1469  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1470  *   placed in one of the vector slots, which is executed before jumping
1471  *   to the real vectors.
1472  *
1473  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1474  *   containing the hardening sequence is mapped next to the idmap page,
1475  *   and executed before jumping to the real vectors.
1476  *
1477  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1478  *   empty slot is selected, mapped next to the idmap page, and
1479  *   executed before jumping to the real vectors.
1480  *
1481  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1482  * VHE, as we don't have hypervisor-specific mappings. If the system
1483  * is VHE and yet selects this capability, it will be ignored.
1484  */
1485 static void cpu_set_hyp_vector(void)
1486 {
1487 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1488 	void *vector = hyp_spectre_vector_selector[data->slot];
1489 
1490 	*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1491 }
1492 
1493 static void cpu_hyp_reinit(void)
1494 {
1495 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1496 
1497 	cpu_hyp_reset();
1498 	cpu_set_hyp_vector();
1499 
1500 	if (is_kernel_in_hyp_mode())
1501 		kvm_timer_init_vhe();
1502 	else
1503 		cpu_init_hyp_mode();
1504 
1505 	kvm_arm_init_debug();
1506 
1507 	if (vgic_present)
1508 		kvm_vgic_init_cpu_hardware();
1509 }
1510 
1511 static void _kvm_arch_hardware_enable(void *discard)
1512 {
1513 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1514 		cpu_hyp_reinit();
1515 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1516 	}
1517 }
1518 
1519 int kvm_arch_hardware_enable(void)
1520 {
1521 	_kvm_arch_hardware_enable(NULL);
1522 	return 0;
1523 }
1524 
1525 static void _kvm_arch_hardware_disable(void *discard)
1526 {
1527 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1528 		cpu_hyp_reset();
1529 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1530 	}
1531 }
1532 
1533 void kvm_arch_hardware_disable(void)
1534 {
1535 	if (!is_protected_kvm_enabled())
1536 		_kvm_arch_hardware_disable(NULL);
1537 }
1538 
1539 #ifdef CONFIG_CPU_PM
1540 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1541 				    unsigned long cmd,
1542 				    void *v)
1543 {
1544 	/*
1545 	 * kvm_arm_hardware_enabled is left with its old value over
1546 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1547 	 * re-enable hyp.
1548 	 */
1549 	switch (cmd) {
1550 	case CPU_PM_ENTER:
1551 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1552 			/*
1553 			 * don't update kvm_arm_hardware_enabled here
1554 			 * so that the hardware will be re-enabled
1555 			 * when we resume. See below.
1556 			 */
1557 			cpu_hyp_reset();
1558 
1559 		return NOTIFY_OK;
1560 	case CPU_PM_ENTER_FAILED:
1561 	case CPU_PM_EXIT:
1562 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1563 			/* The hardware was enabled before suspend. */
1564 			cpu_hyp_reinit();
1565 
1566 		return NOTIFY_OK;
1567 
1568 	default:
1569 		return NOTIFY_DONE;
1570 	}
1571 }
1572 
1573 static struct notifier_block hyp_init_cpu_pm_nb = {
1574 	.notifier_call = hyp_init_cpu_pm_notifier,
1575 };
1576 
1577 static void __init hyp_cpu_pm_init(void)
1578 {
1579 	if (!is_protected_kvm_enabled())
1580 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1581 }
1582 static void __init hyp_cpu_pm_exit(void)
1583 {
1584 	if (!is_protected_kvm_enabled())
1585 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1586 }
1587 #else
1588 static inline void hyp_cpu_pm_init(void)
1589 {
1590 }
1591 static inline void hyp_cpu_pm_exit(void)
1592 {
1593 }
1594 #endif
1595 
1596 static void init_cpu_logical_map(void)
1597 {
1598 	unsigned int cpu;
1599 
1600 	/*
1601 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1602 	 * Only copy the set of online CPUs whose features have been chacked
1603 	 * against the finalized system capabilities. The hypervisor will not
1604 	 * allow any other CPUs from the `possible` set to boot.
1605 	 */
1606 	for_each_online_cpu(cpu)
1607 		kvm_nvhe_sym(__cpu_logical_map)[cpu] = cpu_logical_map(cpu);
1608 }
1609 
1610 static bool init_psci_relay(void)
1611 {
1612 	/*
1613 	 * If PSCI has not been initialized, protected KVM cannot install
1614 	 * itself on newly booted CPUs.
