xref: /openbmc/linux/arch/arm64/kvm/arch_timer.c (revision fadbafc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 
20 #include <kvm/arm_vgic.h>
21 #include <kvm/arm_arch_timer.h>
22 
23 #include "trace.h"
24 
25 static struct timecounter *timecounter;
26 static unsigned int host_vtimer_irq;
27 static unsigned int host_ptimer_irq;
28 static u32 host_vtimer_irq_flags;
29 static u32 host_ptimer_irq_flags;
30 
31 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
32 
33 static const struct kvm_irq_level default_ptimer_irq = {
34 	.irq	= 30,
35 	.level	= 1,
36 };
37 
38 static const struct kvm_irq_level default_vtimer_irq = {
39 	.irq	= 27,
40 	.level	= 1,
41 };
42 
43 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
44 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
45 				 struct arch_timer_context *timer_ctx);
46 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
47 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
48 				struct arch_timer_context *timer,
49 				enum kvm_arch_timer_regs treg,
50 				u64 val);
51 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
52 			      struct arch_timer_context *timer,
53 			      enum kvm_arch_timer_regs treg);
54 
55 u32 timer_get_ctl(struct arch_timer_context *ctxt)
56 {
57 	struct kvm_vcpu *vcpu = ctxt->vcpu;
58 
59 	switch(arch_timer_ctx_index(ctxt)) {
60 	case TIMER_VTIMER:
61 		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
62 	case TIMER_PTIMER:
63 		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
64 	default:
65 		WARN_ON(1);
66 		return 0;
67 	}
68 }
69 
70 u64 timer_get_cval(struct arch_timer_context *ctxt)
71 {
72 	struct kvm_vcpu *vcpu = ctxt->vcpu;
73 
74 	switch(arch_timer_ctx_index(ctxt)) {
75 	case TIMER_VTIMER:
76 		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
77 	case TIMER_PTIMER:
78 		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
79 	default:
80 		WARN_ON(1);
81 		return 0;
82 	}
83 }
84 
85 static u64 timer_get_offset(struct arch_timer_context *ctxt)
86 {
87 	struct kvm_vcpu *vcpu = ctxt->vcpu;
88 
89 	switch(arch_timer_ctx_index(ctxt)) {
90 	case TIMER_VTIMER:
91 		return __vcpu_sys_reg(vcpu, CNTVOFF_EL2);
92 	default:
93 		return 0;
94 	}
95 }
96 
97 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
98 {
99 	struct kvm_vcpu *vcpu = ctxt->vcpu;
100 
101 	switch(arch_timer_ctx_index(ctxt)) {
102 	case TIMER_VTIMER:
103 		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
104 		break;
105 	case TIMER_PTIMER:
106 		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
107 		break;
108 	default:
109 		WARN_ON(1);
110 	}
111 }
112 
113 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
114 {
115 	struct kvm_vcpu *vcpu = ctxt->vcpu;
116 
117 	switch(arch_timer_ctx_index(ctxt)) {
118 	case TIMER_VTIMER:
119 		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
120 		break;
121 	case TIMER_PTIMER:
122 		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
123 		break;
124 	default:
125 		WARN_ON(1);
126 	}
127 }
128 
129 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
130 {
131 	struct kvm_vcpu *vcpu = ctxt->vcpu;
132 
133 	switch(arch_timer_ctx_index(ctxt)) {
134 	case TIMER_VTIMER:
135 		__vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset;
136 		break;
137 	default:
138 		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
139 	}
140 }
141 
142 u64 kvm_phys_timer_read(void)
143 {
144 	return timecounter->cc->read(timecounter->cc);
145 }
146 
147 static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
148 {
149 	if (has_vhe()) {
150 		map->direct_vtimer = vcpu_vtimer(vcpu);
151 		map->direct_ptimer = vcpu_ptimer(vcpu);
152 		map->emul_ptimer = NULL;
153 	} else {
154 		map->direct_vtimer = vcpu_vtimer(vcpu);
155 		map->direct_ptimer = NULL;
156 		map->emul_ptimer = vcpu_ptimer(vcpu);
157 	}
158 
159 	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
160 }
161 
162 static inline bool userspace_irqchip(struct kvm *kvm)
163 {
164 	return static_branch_unlikely(&userspace_irqchip_in_use) &&
165 		unlikely(!irqchip_in_kernel(kvm));
166 }
167 
168 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
169 {
170 	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
171 		      HRTIMER_MODE_ABS_HARD);
172 }
173 
174 static void soft_timer_cancel(struct hrtimer *hrt)
175 {
176 	hrtimer_cancel(hrt);
177 }
178 
179 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
180 {
181 	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
182 	struct arch_timer_context *ctx;
183 	struct timer_map map;
184 
185 	/*
186 	 * We may see a timer interrupt after vcpu_put() has been called which
187 	 * sets the CPU's vcpu pointer to NULL, because even though the timer
188 	 * has been disabled in timer_save_state(), the hardware interrupt
189 	 * signal may not have been retired from the interrupt controller yet.
