1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 ARM Ltd. 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/cpu.h> 8 #include <linux/kvm.h> 9 #include <linux/kvm_host.h> 10 #include <linux/interrupt.h> 11 #include <linux/irq.h> 12 #include <linux/irqdomain.h> 13 #include <linux/uaccess.h> 14 15 #include <clocksource/arm_arch_timer.h> 16 #include <asm/arch_timer.h> 17 #include <asm/kvm_emulate.h> 18 #include <asm/kvm_hyp.h> 19 #include <asm/kvm_nested.h> 20 21 #include <kvm/arm_vgic.h> 22 #include <kvm/arm_arch_timer.h> 23 24 #include "trace.h" 25 26 static struct timecounter *timecounter; 27 static unsigned int host_vtimer_irq; 28 static unsigned int host_ptimer_irq; 29 static u32 host_vtimer_irq_flags; 30 static u32 host_ptimer_irq_flags; 31 32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state); 33 34 static const u8 default_ppi[] = { 35 [TIMER_PTIMER] = 30, 36 [TIMER_VTIMER] = 27, 37 [TIMER_HPTIMER] = 26, 38 [TIMER_HVTIMER] = 28, 39 }; 40 41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx); 42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, 43 struct arch_timer_context *timer_ctx); 44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx); 45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, 46 struct arch_timer_context *timer, 47 enum kvm_arch_timer_regs treg, 48 u64 val); 49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, 50 struct arch_timer_context *timer, 51 enum kvm_arch_timer_regs treg); 52 static bool kvm_arch_timer_get_input_level(int vintid); 53 54 static struct irq_ops arch_timer_irq_ops = { 55 .get_input_level = kvm_arch_timer_get_input_level, 56 }; 57 58 static int nr_timers(struct kvm_vcpu *vcpu) 59 { 60 if (!vcpu_has_nv(vcpu)) 61 return NR_KVM_EL0_TIMERS; 62 63 return NR_KVM_TIMERS; 64 } 65 66 u32 timer_get_ctl(struct arch_timer_context *ctxt) 67 { 68 struct kvm_vcpu *vcpu = ctxt->vcpu; 69 70 switch(arch_timer_ctx_index(ctxt)) { 71 case TIMER_VTIMER: 72 return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0); 73 case TIMER_PTIMER: 74 return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0); 75 case TIMER_HVTIMER: 76 return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2); 77 case TIMER_HPTIMER: 78 return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2); 79 default: 80 WARN_ON(1); 81 return 0; 82 } 83 } 84 85 u64 timer_get_cval(struct arch_timer_context *ctxt) 86 { 87 struct kvm_vcpu *vcpu = ctxt->vcpu; 88 89 switch(arch_timer_ctx_index(ctxt)) { 90 case TIMER_VTIMER: 91 return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0); 92 case TIMER_PTIMER: 93 return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); 94 case TIMER_HVTIMER: 95 return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2); 96 case TIMER_HPTIMER: 97 return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2); 98 default: 99 WARN_ON(1); 100 return 0; 101 } 102 } 103 104 static u64 timer_get_offset(struct arch_timer_context *ctxt) 105 { 106 u64 offset = 0; 107 108 if (!ctxt) 109 return 0; 110 111 if (ctxt->offset.vm_offset) 112 offset += *ctxt->offset.vm_offset; 113 if (ctxt->offset.vcpu_offset) 114 offset += *ctxt->offset.vcpu_offset; 115 116 return offset; 117 } 118 119 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl) 120 { 121 struct kvm_vcpu *vcpu = ctxt->vcpu; 122 123 switch(arch_timer_ctx_index(ctxt)) { 124 case TIMER_VTIMER: 125 __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl; 126 break; 127 case TIMER_PTIMER: 128 __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl; 129 break; 130 case TIMER_HVTIMER: 131 __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl; 132 break; 133 case TIMER_HPTIMER: 134 __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl; 135 break; 136 default: 137 WARN_ON(1); 138 } 139 } 140 141 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval) 142 { 143 struct kvm_vcpu *vcpu = ctxt->vcpu; 144 145 switch(arch_timer_ctx_index(ctxt)) { 146 case TIMER_VTIMER: 147 __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval; 148 break; 149 case TIMER_PTIMER: 150 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval; 151 break; 152 case TIMER_HVTIMER: 153 __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval; 154 break; 155 case TIMER_HPTIMER: 156 __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval; 157 break; 158 default: 159 WARN_ON(1); 160 } 161 } 162 163 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset) 164 { 165 if (!ctxt->offset.vm_offset) { 166 WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt)); 167 return; 168 } 169 170 WRITE_ONCE(*ctxt->offset.vm_offset, offset); 171 } 172 173 u64 kvm_phys_timer_read(void) 174 { 175 return timecounter->cc->read(timecounter->cc); 176 } 177 178 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map) 179 { 180 if (vcpu_has_nv(vcpu)) { 181 if (is_hyp_ctxt(vcpu)) { 182 map->direct_vtimer = vcpu_hvtimer(vcpu); 183 map->direct_ptimer = vcpu_hptimer(vcpu); 184 map->emul_vtimer = vcpu_vtimer(vcpu); 185 map->emul_ptimer = vcpu_ptimer(vcpu); 186 } else { 187 map->direct_vtimer = vcpu_vtimer(vcpu); 188 map->direct_ptimer = vcpu_ptimer(vcpu); 189 map->emul_vtimer = vcpu_hvtimer(vcpu); 190 map->emul_ptimer = vcpu_hptimer(vcpu); 191 } 192 } else if (has_vhe()) { 193 map->direct_vtimer = vcpu_vtimer(vcpu); 194 map->direct_ptimer = vcpu_ptimer(vcpu); 195 map->emul_vtimer = NULL; 196 map->emul_ptimer = NULL; 197 } else { 198 map->direct_vtimer = vcpu_vtimer(vcpu); 199 map->direct_ptimer = NULL; 200 map->emul_vtimer = NULL; 201 map->emul_ptimer = vcpu_ptimer(vcpu); 202 } 203 204 trace_kvm_get_timer_map(vcpu->vcpu_id, map); 205 } 206 207 static inline bool userspace_irqchip(struct kvm *kvm) 208 { 209 return unlikely(!irqchip_in_kernel(kvm)); 210 } 211 212 static void soft_timer_start(struct hrtimer *hrt, u64 ns) 213 { 214 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns), 