1615 	 */
1616 	if (!psci_ops.get_version) {
1617 		kvm_err("Cannot initialize protected mode without PSCI\n");
1618 		return false;
1619 	}
1620 
1621 	kvm_nvhe_sym(kvm_host_psci_version) = psci_ops.get_version();
1622 	kvm_nvhe_sym(kvm_host_psci_0_1_function_ids) = get_psci_0_1_function_ids();
1623 	return true;
1624 }
1625 
1626 static int init_common_resources(void)
1627 {
1628 	return kvm_set_ipa_limit();
1629 }
1630 
1631 static int init_subsystems(void)
1632 {
1633 	int err = 0;
1634 
1635 	/*
1636 	 * Enable hardware so that subsystem initialisation can access EL2.
1637 	 */
1638 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1639 
1640 	/*
1641 	 * Register CPU lower-power notifier
1642 	 */
1643 	hyp_cpu_pm_init();
1644 
1645 	/*
1646 	 * Init HYP view of VGIC
1647 	 */
1648 	err = kvm_vgic_hyp_init();
1649 	switch (err) {
1650 	case 0:
1651 		vgic_present = true;
1652 		break;
1653 	case -ENODEV:
1654 	case -ENXIO:
1655 		vgic_present = false;
1656 		err = 0;
1657 		break;
1658 	default:
1659 		goto out;
1660 	}
1661 
1662 	/*
1663 	 * Init HYP architected timer support
1664 	 */
1665 	err = kvm_timer_hyp_init(vgic_present);
1666 	if (err)
1667 		goto out;
1668 
1669 	kvm_perf_init();
1670 	kvm_sys_reg_table_init();
1671 
1672 out:
1673 	if (err || !is_protected_kvm_enabled())
1674 		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1675 
1676 	return err;
1677 }
1678 
1679 static void teardown_hyp_mode(void)
1680 {
1681 	int cpu;
1682 
1683 	free_hyp_pgds();
1684 	for_each_possible_cpu(cpu) {
1685 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1686 		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1687 	}
1688 }
1689 
1690 /**
1691  * Inits Hyp-mode on all online CPUs
1692  */
1693 static int init_hyp_mode(void)
1694 {
1695 	int cpu;
1696 	int err = 0;
1697 
1698 	/*
1699 	 * Allocate Hyp PGD and setup Hyp identity mapping
1700 	 */
1701 	err = kvm_mmu_init();
1702 	if (err)
1703 		goto out_err;
1704 
1705 	/*
1706 	 * Allocate stack pages for Hypervisor-mode
1707 	 */
1708 	for_each_possible_cpu(cpu) {
1709 		unsigned long stack_page;
1710 
1711 		stack_page = __get_free_page(GFP_KERNEL);
1712 		if (!stack_page) {
1713 			err = -ENOMEM;
1714 			goto out_err;
1715 		}
1716 
1717 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1718 	}
1719 
1720 	/*
1721 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1722 	 */
1723 	for_each_possible_cpu(cpu) {
1724 		struct page *page;
1725 		void *page_addr;
1726 
1727 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1728 		if (!page) {
1729 			err = -ENOMEM;
1730 			goto out_err;
1731 		}
1732 
1733 		page_addr = page_address(page);
1734 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1735 		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1736 	}
1737 
1738 	/*
1739 	 * Map the Hyp-code called directly from the host
1740 	 */
1741 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1742 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1743 	if (err) {
1744 		kvm_err("Cannot map world-switch code\n");
1745 		goto out_err;
1746 	}
1747 
1748 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_ro_after_init_start),
1749 				  kvm_ksym_ref(__hyp_data_ro_after_init_end),
1750 				  PAGE_HYP_RO);
1751 	if (err) {
1752 		kvm_err("Cannot map .hyp.data..ro_after_init section\n");
1753 		goto out_err;
1754 	}
1755 
1756 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1757 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1758 	if (err) {
1759 		kvm_err("Cannot map rodata section\n");
1760 		goto out_err;
1761 	}
1762 
1763 	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1764 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1765 	if (err) {
1766 		kvm_err("Cannot map bss section\n");
1767 		goto out_err;
1768 	}
1769 
1770 	/*
1771 	 * Map the Hyp stack pages
1772 	 */
1773 	for_each_possible_cpu(cpu) {
1774 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1775 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1776 					  PAGE_HYP);
1777 
1778 		if (err) {
1779 			kvm_err("Cannot map hyp stack\n");
1780 			goto out_err;
1781 		}
1782 	}
1783 
1784 	/*
1785 	 * Map Hyp percpu pages
1786 	 */
1787 	for_each_possible_cpu(cpu) {
1788 		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1789 		char *percpu_end = percpu_begin + nvhe_percpu_size();
1790 
1791 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1792 
1793 		if (err) {
1794 			kvm_err("Cannot map hyp percpu region\n");
1795 			goto out_err;
1796 		}