190 	 */
191 	if (!vcpu)
192 		return IRQ_HANDLED;
193 
194 	get_timer_map(vcpu, &map);
195 
196 	if (irq == host_vtimer_irq)
197 		ctx = map.direct_vtimer;
198 	else
199 		ctx = map.direct_ptimer;
200 
201 	if (kvm_timer_should_fire(ctx))
202 		kvm_timer_update_irq(vcpu, true, ctx);
203 
204 	if (userspace_irqchip(vcpu->kvm) &&
205 	    !static_branch_unlikely(&has_gic_active_state))
206 		disable_percpu_irq(host_vtimer_irq);
207 
208 	return IRQ_HANDLED;
209 }
210 
211 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
212 				     u64 val)
213 {
214 	u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
215 
216 	if (now < val) {
217 		u64 ns;
218 
219 		ns = cyclecounter_cyc2ns(timecounter->cc,
220 					 val - now,
221 					 timecounter->mask,
222 					 &timecounter->frac);
223 		return ns;
224 	}
225 
226 	return 0;
227 }
228 
229 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
230 {
231 	return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
232 }
233 
234 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
235 {
236 	WARN_ON(timer_ctx && timer_ctx->loaded);
237 	return timer_ctx &&
238 		((timer_get_ctl(timer_ctx) &
239 		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
240 }
241 
242 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
243 {
244 	return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
245 		vcpu_get_flag(vcpu, IN_WFIT));
246 }
247 
248 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
249 {
250 	struct arch_timer_context *ctx = vcpu_vtimer(vcpu);
251 	u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
252 
253 	return kvm_counter_compute_delta(ctx, val);
254 }
255 
256 /*
257  * Returns the earliest expiration time in ns among guest timers.
258  * Note that it will return 0 if none of timers can fire.
259  */
260 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
261 {
262 	u64 min_delta = ULLONG_MAX;
263 	int i;
264 
265 	for (i = 0; i < NR_KVM_TIMERS; i++) {
266 		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
267 
268 		WARN(ctx->loaded, "timer %d loaded\n", i);
269 		if (kvm_timer_irq_can_fire(ctx))
270 			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
271 	}
272 
273 	if (vcpu_has_wfit_active(vcpu))
274 		min_delta = min(min_delta, wfit_delay_ns(vcpu));
275 
276 	/* If none of timers can fire, then return 0 */
277 	if (min_delta == ULLONG_MAX)
278 		return 0;
279 
280 	return min_delta;
281 }
282 
283 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
284 {
285 	struct arch_timer_cpu *timer;
286 	struct kvm_vcpu *vcpu;
287 	u64 ns;
288 
289 	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
290 	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
291 
292 	/*
293 	 * Check that the timer has really expired from the guest's
294 	 * PoV (NTP on the host may have forced it to expire
295 	 * early). If we should have slept longer, restart it.
296 	 */
297 	ns = kvm_timer_earliest_exp(vcpu);
298 	if (unlikely(ns)) {
299 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
300 		return HRTIMER_RESTART;
301 	}
302 
303 	kvm_vcpu_wake_up(vcpu);
304 	return HRTIMER_NORESTART;
305 }
306 
307 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
308 {
309 	struct arch_timer_context *ctx;
310 	struct kvm_vcpu *vcpu;
311 	u64 ns;
312 
313 	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
314 	vcpu = ctx->vcpu;
315 
316 	trace_kvm_timer_hrtimer_expire(ctx);
317 
318 	/*
319 	 * Check that the timer has really expired from the guest's
320 	 * PoV (NTP on the host may have forced it to expire
321 	 * early). If not ready, schedule for a later time.