215 HRTIMER_MODE_ABS_HARD); 216 } 217 218 static void soft_timer_cancel(struct hrtimer *hrt) 219 { 220 hrtimer_cancel(hrt); 221 } 222 223 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id) 224 { 225 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id; 226 struct arch_timer_context *ctx; 227 struct timer_map map; 228 229 /* 230 * We may see a timer interrupt after vcpu_put() has been called which 231 * sets the CPU's vcpu pointer to NULL, because even though the timer 232 * has been disabled in timer_save_state(), the hardware interrupt 233 * signal may not have been retired from the interrupt controller yet. 234 */ 235 if (!vcpu) 236 return IRQ_HANDLED; 237 238 get_timer_map(vcpu, &map); 239 240 if (irq == host_vtimer_irq) 241 ctx = map.direct_vtimer; 242 else 243 ctx = map.direct_ptimer; 244 245 if (kvm_timer_should_fire(ctx)) 246 kvm_timer_update_irq(vcpu, true, ctx); 247 248 if (userspace_irqchip(vcpu->kvm) && 249 !static_branch_unlikely(&has_gic_active_state)) 250 disable_percpu_irq(host_vtimer_irq); 251 252 return IRQ_HANDLED; 253 } 254 255 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx, 256 u64 val) 257 { 258 u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx); 259 260 if (now < val) { 261 u64 ns; 262 263 ns = cyclecounter_cyc2ns(timecounter->cc, 264 val - now, 265 timecounter->mask, 266 &timer_ctx->ns_frac); 267 return ns; 268 } 269 270 return 0; 271 } 272 273 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx) 274 { 275 return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx)); 276 } 277 278 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx) 279 { 280 WARN_ON(timer_ctx && timer_ctx->loaded); 281 return timer_ctx && 282 ((timer_get_ctl(timer_ctx) & 283 (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE); 284 } 285 286 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu) 287 { 288 return (cpus_have_final_cap(ARM64_HAS_WFXT) && 289 vcpu_get_flag(vcpu, IN_WFIT)); 290 } 291 292 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu) 293 { 294 u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); 295 struct arch_timer_context *ctx; 296 297 ctx = (vcpu_has_nv(vcpu) && is_hyp_ctxt(vcpu)) ? vcpu_hvtimer(vcpu) 298 : vcpu_vtimer(vcpu); 299 300 return kvm_counter_compute_delta(ctx, val); 301 } 302 303 /* 304 * Returns the earliest expiration time in ns among guest timers. 305 * Note that it will return 0 if none of timers can fire. 306 */ 307 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu) 308 { 309 u64 min_delta = ULLONG_MAX; 310 int i; 311 312 for (i = 0; i < nr_timers(vcpu); i++) { 313 struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i]; 314 315 WARN(ctx->loaded, "timer %d loaded\n", i); 316 if (kvm_timer_irq_can_fire(ctx)) 317 min_delta = min(min_delta, kvm_timer_compute_delta(ctx)); 318 } 319 320 if (vcpu_has_wfit_active(vcpu)) 321 min_delta = min(min_delta, wfit_delay_ns(vcpu)); 322 323 /* If none of timers can fire, then return 0 */ 324 if (min_delta == ULLONG_MAX) 325 return 0; 326 327 return min_delta; 328 } 329 330 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt) 331 { 332 struct arch_timer_cpu *timer; 333 struct kvm_vcpu *vcpu; 334 u64 ns; 335 336 timer = container_of(hrt, struct arch_timer_cpu, bg_timer); 337 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu); 338 339 /* 340 * Check that the timer has really expired from the guest's 341 * PoV (NTP on the host may have forced it to expire 342 * early). If we should have slept longer, restart it. 343 */ 344 ns = kvm_timer_earliest_exp(vcpu); 345 if (unlikely(ns)) { 346 hrtimer_forward_now(hrt, ns_to_ktime(ns)); 347 return HRTIMER_RESTART; 348 } 349 350 kvm_vcpu_wake_up(vcpu); 351 return HRTIMER_NORESTART; 352 } 353 354 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt) 355 { 356 struct arch_timer_context *ctx; 357 struct kvm_vcpu *vcpu; 358 u64 ns; 359 360 ctx = container_of(hrt, struct arch_timer_context, hrtimer); 361 vcpu = ctx->vcpu; 362 363 trace_kvm_timer_hrtimer_expire(ctx); 364 365 /* 366 * Check that the timer has really expired from the guest's 367 * PoV (NTP on the host may have forced it to expire 368 * early). If not ready, schedule for a later time. 369 */ 370 ns = kvm_timer_compute_delta(ctx); 371 if (unlikely(ns)) { 372 hrtimer_forward_now(hrt, ns_to_ktime(ns)); 373 return HRTIMER_RESTART; 374 } 375 376 kvm_timer_update_irq(vcpu, true, ctx); 377 return HRTIMER_NORESTART; 378 } 379 380 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx) 381 { 382 enum kvm_arch_timers index; 383 u64 cval, now; 384 385 if (!timer_ctx) 386 return false; 387 388 index = arch_timer_ctx_index(timer_ctx); 389 390 if (timer_ctx->loaded) { 391 u32 cnt_ctl = 0; 392 393 switch (index) { 394 case TIMER_VTIMER: 395 case TIMER_HVTIMER: 396 cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL); 397 break; 398 case TIMER_PTIMER: 399 case TIMER_HPTIMER: 400 cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL); 401 break; 402 case NR_KVM_TIMERS: 403 /* GCC is braindead */ 404 cnt_ctl = 0; 405 break; 406 } 407 408 return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) && 409 (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) && 410 !