1797 	}
1798 
1799 	if (is_protected_kvm_enabled()) {
1800 		init_cpu_logical_map();
1801 
1802 		if (!init_psci_relay())
1803 			goto out_err;
1804 	}
1805 
1806 	return 0;
1807 
1808 out_err:
1809 	teardown_hyp_mode();
1810 	kvm_err("error initializing Hyp mode: %d\n", err);
1811 	return err;
1812 }
1813 
1814 static void check_kvm_target_cpu(void *ret)
1815 {
1816 	*(int *)ret = kvm_target_cpu();
1817 }
1818 
1819 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1820 {
1821 	struct kvm_vcpu *vcpu;
1822 	int i;
1823 
1824 	mpidr &= MPIDR_HWID_BITMASK;
1825 	kvm_for_each_vcpu(i, vcpu, kvm) {
1826 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1827 			return vcpu;
1828 	}
1829 	return NULL;
1830 }
1831 
1832 bool kvm_arch_has_irq_bypass(void)
1833 {
1834 	return true;
1835 }
1836 
1837 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1838 				      struct irq_bypass_producer *prod)
1839 {
1840 	struct kvm_kernel_irqfd *irqfd =
1841 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1842 
1843 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1844 					  &irqfd->irq_entry);
1845 }
1846 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1847 				      struct irq_bypass_producer *prod)
1848 {
1849 	struct kvm_kernel_irqfd *irqfd =
1850 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1851 
1852 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1853 				     &irqfd->irq_entry);
1854 }
1855 
1856 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1857 {
1858 	struct kvm_kernel_irqfd *irqfd =
1859 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1860 
1861 	kvm_arm_halt_guest(irqfd->kvm);
1862 }
1863 
1864 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1865 {
1866 	struct kvm_kernel_irqfd *irqfd =
1867 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1868 
1869 	kvm_arm_resume_guest(irqfd->kvm);
1870 }
1871 
1872 /**
1873  * Initialize Hyp-mode and memory mappings on all CPUs.
1874  */
1875 int kvm_arch_init(void *opaque)
1876 {
1877 	int err;
1878 	int ret, cpu;
1879 	bool in_hyp_mode;
1880 
1881 	if (!is_hyp_mode_available()) {
1882 		kvm_info("HYP mode not available\n");
1883 		return -ENODEV;
1884 	}
1885 
1886 	in_hyp_mode = is_kernel_in_hyp_mode();
1887 
1888 	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1889 		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1890 		return -ENODEV;
1891 	}
1892 
1893 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
1894 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1895 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1896 			 "Only trusted guests should be used on this system.\n");
1897 
1898 	for_each_online_cpu(cpu) {
1899 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1900 		if (ret < 0) {
1901 			kvm_err("Error, CPU %d not supported!\n", cpu);
1902 			return -ENODEV;
1903 		}
1904 	}
1905 
1906 	err = init_common_resources();
1907 	if (err)
1908 		return err;
1909 
1910 	err = kvm_arm_init_sve();
1911 	if (err)
1912 		return err;
1913 
1914 	if (!in_hyp_mode) {
1915 		err = init_hyp_mode();
1916 		if (err)
1917 			goto out_err;
1918 	}
1919 
1920 	err = kvm_init_vector_slots();
1921 	if (err) {
1922 		kvm_err("Cannot initialise vector slots\n");
1923 		goto out_err;
1924 	}
1925 
1926 	err = init_subsystems();
1927 	if (err)
1928 		goto out_hyp;
1929 
1930 	if (is_protected_kvm_enabled()) {
1931 		static_branch_enable(&kvm_protected_mode_initialized);
1932 		kvm_info("Protected nVHE mode initialized successfully\n");
1933 	} else if (in_hyp_mode) {
1934 		kvm_info("VHE mode initialized successfully\n");
1935 	} else {
1936 		kvm_info("Hyp mode initialized successfully\n");
1937 	}
1938 
1939 	return 0;
1940 
1941 out_hyp:
1942 	hyp_cpu_pm_exit();
1943 	if (!in_hyp_mode)
1944 		teardown_hyp_mode();
1945 out_err:
1946 	return err;
1947 }
1948 
1949 /* NOP: Compiling as a module not supported */
1950 void kvm_arch_exit(void)
1951 {
1952 	kvm_perf_teardown();
1953 }
1954 
1955 static int __init early_kvm_mode_cfg(char *arg)
1956 {
1957 	if (!arg)
1958 		return -EINVAL;
1959 
1960 	if (strcmp(arg, "protected") == 0) {
1961 		kvm_mode = KVM_MODE_PROTECTED;
1962 		return 0;
1963 	}
1964 
1965 	return -EINVAL;
1966 }
1967 early_param("kvm-arm.mode", early_kvm_mode_cfg);
1968 
1969 enum kvm_mode kvm_get_mode(void)
1970 {
1971 	return kvm_mode;
1972 }
1973 
1974 static int arm_init(void)
1975 {
1976 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1977 	return rc;
1978 }
1979 
1980 module_init(arm_init);
1981