322 	 */
323 	ns = kvm_timer_compute_delta(ctx);
324 	if (unlikely(ns)) {
325 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
326 		return HRTIMER_RESTART;
327 	}
328 
329 	kvm_timer_update_irq(vcpu, true, ctx);
330 	return HRTIMER_NORESTART;
331 }
332 
333 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
334 {
335 	enum kvm_arch_timers index;
336 	u64 cval, now;
337 
338 	if (!timer_ctx)
339 		return false;
340 
341 	index = arch_timer_ctx_index(timer_ctx);
342 
343 	if (timer_ctx->loaded) {
344 		u32 cnt_ctl = 0;
345 
346 		switch (index) {
347 		case TIMER_VTIMER:
348 			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
349 			break;
350 		case TIMER_PTIMER:
351 			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
352 			break;
353 		case NR_KVM_TIMERS:
354 			/* GCC is braindead */
355 			cnt_ctl = 0;
356 			break;
357 		}
358 
359 		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
360 		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
361 		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
362 	}
363 
364 	if (!kvm_timer_irq_can_fire(timer_ctx))
365 		return false;
366 
367 	cval = timer_get_cval(timer_ctx);
368 	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
369 
370 	return cval <= now;
371 }
372 
373 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
374 {
375 	return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
376 }
377 
378 /*
379  * Reflect the timer output level into the kvm_run structure
380  */
381 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
382 {
383 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
384 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
385 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
386 
387 	/* Populate the device bitmap with the timer states */
388 	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
389 				    KVM_ARM_DEV_EL1_PTIMER);
390 	if (kvm_timer_should_fire(vtimer))
391 		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
392 	if (kvm_timer_should_fire(ptimer))
393 		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
394 }
395 
396 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
397 				 struct arch_timer_context *timer_ctx)
398 {
399 	int ret;
400 
401 	timer_ctx->irq.level = new_level;
402 	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
403 				   timer_ctx->irq.level);
404 
405 	if (!userspace_irqchip(vcpu->kvm)) {
406 		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
407 					  timer_ctx->irq.irq,
408 					  timer_ctx->irq.level,
409 					  timer_ctx);
410 		WARN_ON(ret);
411 	}
412 }
413 
414 /* Only called for a fully emulated timer */
415 static void timer_emulate(struct arch_timer_context *ctx)
416 {
417 	bool should_fire = kvm_timer_should_fire(ctx);
418 
419 	trace_kvm_timer_emulate(ctx, should_fire);
420 
421 	if (should_fire != ctx->irq.level) {
422 		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
423 		return;
424 	}
425 
426 	/*
427 	 * If the timer can fire now, we don't need to have a soft timer
428 	 * scheduled for the future.  If the timer cannot fire at all,
429 	 * then we also don't need a soft timer.
430 	 */
431 	if (!kvm_timer_irq_can_fire(ctx)) {
432 		soft_timer_cancel(&ctx->hrtimer);
433 		return;
434 	}
435 
436 	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
437 }
438 
439 static void timer_save_state(struct arch_timer_context *ctx)
440 {
441 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
442 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
443 	unsigned long flags;
444 
445 	if (!timer->enabled)
446 		return;
447 
448 	local_irq_save(flags);
449 
450 	if (!ctx->loaded)
451 		goto out;
452 
453 	switch (index) {
454 	case TIMER_VTIMER:
455 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
456 		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
457 
458 		/* Disable the timer */
459 		write_sysreg_el0(0, SYS_CNTV_CTL);
460 		isb();
461 
462 		break;
463 	case TIMER_PTIMER:
464 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
465 		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL));
466 
467 		/* Disable the timer */
468 		write_sysreg_el0(0, SYS_CNTP_CTL);
469 		isb();
470 
471 		break;
472 	case NR_KVM_TIMERS:
473 		BUG();
474 	}
475 
476 	trace_kvm_timer_save_state(ctx);
477 
478 	ctx->loaded = false;
479 out:
480 	local_irq_restore(flags);
481 }
482 
483 /*
484  * Schedule the background timer before calling kvm_vcpu_halt, so that this
485  * thread is removed from its waitqueue and made runnable when there's a timer
486  * interrupt to handle.
487  */
488 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
489 {
490 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
491 	struct timer_map map;
492 
493 	get_timer_map(vcpu, &map);
494 
495 	/*
496 	 * If no timers are capable of raising interrupts (disabled or
497 	 * masked), then there's no more work for us to do.
498 	 */
499 	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
500 	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
501 	    !kvm_timer_irq_can_fire(map.emul_ptimer) &&
502 	    !vcpu_has_wfit_active(vcpu))
503 		return;
504 
505 	/*
506 	 * At least one guest time will expire. Schedule a background timer.
507 	 * Set the earliest expiration time among the guest timers.
508 	 */
509 	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
510 }
511 
512 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
513 {
514 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
515 
516 	soft_timer_cancel(&timer->bg_timer);
517 }
518 
519 static void timer_restore_state(struct arch_timer_context *ctx)
520 {
521 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
522 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
523 	unsigned long flags;
524 
525 	if (!timer->enabled)
526 		return;
527 
528 	local_irq_save(flags);
529 
530 	if (ctx->loaded)
531 		goto out;
532 
533 	switch (index) {
534 	case TIMER_VTIMER:
535 		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
536 		isb();
537 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
538 		break;
539 	case TIMER_PTIMER:
540 		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL);
541 		isb();
542 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
543 		break;
544 	case NR_KVM_TIMERS:
545 		BUG();
546 	}
547 
548 	trace_kvm_timer_restore_state(ctx);
549 
550 	ctx->loaded = true;
551 out:
552 	local_irq_restore(flags);
553 }
554 
555 static void set_cntvoff(u64 cntvoff)
556 {
557 	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
558 }
559 
560 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
561 {
562 	int r;
563 	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
564 	WARN_ON(r);
565 }
566 
567 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
568 {
569 	struct kvm_vcpu *vcpu = ctx->vcpu;
570 	bool phys_active = false;
571 
572 	/*
573 	 * Update the timer output so that it is likely to match the
574 	 * state we're about to restore. If the timer expires between
575 	 * this point and the register restoration, we'll take the
576 	 * interrupt anyway.