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK); 411 } 412 413 if (!kvm_timer_irq_can_fire(timer_ctx)) 414 return false; 415 416 cval = timer_get_cval(timer_ctx); 417 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx); 418 419 return cval <= now; 420 } 421 422 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 423 { 424 return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0; 425 } 426 427 /* 428 * Reflect the timer output level into the kvm_run structure 429 */ 430 void kvm_timer_update_run(struct kvm_vcpu *vcpu) 431 { 432 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 433 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 434 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 435 436 /* Populate the device bitmap with the timer states */ 437 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER | 438 KVM_ARM_DEV_EL1_PTIMER); 439 if (kvm_timer_should_fire(vtimer)) 440 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER; 441 if (kvm_timer_should_fire(ptimer)) 442 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER; 443 } 444 445 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, 446 struct arch_timer_context *timer_ctx) 447 { 448 int ret; 449 450 timer_ctx->irq.level = new_level; 451 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx), 452 timer_ctx->irq.level); 453 454 if (!userspace_irqchip(vcpu->kvm)) { 455 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, 456 timer_irq(timer_ctx), 457 timer_ctx->irq.level, 458 timer_ctx); 459 WARN_ON(ret); 460 } 461 } 462 463 /* Only called for a fully emulated timer */ 464 static void timer_emulate(struct arch_timer_context *ctx) 465 { 466 bool should_fire = kvm_timer_should_fire(ctx); 467 468 trace_kvm_timer_emulate(ctx, should_fire); 469 470 if (should_fire != ctx->irq.level) { 471 kvm_timer_update_irq(ctx->vcpu, should_fire, ctx); 472 return; 473 } 474 475 /* 476 * If the timer can fire now, we don't need to have a soft timer 477 * scheduled for the future. If the timer cannot fire at all, 478 * then we also don't need a soft timer. 479 */ 480 if (should_fire || !kvm_timer_irq_can_fire(ctx)) 481 return; 482 483 soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx)); 484 } 485 486 static void set_cntvoff(u64 cntvoff) 487 { 488 kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff); 489 } 490 491 static void set_cntpoff(u64 cntpoff) 492 { 493 if (has_cntpoff()) 494 write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2); 495 } 496 497 static void timer_save_state(struct arch_timer_context *ctx) 498 { 499 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); 500 enum kvm_arch_timers index = arch_timer_ctx_index(ctx); 501 unsigned long flags; 502 503 if (!timer->enabled) 504 return; 505 506 local_irq_save(flags); 507 508 if (!ctx->loaded) 509 goto out; 510 511 switch (index) { 512 u64 cval; 513 514 case TIMER_VTIMER: 515 case TIMER_HVTIMER: 516 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL)); 517 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL)); 518 519 /* Disable the timer */ 520 write_sysreg_el0(0, SYS_CNTV_CTL); 521 isb(); 522 523 /* 524 * The kernel may decide to run userspace after 525 * calling vcpu_put, so we reset cntvoff to 0 to 526 * ensure a consistent read between user accesses to 527 * the virtual counter and kernel access to the 528 * physical counter of non-VHE case. 529 * 530 * For VHE, the virtual counter uses a fixed virtual 531 * offset of zero, so no need to zero CNTVOFF_EL2 532 * register, but this is actually useful when switching 533 * between EL1/vEL2 with NV. 534 * 535 * Do it unconditionally, as this is either unavoidable 536 * or dirt cheap. 537 */ 538 set_cntvoff(0); 539 break; 540 case TIMER_PTIMER: 541 case TIMER_HPTIMER: 542 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL)); 543 cval = read_sysreg_el0(SYS_CNTP_CVAL); 544 545 cval -= timer_get_offset(ctx); 546 547 timer_set_cval(ctx, cval); 548 549 /* Disable the timer */ 550 write_sysreg_el0(0, SYS_CNTP_CTL); 551 isb(); 552 553 set_cntpoff(0); 554 break; 555 case NR_KVM_TIMERS: 556 BUG(); 557 } 558 559 trace_kvm_timer_save_state(ctx); 560 561 ctx->loaded = false; 562 out: 563 local_irq_restore(flags); 564 } 565 566 /* 567 * Schedule the background timer before calling kvm_vcpu_halt, so that this 568 * thread is removed from its waitqueue and made runnable when there's a timer 569 * interrupt to handle. 570 */ 571 static void kvm_timer_blocking(struct kvm_vcpu *vcpu) 572 { 573 struct arch_timer_cpu *timer = vcpu_timer(vcpu); 574 struct timer_map map; 575 576 get_timer_map(vcpu, &map); 577 578 /* 579 * If no timers are capable of raising interrupts (disabled or 580 * masked), then there's no more work for us to do. 581 */ 582 if (!kvm_timer_irq_can_fire(map.direct_vtimer) && 583 !kvm_timer_irq_can_fire(map.direct_ptimer) && 584 !kvm_timer_irq_can_fire(map.emul_vtimer) && 585 !kvm_timer_irq_can_fire(map.emul_ptimer) && 586 !vcpu_has_wfit_active(vcpu)) 587 return; 588 589 /* 590 * At least one guest time will expire. Schedule a background timer. 591 * Set the earliest expiration time among the guest timers. 592 */ 593 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu)); 594 } 595 596 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu) 597 { 598 struct arch_timer_cpu *timer = vcpu_timer(vcpu); 599 600 soft_timer_cancel(&timer->bg_timer); 601 } 602 603 static void timer_restore_state(struct arch_timer_context *ctx) 604 { 605 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); 606 enum kvm_arch_timers index = arch_timer_ctx_index(ctx); 607 unsigned long flags; 608 609 if (!timer->enabled) 610 return; 611 612 local_irq_save(flags); 613 614 if (ctx->loaded) 615 goto out; 616 617 switch (index) { 618 u64 cval, offset; 619 620 case TIMER_VTIMER: 621 case TIMER_HVTIMER: 622 set_cntvoff(timer_get_offset(ctx)); 623 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL); 624 isb(); 625 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL); 626 break; 627 case TIMER_PTIMER: 628 case TIMER_HPTIMER: 629 cval = timer_get_cval(ctx); 630 offset = timer_get_offset(ctx); 631 set_cntpoff(offset); 632 cval += offset; 633 write_sysreg_el0(cval, SYS_CNTP_CVAL); 634 isb(); 635 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL); 636 break; 637 case NR_KVM_TIMERS: 638 BUG(); 639 } 640 641 trace_kvm_timer_restore_state(ctx); 642 643 ctx->loaded = true; 644 out: 645 local_irq_restore(flags); 646 } 647 648 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active) 649 { 650 int r; 651 r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active); 652 WARN_ON(r); 653 } 654 655 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx) 656 { 657 struct kvm_vcpu *vcpu = ctx->vcpu; 658 bool phys_active = false; 659 660 /* 661 * Update the timer output so that it is likely to match the 662 * state we're about to restore. If the timer expires between 663 * this point and the register restoration, we'll take the 664 * interrupt anyway. 