577 	 */
578 	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
579 
580 	if (irqchip_in_kernel(vcpu->kvm))
581 		phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
582 
583 	phys_active |= ctx->irq.level;
584 
585 	set_timer_irq_phys_active(ctx, phys_active);
586 }
587 
588 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
589 {
590 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
591 
592 	/*
593 	 * Update the timer output so that it is likely to match the
594 	 * state we're about to restore. If the timer expires between
595 	 * this point and the register restoration, we'll take the
596 	 * interrupt anyway.
597 	 */
598 	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
599 
600 	/*
601 	 * When using a userspace irqchip with the architected timers and a
602 	 * host interrupt controller that doesn't support an active state, we
603 	 * must still prevent continuously exiting from the guest, and
604 	 * therefore mask the physical interrupt by disabling it on the host
605 	 * interrupt controller when the virtual level is high, such that the
606 	 * guest can make forward progress.  Once we detect the output level
607 	 * being de-asserted, we unmask the interrupt again so that we exit
608 	 * from the guest when the timer fires.
609 	 */
610 	if (vtimer->irq.level)
611 		disable_percpu_irq(host_vtimer_irq);
612 	else
613 		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
614 }
615 
616 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
617 {
618 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
619 	struct timer_map map;
620 
621 	if (unlikely(!timer->enabled))
622 		return;
623 
624 	get_timer_map(vcpu, &map);
625 
626 	if (static_branch_likely(&has_gic_active_state)) {
627 		kvm_timer_vcpu_load_gic(map.direct_vtimer);
628 		if (map.direct_ptimer)
629 			kvm_timer_vcpu_load_gic(map.direct_ptimer);
630 	} else {
631 		kvm_timer_vcpu_load_nogic(vcpu);
632 	}
633 
634 	set_cntvoff(timer_get_offset(map.direct_vtimer));
635 
636 	kvm_timer_unblocking(vcpu);
637 
638 	timer_restore_state(map.direct_vtimer);
639 	if (map.direct_ptimer)
640 		timer_restore_state(map.direct_ptimer);
641 
642 	if (map.emul_ptimer)
643 		timer_emulate(map.emul_ptimer);
644 }
645 
646 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
647 {
648 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
649 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
650 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
651 	bool vlevel, plevel;
652 
653 	if (likely(irqchip_in_kernel(vcpu->kvm)))
654 		return false;
655 
656 	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
657 	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
658 
659 	return kvm_timer_should_fire(vtimer) != vlevel ||
660 	       kvm_timer_should_fire(ptimer) != plevel;
661 }
662 
663 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
664 {
665 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
666 	struct timer_map map;
667 
668 	if (unlikely(!timer->enabled))
669 		return;
670 
671 	get_timer_map(vcpu, &map);
672 
673 	timer_save_state(map.direct_vtimer);
674 	if (map.direct_ptimer)
675 		timer_save_state(map.direct_ptimer);
676 
677 	/*
678 	 * Cancel soft timer emulation, because the only case where we
679 	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
680 	 * in that case we already factor in the deadline for the physical
681 	 * timer when scheduling the bg_timer.
682 	 *
683 	 * In any case, we re-schedule the hrtimer for the physical timer when
684 	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
685 	 */
686 	if (map.emul_ptimer)
687 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
688 
689 	if (kvm_vcpu_is_blocking(vcpu))
690 		kvm_timer_blocking(vcpu);
691 
692 	/*
693 	 * The kernel may decide to run userspace after calling vcpu_put, so
694 	 * we reset cntvoff to 0 to ensure a consistent read between user
695 	 * accesses to the virtual counter and kernel access to the physical
696 	 * counter of non-VHE case. For VHE, the virtual counter uses a fixed
697 	 * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
698 	 */
699 	set_cntvoff(0);
700 }
701 
702 /*
703  * With a userspace irqchip we have to check if the guest de-asserted the
704  * timer and if so, unmask the timer irq signal on the host interrupt
705  * controller to ensure that we see future timer signals.