665 */ 666 kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx); 667 668 if (irqchip_in_kernel(vcpu->kvm)) 669 phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx)); 670 671 phys_active |= ctx->irq.level; 672 673 set_timer_irq_phys_active(ctx, phys_active); 674 } 675 676 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu) 677 { 678 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 679 680 /* 681 * Update the timer output so that it is likely to match the 682 * state we're about to restore. If the timer expires between 683 * this point and the register restoration, we'll take the 684 * interrupt anyway. 685 */ 686 kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer); 687 688 /* 689 * When using a userspace irqchip with the architected timers and a 690 * host interrupt controller that doesn't support an active state, we 691 * must still prevent continuously exiting from the guest, and 692 * therefore mask the physical interrupt by disabling it on the host 693 * interrupt controller when the virtual level is high, such that the 694 * guest can make forward progress. Once we detect the output level 695 * being de-asserted, we unmask the interrupt again so that we exit 696 * from the guest when the timer fires. 697 */ 698 if (vtimer->irq.level) 699 disable_percpu_irq(host_vtimer_irq); 700 else 701 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); 702 } 703 704 /* If _pred is true, set bit in _set, otherwise set it in _clr */ 705 #define assign_clear_set_bit(_pred, _bit, _clr, _set) \ 706 do { \ 707 if (_pred) \ 708 (_set) |= (_bit); \ 709 else \ 710 (_clr) |= (_bit); \ 711 } while (0) 712 713 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu, 714 struct timer_map *map) 715 { 716 int hw, ret; 717 718 if (!irqchip_in_kernel(vcpu->kvm)) 719 return; 720 721 /* 722 * We only ever unmap the vtimer irq on a VHE system that runs nested 723 * virtualization, in which case we have both a valid emul_vtimer, 724 * emul_ptimer, direct_vtimer, and direct_ptimer. 725 * 726 * Since this is called from kvm_timer_vcpu_load(), a change between 727 * vEL2 and vEL1/0 will have just happened, and the timer_map will 728 * represent this, and therefore we switch the emul/direct mappings 729 * below. 730 */ 731 hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer)); 732 if (hw < 0) { 733 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer)); 734 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer)); 735 736 ret = kvm_vgic_map_phys_irq(vcpu, 737 map->direct_vtimer->host_timer_irq, 738 timer_irq(map->direct_vtimer), 739 &arch_timer_irq_ops); 740 WARN_ON_ONCE(ret); 741 ret = kvm_vgic_map_phys_irq(vcpu, 742 map->direct_ptimer->host_timer_irq, 743 timer_irq(map->direct_ptimer), 744 &arch_timer_irq_ops); 745 WARN_ON_ONCE(ret); 746 747 /* 748 * The virtual offset behaviour is "interresting", as it 749 * always applies when HCR_EL2.E2H==0, but only when 750 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we 751 * track E2H when putting the HV timer in "direct" mode. 752 */ 753 if (map->direct_vtimer == vcpu_hvtimer(vcpu)) { 754 struct arch_timer_offset *offs = &map->direct_vtimer->offset; 755 756 if (vcpu_el2_e2h_is_set(vcpu)) 757 offs->vcpu_offset = NULL; 758 else 759 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2); 760 } 761 } 762 } 763 764 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map) 765 { 766 bool tpt, tpc; 767 u64 clr, set; 768 769 /* 770 * No trapping gets configured here with nVHE. See 771 * __timer_enable_traps(), which is where the stuff happens. 772 */ 773 if (!has_vhe()) 774 return; 775 776 /* 777 * Our default policy is not to trap anything. As we progress 778 * within this function, reality kicks in and we start adding 779 * traps based on emulation requirements. 780 */ 781 tpt = tpc = false; 782 783 /* 784 * We have two possibility to deal with a physical offset: 785 * 786 * - Either we have CNTPOFF (yay!) or the offset is 0: 787 * we let the guest freely access the HW 788 * 789 * - or neither of these condition apply: 790 * we trap accesses to the HW, but still use it 791 * after correcting the physical offset 792 */ 793 if (!has_cntpoff() && timer_get_offset(map->direct_ptimer)) 794 tpt = tpc = true; 795 796 /* 797 * Apply the enable bits that the guest hypervisor has requested for 798 * its own guest. We can only add traps that wouldn't have been set 799 * above. 800 */ 801 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { 802 u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); 803 804 /* Use the VHE format for mental sanity */ 805 if (!vcpu_el2_e2h_is_set(vcpu)) 806 val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10; 807 808 tpt |= !(val & (CNTHCTL_EL1PCEN << 10)); 809 tpc |= !(val & (CNTHCTL_EL1PCTEN << 10)); 810 } 811 812 /* 813 * Now that we have collected our requirements, compute the 814 * trap and enable bits. 815 */ 816 set = 0; 817 clr = 0; 818 819 assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr); 820 assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr); 821 822 /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */ 823 sysreg_clear_set(cnthctl_el2, clr, set); 824 } 825 826 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu) 827 { 828 struct arch_timer_cpu *timer = vcpu_timer(vcpu); 829 struct timer_map map; 830 831 if (unlikely(!timer->enabled)) 832 return; 833 834 get_timer_map(vcpu, &map); 835 836 if (static_branch_likely(&has_gic_active_state)) { 837 if (vcpu_has_nv(vcpu)) 838 kvm_timer_vcpu_load_nested_switch(vcpu, &map); 839 840 kvm_timer_vcpu_load_gic(map.direct_vtimer); 841 if (map.direct_ptimer) 842 kvm_timer_vcpu_load_gic(map.direct_ptimer); 843 } else { 844 kvm_timer_vcpu_load_nogic(vcpu); 845 } 846 847 kvm_timer_unblocking(vcpu); 848 849 timer_restore_state(map.direct_vtimer); 850 if (map.direct_ptimer) 851 timer_restore_state(map.direct_ptimer); 852 if (map.emul_vtimer) 853 timer_emulate(map.emul_vtimer); 854 if (map.emul_ptimer) 855 timer_emulate(map.emul_ptimer); 856 857 timer_set_traps(vcpu, &map); 858 } 859 860 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu) 861 { 862 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 863 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); 864 struct kvm_sync_regs *sregs = &vcpu->run->s.regs; 865 bool vlevel, plevel; 866 867 if (likely(irqchip_in_kernel(vcpu->kvm))) 868 return false; 869 870 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER; 871 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER; 872 873 return kvm_timer_should_fire(vtimer) != vlevel || 874 kvm_timer_should_fire(ptimer) != plevel; 875 } 876 877 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu) 878 { 879 struct arch_timer_cpu *timer = vcpu_timer(vcpu); 880 struct timer_map map; 881 882 if (unlikely(!timer->enabled)) 883 return; 884 885 get_timer_map(vcpu, &map); 886 887 timer_save_state(map.direct_vtimer); 888 if (map.direct_ptimer) 889 timer_save_state(map.direct_ptimer); 890 891 /* 892 * Cancel soft timer emulation, because the only case where we 893 * need it after a vcpu_put is in the context of a sleeping VCPU, and 894 * in that case we already factor in the deadline for the physical 895 * timer when scheduling the bg_timer. 896 * 897 * In any case, we re-schedule the hrtimer for the physical timer when 898 * coming back to the VCPU thread in kvm_timer_vcpu_load(). 899 */ 900 if (map.emul_vtimer) 901 soft_timer_cancel(&map.emul_vtimer->hrtimer); 902 if (map.emul_ptimer) 903 soft_timer_cancel(&map.emul_ptimer->hrtimer); 904 905 if (kvm_vcpu_is_blocking(vcpu)) 906 kvm_timer_blocking(vcpu); 907 } 908 909 /* 910 * With a userspace irqchip we have to check if the guest de-asserted the 911 * timer and if so, unmask the timer irq signal on the host interrupt 912 * controller to ensure that we see future timer signals. 913 */ 914 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu) 915 { 916 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); 917 918 if (!kvm_timer_should_fire(vtimer)) { 919 kvm_timer_update_irq(vcpu, false, vtimer); 920 if (static_branch_likely(&has_gic_active_state)) 921 set_timer_irq_phys_active(vtimer, false); 922 else 923 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); 924 } 925 } 926 927 void kvm_timer_sync_user(struct kvm_vcpu *vcpu) 928 { 929 struct arch_timer_cpu *timer = vcpu_timer(vcpu); 930 931 if (unlikely(!timer->enabled)) 932 return; 933 934 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) 935 unmask_vtimer_irq_user(vcpu); 936 } 937 938 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu) 939 { 940 struct arch_timer_cpu *timer = vcpu_timer(vcpu); 941 struct timer_map map; 942 943 get_timer_map(vcpu, &map); 944 945 /* 946 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8 947 * and to 0 for ARMv7. We provide an implementation that always 948 * resets the timer to be disabled and unmasked and is compliant with 949 * the ARMv7 architecture. 950 */ 951 for (int i = 0; i < nr_timers(vcpu); i++) 952 timer_set_ctl(vcpu_get_timer(vcpu, i), 0); 953 954 /* 955 * A vcpu running at EL2 is in charge of the offset applied to 956 * the virtual timer, so use the physical VM offset, and point 957 * the vcpu offset to CNTVOFF_EL2. 958 */ 959 if (vcpu_has_nv(vcpu)) { 960 struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset; 961 962 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2); 963 offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset; 964 } 965 966 if (timer->enabled) { 967 for (int i = 0; i < nr_timers(vcpu); i++) 968 kvm_timer_update_irq(vcpu, false, 969 vcpu_get_timer(vcpu, i)); 970 971 if (irqchip_in_kernel(vcpu->kvm)) { 972 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer)); 973 if (map.direct_ptimer) 974 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer)); 975 } 976 } 977 978 if (map.emul_vtimer) 979 soft_timer_cancel(&map.emul_vtimer->hrtimer); 980 if (map.emul_ptimer) 981 soft_timer_cancel(&map.emul_ptimer->hrtimer); 982 983 return 0; 984 } 985 986 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid) 987 { 988 struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid); 989 struct kvm *kvm = vcpu->kvm; 990 991 ctxt->vcpu = vcpu; 992 993 if (timerid == TIMER_VTIMER) 994 ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset; 995 else 996 ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset; 997 998 hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 999 ctxt->hrtimer.function = kvm_hrtimer_expire; 1000 1001 switch (timerid) { 1002 case TIMER_PTIMER: 1003 case TIMER_HPTIMER: 1004 ctxt->host_timer_irq = host_ptimer_irq; 1005 break; 1006 case TIMER_VTIMER: 1007 case TIMER_HVTIMER: 1008 ctxt->host_timer_irq = host_vtimer_irq; 1009 break; 1010 } 1011 } 1012 1013 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) 1014 { 1015 struct arch_timer_cpu *timer = vcpu_timer(vcpu); 1016 1017 for (int i = 0; i < NR_KVM_TIMERS; i++) 1018 timer_context_init(vcpu, i); 1019 1020 /* Synchronize offsets across timers of a VM if not already provided */ 1021 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) { 1022 timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read()); 1023 timer_set_offset(vcpu_ptimer(vcpu), 0); 1024 } 