706  */
707 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
708 {
709 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
710 
711 	if (!kvm_timer_should_fire(vtimer)) {
712 		kvm_timer_update_irq(vcpu, false, vtimer);
713 		if (static_branch_likely(&has_gic_active_state))
714 			set_timer_irq_phys_active(vtimer, false);
715 		else
716 			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
717 	}
718 }
719 
720 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
721 {
722 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
723 
724 	if (unlikely(!timer->enabled))
725 		return;
726 
727 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
728 		unmask_vtimer_irq_user(vcpu);
729 }
730 
731 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
732 {
733 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
734 	struct timer_map map;
735 
736 	get_timer_map(vcpu, &map);
737 
738 	/*
739 	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
740 	 * and to 0 for ARMv7.  We provide an implementation that always
741 	 * resets the timer to be disabled and unmasked and is compliant with
742 	 * the ARMv7 architecture.
743 	 */
744 	timer_set_ctl(vcpu_vtimer(vcpu), 0);
745 	timer_set_ctl(vcpu_ptimer(vcpu), 0);
746 
747 	if (timer->enabled) {
748 		kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
749 		kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
750 
751 		if (irqchip_in_kernel(vcpu->kvm)) {
752 			kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
753 			if (map.direct_ptimer)
754 				kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
755 		}
756 	}
757 
758 	if (map.emul_ptimer)
759 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
760 
761 	return 0;
762 }
763 
764 /* Make the updates of cntvoff for all vtimer contexts atomic */
765 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
766 {
767 	unsigned long i;
768 	struct kvm *kvm = vcpu->kvm;
769 	struct kvm_vcpu *tmp;
770 
771 	mutex_lock(&kvm->lock);
772 	kvm_for_each_vcpu(i, tmp, kvm)
773 		timer_set_offset(vcpu_vtimer(tmp), cntvoff);
774 
775 	/*
776 	 * When called from the vcpu create path, the CPU being created is not
777 	 * included in the loop above, so we just set it here as well.
778 	 */
779 	timer_set_offset(vcpu_vtimer(vcpu), cntvoff);
780 	mutex_unlock(&kvm->lock);
781 }
782 
783 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
784 {
785 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
786 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
787 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
788 
789 	vtimer->vcpu = vcpu;
790 	ptimer->vcpu = vcpu;
791 
792 	/* Synchronize cntvoff across all vtimers of a VM. */
793 	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
794 	timer_set_offset(ptimer, 0);
795 
796 	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
797 	timer->bg_timer.function = kvm_bg_timer_expire;
798 
799 	hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
800 	hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
801 	vtimer->hrtimer.function = kvm_hrtimer_expire;
802 	ptimer->hrtimer.function = kvm_hrtimer_expire;
803 
804 	vtimer->irq.irq = default_vtimer_irq.irq;
805 	ptimer->irq.irq = default_ptimer_irq.irq;
806 
807 	vtimer->host_timer_irq = host_vtimer_irq;
808 	ptimer->host_timer_irq = host_ptimer_irq;
809 
810 	vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
811 	ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
812 }
813 
814 static void kvm_timer_init_interrupt(void *info)
815 {
816 	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
817 	enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
818 }
819 
820 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
821 {
822 	struct arch_timer_context *timer;
823 
824 	switch (regid) {
825 	case KVM_REG_ARM_TIMER_CTL:
826 		timer = vcpu_vtimer(vcpu);
827 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
828 		break;
829 	case KVM_REG_ARM_TIMER_CNT:
830 		timer = vcpu_vtimer(vcpu);
831 		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
832 		break;
833 	case KVM_REG_ARM_TIMER_CVAL:
834 		timer = vcpu_vtimer(vcpu);
835 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
836 		break;
837 	case KVM_REG_ARM_PTIMER_CTL:
838 		timer = vcpu_ptimer(vcpu);
839 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
840 		break;
841 	case KVM_REG_ARM_PTIMER_CVAL:
842 		timer = vcpu_ptimer(vcpu);
843 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
844 		break;
845 
846 	default:
847 		return -1;
848 	}
849 
850 	return 0;
851 }
852 
853 static u64 read_timer_ctl(struct arch_timer_context *timer)
854 {
855 	/*
856 	 * Set ISTATUS bit if it's expired.
857 	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
858 	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
859 	 * regardless of ENABLE bit for our implementation convenience.