1025 1026 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); 1027 timer->bg_timer.function = kvm_bg_timer_expire; 1028 } 1029 1030 void kvm_timer_init_vm(struct kvm *kvm) 1031 { 1032 for (int i = 0; i < NR_KVM_TIMERS; i++) 1033 kvm->arch.timer_data.ppi[i] = default_ppi[i]; 1034 } 1035 1036 void kvm_timer_cpu_up(void) 1037 { 1038 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); 1039 if (host_ptimer_irq) 1040 enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags); 1041 } 1042 1043 void kvm_timer_cpu_down(void) 1044 { 1045 disable_percpu_irq(host_vtimer_irq); 1046 if (host_ptimer_irq) 1047 disable_percpu_irq(host_ptimer_irq); 1048 } 1049 1050 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value) 1051 { 1052 struct arch_timer_context *timer; 1053 1054 switch (regid) { 1055 case KVM_REG_ARM_TIMER_CTL: 1056 timer = vcpu_vtimer(vcpu); 1057 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); 1058 break; 1059 case KVM_REG_ARM_TIMER_CNT: 1060 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, 1061 &vcpu->kvm->arch.flags)) { 1062 timer = vcpu_vtimer(vcpu); 1063 timer_set_offset(timer, kvm_phys_timer_read() - value); 1064 } 1065 break; 1066 case KVM_REG_ARM_TIMER_CVAL: 1067 timer = vcpu_vtimer(vcpu); 1068 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); 1069 break; 1070 case KVM_REG_ARM_PTIMER_CTL: 1071 timer = vcpu_ptimer(vcpu); 1072 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); 1073 break; 1074 case KVM_REG_ARM_PTIMER_CNT: 1075 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, 1076 &vcpu->kvm->arch.flags)) { 1077 timer = vcpu_ptimer(vcpu); 1078 timer_set_offset(timer, kvm_phys_timer_read() - value); 1079 } 1080 break; 1081 case KVM_REG_ARM_PTIMER_CVAL: 1082 timer = vcpu_ptimer(vcpu); 1083 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); 1084 break; 1085 1086 default: 1087 return -1; 1088 } 1089 1090 return 0; 1091 } 1092 1093 static u64 read_timer_ctl(struct arch_timer_context *timer) 1094 { 1095 /* 1096 * Set ISTATUS bit if it's expired. 1097 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is 1098 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit 1099 * regardless of ENABLE bit for our implementation convenience. 1100 */ 1101 u32 ctl = timer_get_ctl(timer); 1102 1103 if (!kvm_timer_compute_delta(timer)) 1104 ctl |= ARCH_TIMER_CTRL_IT_STAT; 1105 1106 return ctl; 1107 } 1108 1109 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid) 1110 { 1111 switch (regid) { 1112 case KVM_REG_ARM_TIMER_CTL: 1113 return kvm_arm_timer_read(vcpu, 1114 vcpu_vtimer(vcpu), TIMER_REG_CTL); 1115 case KVM_REG_ARM_TIMER_CNT: 1116 return kvm_arm_timer_read(vcpu, 1117 vcpu_vtimer(vcpu), TIMER_REG_CNT); 1118 case KVM_REG_ARM_TIMER_CVAL: 1119 return kvm_arm_timer_read(vcpu, 1120 vcpu_vtimer(vcpu), TIMER_REG_CVAL); 1121 case KVM_REG_ARM_PTIMER_CTL: 1122 return kvm_arm_timer_read(vcpu, 1123 vcpu_ptimer(vcpu), TIMER_REG_CTL); 1124 case KVM_REG_ARM_PTIMER_CNT: 1125 return kvm_arm_timer_read(vcpu, 1126 vcpu_ptimer(vcpu), TIMER_REG_CNT); 1127 case KVM_REG_ARM_PTIMER_CVAL: 1128 return kvm_arm_timer_read(vcpu, 1129 vcpu_ptimer(vcpu), TIMER_REG_CVAL); 1130 } 1131 return (u64)-1; 1132 } 1133 1134 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, 1135 struct arch_timer_context *timer, 1136 enum kvm_arch_timer_regs treg) 1137 { 1138 u64 val; 1139 1140 switch (treg) { 1141 case TIMER_REG_TVAL: 1142 val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer); 1143 val = lower_32_bits(val); 1144 break; 1145 1146 case TIMER_REG_CTL: 1147 val = read_timer_ctl(timer); 1148 break; 1149 1150 case TIMER_REG_CVAL: 1151 val = timer_get_cval(timer); 1152 break; 1153 1154 case TIMER_REG_CNT: 1155 val = kvm_phys_timer_read() - timer_get_offset(timer); 1156 break; 1157 1158 case TIMER_REG_VOFF: 1159 val = *timer->offset.vcpu_offset; 1160 break; 1161 1162 default: 1163 BUG(); 1164 } 1165 1166 return val; 1167 } 1168 1169 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu, 1170 enum kvm_arch_timers tmr, 1171 enum kvm_arch_timer_regs treg) 1172 { 1173 struct arch_timer_context *timer; 1174 struct timer_map map; 1175 u64 val; 1176 1177 get_timer_map(vcpu, &map); 1178 timer = vcpu_get_timer(vcpu, tmr); 1179 1180 if (timer == map.emul_vtimer || timer == map.emul_ptimer) 1181 return kvm_arm_timer_read(vcpu, timer, treg); 1182 1183 preempt_disable(); 1184 timer_save_state(timer); 1185 1186 val = kvm_arm_timer_read(vcpu, timer, treg); 1187 1188 timer_restore_state(timer); 1189 preempt_enable(); 1190 1191 return val; 1192 } 1193 1194 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, 1195 struct arch_timer_context *timer, 1196 enum kvm_arch_timer_regs treg, 1197 u64 val) 1198 { 1199 switch (treg) { 1200 case TIMER_REG_TVAL: 1201 timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val); 1202 break; 1203 1204 case TIMER_REG_CTL: 1205 timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT); 1206 break; 1207 1208 case TIMER_REG_CVAL: 1209 timer_set_cval(timer, val); 1210 break; 1211 1212 case TIMER_REG_VOFF: 1213 *timer->offset.vcpu_offset = val; 1214 break; 1215 1216 default: 1217 BUG(); 1218 } 1219 } 1220 1221 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu, 1222 enum kvm_arch_timers tmr, 1223 enum kvm_arch_timer_regs treg, 1224 u64 val) 1225 { 1226 struct arch_timer_context *timer; 1227 struct timer_map map; 1228 1229 get_timer_map(vcpu, &map); 1230 timer = vcpu_get_timer(vcpu, tmr); 1231 if (timer == map.emul_vtimer || timer == map.emul_ptimer) { 1232 soft_timer_cancel(&timer->hrtimer); 1233 kvm_arm_timer_write(vcpu, timer, treg, val); 1234 timer_emulate(timer); 1235 } else { 1236 preempt_disable(); 1237 timer_save_state(timer); 1238 kvm_arm_timer_write(vcpu, timer, treg, val); 1239 timer_restore_state(timer); 1240 preempt_enable(); 1241 } 1242 } 1243 1244 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) 