860 	 */
861 	u32 ctl = timer_get_ctl(timer);
862 
863 	if (!kvm_timer_compute_delta(timer))
864 		ctl |= ARCH_TIMER_CTRL_IT_STAT;
865 
866 	return ctl;
867 }
868 
869 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
870 {
871 	switch (regid) {
872 	case KVM_REG_ARM_TIMER_CTL:
873 		return kvm_arm_timer_read(vcpu,
874 					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
875 	case KVM_REG_ARM_TIMER_CNT:
876 		return kvm_arm_timer_read(vcpu,
877 					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
878 	case KVM_REG_ARM_TIMER_CVAL:
879 		return kvm_arm_timer_read(vcpu,
880 					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
881 	case KVM_REG_ARM_PTIMER_CTL:
882 		return kvm_arm_timer_read(vcpu,
883 					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
884 	case KVM_REG_ARM_PTIMER_CNT:
885 		return kvm_arm_timer_read(vcpu,
886 					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
887 	case KVM_REG_ARM_PTIMER_CVAL:
888 		return kvm_arm_timer_read(vcpu,
889 					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
890 	}
891 	return (u64)-1;
892 }
893 
894 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
895 			      struct arch_timer_context *timer,
896 			      enum kvm_arch_timer_regs treg)
897 {
898 	u64 val;
899 
900 	switch (treg) {
901 	case TIMER_REG_TVAL:
902 		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
903 		val = lower_32_bits(val);
904 		break;
905 
906 	case TIMER_REG_CTL:
907 		val = read_timer_ctl(timer);
908 		break;
909 
910 	case TIMER_REG_CVAL:
911 		val = timer_get_cval(timer);
912 		break;
913 
914 	case TIMER_REG_CNT:
915 		val = kvm_phys_timer_read() - timer_get_offset(timer);
916 		break;
917 
918 	default:
919 		BUG();
920 	}
921 
922 	return val;
923 }
924 
925 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
926 			      enum kvm_arch_timers tmr,
927 			      enum kvm_arch_timer_regs treg)
928 {
929 	u64 val;
930 
931 	preempt_disable();
932 	kvm_timer_vcpu_put(vcpu);
933 
934 	val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);
935 
936 	kvm_timer_vcpu_load(vcpu);
937 	preempt_enable();
938 
939 	return val;
940 }
941 
942 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
943 				struct arch_timer_context *timer,
944 				enum kvm_arch_timer_regs treg,
945 				u64 val)
946 {
947 	switch (treg) {
948 	case TIMER_REG_TVAL:
949 		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
950 		break;
951 
952 	case TIMER_REG_CTL:
953 		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
954 		break;
955 
956 	case TIMER_REG_CVAL:
957 		timer_set_cval(timer, val);
958 		break;
959 
960 	default:
961 		BUG();
962 	}
963 }
964 
965 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
966 				enum kvm_arch_timers tmr,
967 				enum kvm_arch_timer_regs treg,
968 				u64 val)
969 {
970 	preempt_disable();
971 	kvm_timer_vcpu_put(vcpu);
972 
973 	kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);
974 
975 	kvm_timer_vcpu_load(vcpu);
976 	preempt_enable();
977 }
978 
979 static int kvm_timer_starting_cpu(unsigned int cpu)
980 {
981 	kvm_timer_init_interrupt(NULL);
982 	return 0;
983 }
984 
985 static int kvm_timer_dying_cpu(unsigned int cpu)
986 {
987 	disable_percpu_irq(host_vtimer_irq);
988 	return 0;
989 }
990 
991 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
992 {
993 	if (vcpu)
994 		irqd_set_forwarded_to_vcpu(d);
995 	else
996 		irqd_clr_forwarded_to_vcpu(d);
997 
998 	return 0;
999 }
1000 
1001 static int timer_irq_set_irqchip_state(struct irq_data *d,
1002 				       enum irqchip_irq_state which, bool val)
1003 {
1004 	if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1005 		return irq_chip_set_parent_state(d, which, val);
1006 
1007 	if (val)
1008 		irq_chip_mask_parent(d);
1009 	else
1010 		irq_chip_unmask_parent(d);
1011 
1012 	return 0;
1013 }
1014 
1015 static void timer_irq_eoi(struct irq_data *d)
1016 {
1017 	if (!irqd_is_forwarded_to_vcpu(d))
1018 		irq_chip_eoi_parent(d);
1019 }
1020 
1021 static void timer_irq_ack(struct irq_data *d)
1022 {
1023 	d = d->parent_data;
1024 	if (d->chip->irq_ack)
1025 		d->chip->irq_ack(d);
1026 }
1027 
1028 static struct irq_chip timer_chip = {
1029 	.name			= "KVM",
1030 	.irq_ack		= timer_irq_ack,
1031 	.irq_mask		= irq_chip_mask_parent,
1032 	.irq_unmask		= irq_chip_unmask_parent,
1033 	.irq_eoi		= timer_irq_eoi,
1034 	.irq_set_type		= irq_chip_set_type_parent,
1035 	.irq_set_vcpu_affinity	= timer_irq_set_vcpu_affinity,
1036 	.irq_set_irqchip_state	= timer_irq_set_irqchip_state,
1037 };
1038 
1039 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1040 				  unsigned int nr_irqs, void *arg)
1041 {
1042 	irq_hw_number_t hwirq = (uintptr_t)arg;
1043 
1044 	return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1045 					     &timer_chip, NULL);
1046 }
1047 
1048 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1049 				  unsigned int nr_irqs)
1050 {
1051 }
1052 
1053 static const struct irq_domain_ops timer_domain_ops = {
1054 	.alloc	= timer_irq_domain_alloc,
1055 	.free	= timer_irq_domain_free,
1056 };
1057 
1058 static struct irq_ops arch_timer_irq_ops = {
1059 	.get_input_level = kvm_arch_timer_get_input_level,
1060 };
1061 
1062 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1063 {
1064 	*flags = irq_get_trigger_type(virq);
1065 	if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1066 		kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1067 			virq);
1068 		*flags = IRQF_TRIGGER_LOW;
1069 	}
1070 }
1071 