1245 { 1246 if (vcpu) 1247 irqd_set_forwarded_to_vcpu(d); 1248 else 1249 irqd_clr_forwarded_to_vcpu(d); 1250 1251 return 0; 1252 } 1253 1254 static int timer_irq_set_irqchip_state(struct irq_data *d, 1255 enum irqchip_irq_state which, bool val) 1256 { 1257 if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d)) 1258 return irq_chip_set_parent_state(d, which, val); 1259 1260 if (val) 1261 irq_chip_mask_parent(d); 1262 else 1263 irq_chip_unmask_parent(d); 1264 1265 return 0; 1266 } 1267 1268 static void timer_irq_eoi(struct irq_data *d) 1269 { 1270 if (!irqd_is_forwarded_to_vcpu(d)) 1271 irq_chip_eoi_parent(d); 1272 } 1273 1274 static void timer_irq_ack(struct irq_data *d) 1275 { 1276 d = d->parent_data; 1277 if (d->chip->irq_ack) 1278 d->chip->irq_ack(d); 1279 } 1280 1281 static struct irq_chip timer_chip = { 1282 .name = "KVM", 1283 .irq_ack = timer_irq_ack, 1284 .irq_mask = irq_chip_mask_parent, 1285 .irq_unmask = irq_chip_unmask_parent, 1286 .irq_eoi = timer_irq_eoi, 1287 .irq_set_type = irq_chip_set_type_parent, 1288 .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity, 1289 .irq_set_irqchip_state = timer_irq_set_irqchip_state, 1290 }; 1291 1292 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1293 unsigned int nr_irqs, void *arg) 1294 { 1295 irq_hw_number_t hwirq = (uintptr_t)arg; 1296 1297 return irq_domain_set_hwirq_and_chip(domain, virq, hwirq, 1298 &timer_chip, NULL); 1299 } 1300 1301 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1302 unsigned int nr_irqs) 1303 { 1304 } 1305 1306 static const struct irq_domain_ops timer_domain_ops = { 1307 .alloc = timer_irq_domain_alloc, 1308 .free = timer_irq_domain_free, 1309 }; 1310 1311 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags) 1312 { 1313 *flags = irq_get_trigger_type(virq); 1314 if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) { 1315 kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n", 1316 virq); 1317 *flags = IRQF_TRIGGER_LOW; 1318 } 1319 } 1320 1321 static int kvm_irq_init(struct arch_timer_kvm_info *info) 1322 { 1323 struct irq_domain *domain = NULL; 1324 1325 if (info->virtual_irq <= 0) { 1326 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n", 1327 info->virtual_irq); 1328 return -ENODEV; 1329 } 1330 1331 host_vtimer_irq = info->virtual_irq; 1332 kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags); 1333 1334 if (kvm_vgic_global_state.no_hw_deactivation) { 1335 struct fwnode_handle *fwnode; 1336 struct irq_data *data; 1337 1338 fwnode = irq_domain_alloc_named_fwnode("kvm-timer"); 1339 if (!fwnode) 1340 return -ENOMEM; 1341 1342 /* Assume both vtimer and ptimer in the same parent */ 1343 data = irq_get_irq_data(host_vtimer_irq); 1344 domain = irq_domain_create_hierarchy(data->domain, 0, 1345 NR_KVM_TIMERS, fwnode, 1346 &timer_domain_ops, NULL); 1347 if (!domain) { 1348 irq_domain_free_fwnode(fwnode); 1349 return -ENOMEM; 1350 } 1351 1352 arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE; 1353 WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq, 1354 (void *)TIMER_VTIMER)); 1355 } 1356 1357 if (info->physical_irq > 0) { 1358 host_ptimer_irq = info->physical_irq; 1359 kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags); 1360 1361 if (domain) 1362 WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq, 1363 (void *)TIMER_PTIMER)); 1364 } 1365 1366 return 0; 1367 } 1368 1369 int __init kvm_timer_hyp_init(bool has_gic) 1370 { 1371 struct arch_timer_kvm_info *info; 1372 int err; 1373 1374 info = arch_timer_get_kvm_info(); 1375 timecounter = &info->timecounter; 1376 1377 if (!timecounter->cc) { 1378 kvm_err("kvm_arch_timer: uninitialized timecounter\n"); 1379 return -ENODEV; 1380 } 1381 1382 err = kvm_irq_init(info); 1383 if (err) 1384 return err; 1385 1386 /* First, do the virtual EL1 timer irq */ 1387 1388 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler, 1389 "kvm guest vtimer", kvm_get_running_vcpus()); 1390 if (err) { 1391 kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n", 1392 host_vtimer_irq, err); 1393 return err; 1394 } 1395 1396 if (has_gic) { 1397 err = irq_set_vcpu_affinity(host_vtimer_irq, 1398 kvm_get_running_vcpus()); 1399 if (err) { 1400 kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); 1401 goto out_free_vtimer_irq; 1402 } 1403 1404 static_branch_enable(&has_gic_active_state); 1405 } 1406 1407 kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq); 1408 1409 /* Now let's do the physical EL1 timer irq */ 1410 1411 if (info->physical_irq > 0) { 1412 err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler, 1413 "kvm guest ptimer", kvm_get_running_vcpus()); 1414 if (err) { 1415 kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n", 1416 host_ptimer_irq, err); 1417 goto out_free_vtimer_irq; 1418 } 1419 1420 if (has_gic) { 1421 err = irq_set_vcpu_affinity(host_ptimer_irq, 1422 kvm_get_running_vcpus()); 1423 if (err) { 1424 kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); 1425 goto out_free_ptimer_irq; 1426 } 1427 } 1428 1429 kvm_debug("physical timer IRQ%d\n", host_ptimer_irq); 1430 } else if (has_vhe()) { 1431 kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n", 1432 info->physical_irq); 1433 err = -ENODEV; 1434 goto out_free_vtimer_irq; 1435 } 1436 1437 return 0; 1438 1439 out_free_ptimer_irq: 1440 if (info->physical_irq > 0) 1441 free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus()); 1442 out_free_vtimer_irq: 1443 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus()); 1444 return err; 1445 } 1446 1447 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu) 1448 { 1449 struct arch_timer_cpu *timer = vcpu_timer(vcpu); 1450 1451 soft_timer_cancel(&timer->bg_timer); 1452 } 1453 1454 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu) 1455 { 1456 u32 ppis = 0; 1457 bool valid; 1458 1459 mutex_lock(&vcpu->kvm->arch.config_lock); 1460 1461 for (int i = 0; i < nr_timers(vcpu); i++) { 1462 struct arch_timer_context *ctx; 1463 int irq; 1464 1465 ctx = vcpu_get_timer(vcpu, i); 1466 irq = timer_irq(ctx); 1467 if (kvm_vgic_set_owner(vcpu, irq, ctx)) 1468 break; 1469 1470 /* 1471 * We know by construction that we only have PPIs, so 1472 * all values are less than 32. 