1072 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1073 {
1074 	struct irq_domain *domain = NULL;
1075 
1076 	if (info->virtual_irq <= 0) {
1077 		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1078 			info->virtual_irq);
1079 		return -ENODEV;
1080 	}
1081 
1082 	host_vtimer_irq = info->virtual_irq;
1083 	kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1084 
1085 	if (kvm_vgic_global_state.no_hw_deactivation) {
1086 		struct fwnode_handle *fwnode;
1087 		struct irq_data *data;
1088 
1089 		fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1090 		if (!fwnode)
1091 			return -ENOMEM;
1092 
1093 		/* Assume both vtimer and ptimer in the same parent */
1094 		data = irq_get_irq_data(host_vtimer_irq);
1095 		domain = irq_domain_create_hierarchy(data->domain, 0,
1096 						     NR_KVM_TIMERS, fwnode,
1097 						     &timer_domain_ops, NULL);
1098 		if (!domain) {
1099 			irq_domain_free_fwnode(fwnode);
1100 			return -ENOMEM;
1101 		}
1102 
1103 		arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1104 		WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1105 					    (void *)TIMER_VTIMER));
1106 	}
1107 
1108 	if (info->physical_irq > 0) {
1109 		host_ptimer_irq = info->physical_irq;
1110 		kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1111 
1112 		if (domain)
1113 			WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1114 						    (void *)TIMER_PTIMER));
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 int kvm_timer_hyp_init(bool has_gic)
1121 {
1122 	struct arch_timer_kvm_info *info;
1123 	int err;
1124 
1125 	info = arch_timer_get_kvm_info();
1126 	timecounter = &info->timecounter;
1127 
1128 	if (!timecounter->cc) {
1129 		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1130 		return -ENODEV;
1131 	}
1132 
1133 	err = kvm_irq_init(info);
1134 	if (err)
1135 		return err;
1136 
1137 	/* First, do the virtual EL1 timer irq */
1138 
1139 	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1140 				 "kvm guest vtimer", kvm_get_running_vcpus());
1141 	if (err) {
1142 		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1143 			host_vtimer_irq, err);
1144 		return err;
1145 	}
1146 
1147 	if (has_gic) {
1148 		err = irq_set_vcpu_affinity(host_vtimer_irq,
1149 					    kvm_get_running_vcpus());
1150 		if (err) {
1151 			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1152 			goto out_free_irq;
1153 		}
1154 
1155 		static_branch_enable(&has_gic_active_state);
1156 	}
1157 
1158 	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1159 
1160 	/* Now let's do the physical EL1 timer irq */
1161 
1162 	if (info->physical_irq > 0) {
1163 		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1164 					 "kvm guest ptimer", kvm_get_running_vcpus());
1165 		if (err) {
1166 			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1167 				host_ptimer_irq, err);
1168 			return err;
1169 		}
1170 
1171 		if (has_gic) {
1172 			err = irq_set_vcpu_affinity(host_ptimer_irq,
1173 						    kvm_get_running_vcpus());
1174 			if (err) {
1175 				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1176 				goto out_free_irq;
1177 			}
1178 		}
1179 
1180 		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1181 	} else if (has_vhe()) {
1182 		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1183 			info->physical_irq);
1184 		err = -ENODEV;
1185 		goto out_free_irq;
1186 	}
1187 
1188 	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
1189 			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
1190 			  kvm_timer_dying_cpu);
1191 	return 0;
1192 out_free_irq:
1193 	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1194 	return err;
1195 }
1196 
1197 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1198 {
1199 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1200 
1201 	soft_timer_cancel(&timer->bg_timer);
1202 }
1203 
1204 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1205 {
1206 	int vtimer_irq, ptimer_irq, ret;
1207 	unsigned long i;
1208 
1209 	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
1210 	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
1211 	if (ret)
1212 		return false;
1213 
1214 	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
1215 	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
1216 	if (ret)
1217 		return false;
1218 
1219 	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
1220 		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
1221 		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
1222 			return false;
1223 	}
1224 
1225 	return true;
1226 }
1227 
1228 bool kvm_arch_timer_get_input_level(int vintid)
1229 {
1230 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1231 	struct arch_timer_context *timer;
1232 
1233 	if (WARN(!vcpu, "No vcpu context!\n"))
1234 		return false;
1235 
1236 	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
1237 		timer = vcpu_vtimer(vcpu);
1238 	else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
1239 		timer = vcpu_ptimer(vcpu);
1240 	else
1241 		BUG();
1242 
1243 	return kvm_timer_should_fire(timer);
1244 }
1245 
1246 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1247 {
1248 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1249 	struct timer_map map;
1250 	int ret;
1251 
1252 	if (timer->enabled)
1253 		return 0;
1254 
1255 	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1256 	if (!irqchip_in_kernel(vcpu->kvm))
1257 		goto no_vgic;
1258 
1259 	/*
1260 	 * At this stage, we have the guarantee that the vgic is both
1261 	 * available and initialized.