1473 */ 1474 ppis |= BIT(irq); 1475 } 1476 1477 valid = hweight32(ppis) == nr_timers(vcpu); 1478 1479 if (valid) 1480 set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags); 1481 1482 mutex_unlock(&vcpu->kvm->arch.config_lock); 1483 1484 return valid; 1485 } 1486 1487 static bool kvm_arch_timer_get_input_level(int vintid) 1488 { 1489 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 1490 1491 if (WARN(!vcpu, "No vcpu context!\n")) 1492 return false; 1493 1494 for (int i = 0; i < nr_timers(vcpu); i++) { 1495 struct arch_timer_context *ctx; 1496 1497 ctx = vcpu_get_timer(vcpu, i); 1498 if (timer_irq(ctx) == vintid) 1499 return kvm_timer_should_fire(ctx); 1500 } 1501 1502 /* A timer IRQ has fired, but no matching timer was found? */ 1503 WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid); 1504 1505 return false; 1506 } 1507 1508 int kvm_timer_enable(struct kvm_vcpu *vcpu) 1509 { 1510 struct arch_timer_cpu *timer = vcpu_timer(vcpu); 1511 struct timer_map map; 1512 int ret; 1513 1514 if (timer->enabled) 1515 return 0; 1516 1517 /* Without a VGIC we do not map virtual IRQs to physical IRQs */ 1518 if (!irqchip_in_kernel(vcpu->kvm)) 1519 goto no_vgic; 1520 1521 /* 1522 * At this stage, we have the guarantee that the vgic is both 1523 * available and initialized. 1524 */ 1525 if (!timer_irqs_are_valid(vcpu)) { 1526 kvm_debug("incorrectly configured timer irqs\n"); 1527 return -EINVAL; 1528 } 1529 1530 get_timer_map(vcpu, &map); 1531 1532 ret = kvm_vgic_map_phys_irq(vcpu, 1533 map.direct_vtimer->host_timer_irq, 1534 timer_irq(map.direct_vtimer), 1535 &arch_timer_irq_ops); 1536 if (ret) 1537 return ret; 1538 1539 if (map.direct_ptimer) { 1540 ret = kvm_vgic_map_phys_irq(vcpu, 1541 map.direct_ptimer->host_timer_irq, 1542 timer_irq(map.direct_ptimer), 1543 &arch_timer_irq_ops); 1544 } 1545 1546 if (ret) 1547 return ret; 1548 1549 no_vgic: 1550 timer->enabled = 1; 1551 return 0; 1552 } 1553 1554 /* If we have CNTPOFF, permanently set ECV to enable it */ 1555 void kvm_timer_init_vhe(void) 1556 { 1557 if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF)) 1558 sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV); 1559 } 1560 1561 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) 1562 { 1563 int __user *uaddr = (int __user *)(long)attr->addr; 1564 int irq, idx, ret = 0; 1565 1566 if (!irqchip_in_kernel(vcpu->kvm)) 1567 return -EINVAL; 1568 1569 if (get_user(irq, uaddr)) 1570 return -EFAULT; 1571 1572 if (!(irq_is_ppi(irq))) 1573 return -EINVAL; 1574 1575 mutex_lock(&vcpu->kvm->arch.config_lock); 1576 1577 if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, 1578 &vcpu->kvm->arch.flags)) { 1579 ret = -EBUSY; 1580 goto out; 1581 } 1582 1583 switch (attr->attr) { 1584 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: 1585 idx = TIMER_VTIMER; 1586 break; 1587 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: 1588 idx = TIMER_PTIMER; 1589 break; 1590 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: 1591 idx = TIMER_HVTIMER; 1592 break; 1593 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: 1594 idx = TIMER_HPTIMER; 1595 break; 1596 default: 1597 ret = -ENXIO; 1598 goto out; 1599 } 1600 1601 /* 1602 * We cannot validate the IRQ unicity before we run, so take it at 1603 * face value. The verdict will be given on first vcpu run, for each 1604 * vcpu. Yes this is late. Blame it on the stupid API. 1605 */ 1606 vcpu->kvm->arch.timer_data.ppi[idx] = irq; 1607 1608 out: 1609 mutex_unlock(&vcpu->kvm->arch.config_lock); 1610 return ret; 1611 } 1612 1613 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) 1614 { 1615 int __user *uaddr = (int __user *)(long)attr->addr; 1616 struct arch_timer_context *timer; 1617 int irq; 1618 1619 switch (attr->attr) { 1620 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: 1621 timer = vcpu_vtimer(vcpu); 1622 break; 1623 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: 1624 timer = vcpu_ptimer(vcpu); 1625 break; 1626 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: 1627 timer = vcpu_hvtimer(vcpu); 1628 break; 1629 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: 1630 timer = vcpu_hptimer(vcpu); 1631 break; 1632 default: 1633 return -ENXIO; 1634 } 1635 1636 irq = timer_irq(timer); 1637 return put_user(irq, uaddr); 1638 } 1639 1640 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) 1641 { 1642 switch (attr->attr) { 1643 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: 1644 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: 1645 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: 1646 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: 1647 return 0; 1648 } 1649 1650 return -ENXIO; 1651 } 1652 1653 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm, 1654 struct kvm_arm_counter_offset *offset) 1655 { 1656 int ret = 0; 1657 1658 if (offset->reserved) 1659 return -EINVAL; 1660 1661 mutex_lock(&kvm->lock); 1662 1663 if (lock_all_vcpus(kvm)) { 1664 set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags); 1665 1666 /* 1667 * If userspace decides to set the offset using this 1668 * API rather than merely restoring the counter 1669 * values, the offset applies to both the virtual and 1670 * physical views. 1671 */ 1672 kvm->arch.timer_data.voffset = offset->counter_offset; 1673 kvm->arch.timer_data.poffset = offset->counter_offset; 1674 1675 unlock_all_vcpus(kvm); 1676 } else { 1677 ret = -EBUSY; 1678 } 1679 1680 mutex_unlock(&kvm->lock); 1681 1682 return ret; 1683 } 1684