1262 	 */
1263 	if (!timer_irqs_are_valid(vcpu)) {
1264 		kvm_debug("incorrectly configured timer irqs\n");
1265 		return -EINVAL;
1266 	}
1267 
1268 	get_timer_map(vcpu, &map);
1269 
1270 	ret = kvm_vgic_map_phys_irq(vcpu,
1271 				    map.direct_vtimer->host_timer_irq,
1272 				    map.direct_vtimer->irq.irq,
1273 				    &arch_timer_irq_ops);
1274 	if (ret)
1275 		return ret;
1276 
1277 	if (map.direct_ptimer) {
1278 		ret = kvm_vgic_map_phys_irq(vcpu,
1279 					    map.direct_ptimer->host_timer_irq,
1280 					    map.direct_ptimer->irq.irq,
1281 					    &arch_timer_irq_ops);
1282 	}
1283 
1284 	if (ret)
1285 		return ret;
1286 
1287 no_vgic:
1288 	timer->enabled = 1;
1289 	return 0;
1290 }
1291 
1292 /*
1293  * On VHE system, we only need to configure the EL2 timer trap register once,
1294  * not for every world switch.
1295  * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
1296  * and this makes those bits have no effect for the host kernel execution.
1297  */
1298 void kvm_timer_init_vhe(void)
1299 {
1300 	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
1301 	u32 cnthctl_shift = 10;
1302 	u64 val;
1303 
1304 	/*
1305 	 * VHE systems allow the guest direct access to the EL1 physical
1306 	 * timer/counter.
1307 	 */
1308 	val = read_sysreg(cnthctl_el2);
1309 	val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
1310 	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
1311 	write_sysreg(val, cnthctl_el2);
1312 }
1313 
1314 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
1315 {
1316 	struct kvm_vcpu *vcpu;
1317 	unsigned long i;
1318 
1319 	kvm_for_each_vcpu(i, vcpu, kvm) {
1320 		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
1321 		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
1322 	}
1323 }
1324 
1325 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1326 {
1327 	int __user *uaddr = (int __user *)(long)attr->addr;
1328 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
1329 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
1330 	int irq;
1331 
1332 	if (!irqchip_in_kernel(vcpu->kvm))
1333 		return -EINVAL;
1334 
1335 	if (get_user(irq, uaddr))
1336 		return -EFAULT;
1337 
1338 	if (!(irq_is_ppi(irq)))
1339 		return -EINVAL;
1340 
1341 	if (vcpu->arch.timer_cpu.enabled)
1342 		return -EBUSY;
1343 
1344 	switch (attr->attr) {
1345 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1346 		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
1347 		break;
1348 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1349 		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
1350 		break;
1351 	default:
1352 		return -ENXIO;
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1359 {
1360 	int __user *uaddr = (int __user *)(long)attr->addr;
1361 	struct arch_timer_context *timer;
1362 	int irq;
1363 
1364 	switch (attr->attr) {
1365 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1366 		timer = vcpu_vtimer(vcpu);
1367 		break;
1368 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1369 		timer = vcpu_ptimer(vcpu);
1370 		break;
1371 	default:
1372 		return -ENXIO;
1373 	}
1374 
1375 	irq = timer->irq.irq;
1376 	return put_user(irq, uaddr);
1377 }
1378 
1379 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1380 {
1381 	switch (attr->attr) {
1382 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1383 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1384 		return 0;
1385 	}
1386 
1387 	return -ENXIO;
1388 }
1389