xref: /openbmc/linux/arch/arm64/kvm/arch_timer.c (revision 19714c9e8885b6580d0e226b07a98dd011b7f5ae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20 
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23 
24 #include "trace.h"
25 
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
29 static u32 host_vtimer_irq_flags;
30 static u32 host_ptimer_irq_flags;
31 
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33 
34 static const u8 default_ppi[] = {
35 	[TIMER_PTIMER]  = 30,
36 	[TIMER_VTIMER]  = 27,
37 	[TIMER_HPTIMER] = 26,
38 	[TIMER_HVTIMER] = 28,
39 };
40 
41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
43 				 struct arch_timer_context *timer_ctx);
44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
46 				struct arch_timer_context *timer,
47 				enum kvm_arch_timer_regs treg,
48 				u64 val);
49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
50 			      struct arch_timer_context *timer,
51 			      enum kvm_arch_timer_regs treg);
52 static bool kvm_arch_timer_get_input_level(int vintid);
53 
54 static struct irq_ops arch_timer_irq_ops = {
55 	.get_input_level = kvm_arch_timer_get_input_level,
56 };
57 
58 static int nr_timers(struct kvm_vcpu *vcpu)
59 {
60 	if (!vcpu_has_nv(vcpu))
61 		return NR_KVM_EL0_TIMERS;
62 
63 	return NR_KVM_TIMERS;
64 }
65 
66 u32 timer_get_ctl(struct arch_timer_context *ctxt)
67 {
68 	struct kvm_vcpu *vcpu = ctxt->vcpu;
69 
70 	switch(arch_timer_ctx_index(ctxt)) {
71 	case TIMER_VTIMER:
72 		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
73 	case TIMER_PTIMER:
74 		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
75 	case TIMER_HVTIMER:
76 		return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
77 	case TIMER_HPTIMER:
78 		return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
79 	default:
80 		WARN_ON(1);
81 		return 0;
82 	}
83 }
84 
85 u64 timer_get_cval(struct arch_timer_context *ctxt)
86 {
87 	struct kvm_vcpu *vcpu = ctxt->vcpu;
88 
89 	switch(arch_timer_ctx_index(ctxt)) {
90 	case TIMER_VTIMER:
91 		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
92 	case TIMER_PTIMER:
93 		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
94 	case TIMER_HVTIMER:
95 		return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
96 	case TIMER_HPTIMER:
97 		return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
98 	default:
99 		WARN_ON(1);
100 		return 0;
101 	}
102 }
103 
104 static u64 timer_get_offset(struct arch_timer_context *ctxt)
105 {
106 	u64 offset = 0;
107 
108 	if (!ctxt)
109 		return 0;
110 
111 	if (ctxt->offset.vm_offset)
112 		offset += *ctxt->offset.vm_offset;
113 	if (ctxt->offset.vcpu_offset)
114 		offset += *ctxt->offset.vcpu_offset;
115 
116 	return offset;
117 }
118 
119 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
120 {
121 	struct kvm_vcpu *vcpu = ctxt->vcpu;
122 
123 	switch(arch_timer_ctx_index(ctxt)) {
124 	case TIMER_VTIMER:
125 		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
126 		break;
127 	case TIMER_PTIMER:
128 		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
129 		break;
130 	case TIMER_HVTIMER:
131 		__vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
132 		break;
133 	case TIMER_HPTIMER:
134 		__vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
135 		break;
136 	default:
137 		WARN_ON(1);
138 	}
139 }
140 
141 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
142 {
143 	struct kvm_vcpu *vcpu = ctxt->vcpu;
144 
145 	switch(arch_timer_ctx_index(ctxt)) {
146 	case TIMER_VTIMER:
147 		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
148 		break;
149 	case TIMER_PTIMER:
150 		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
151 		break;
152 	case TIMER_HVTIMER:
153 		__vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
154 		break;
155 	case TIMER_HPTIMER:
156 		__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
157 		break;
158 	default:
159 		WARN_ON(1);
160 	}
161 }
162 
163 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
164 {
165 	if (!ctxt->offset.vm_offset) {
166 		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
167 		return;
168 	}
169 
170 	WRITE_ONCE(*ctxt->offset.vm_offset, offset);
171 }
172 
173 u64 kvm_phys_timer_read(void)
174 {
175 	return timecounter->cc->read(timecounter->cc);
176 }
177 
178 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
179 {
180 	if (vcpu_has_nv(vcpu)) {
181 		if (is_hyp_ctxt(vcpu)) {
182 			map->direct_vtimer = vcpu_hvtimer(vcpu);
183 			map->direct_ptimer = vcpu_hptimer(vcpu);
184 			map->emul_vtimer = vcpu_vtimer(vcpu);
185 			map->emul_ptimer = vcpu_ptimer(vcpu);
186 		} else {
187 			map->direct_vtimer = vcpu_vtimer(vcpu);
188 			map->direct_ptimer = vcpu_ptimer(vcpu);
189 			map->emul_vtimer = vcpu_hvtimer(vcpu);
190 			map->emul_ptimer = vcpu_hptimer(vcpu);
191 		}
192 	} else if (has_vhe()) {
193 		map->direct_vtimer = vcpu_vtimer(vcpu);
194 		map->direct_ptimer = vcpu_ptimer(vcpu);
195 		map->emul_vtimer = NULL;
196 		map->emul_ptimer = NULL;
197 	} else {
198 		map->direct_vtimer = vcpu_vtimer(vcpu);
199 		map->direct_ptimer = NULL;
200 		map->emul_vtimer = NULL;
201 		map->emul_ptimer = vcpu_ptimer(vcpu);
202 	}
203 
204 	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
205 }
206 
207 static inline bool userspace_irqchip(struct kvm *kvm)
208 {
209 	return unlikely(!irqchip_in_kernel(kvm));
210 }
211 
212 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
213 {
214 	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
215 		      HRTIMER_MODE_ABS_HARD);
216 }
217 
218 static void soft_timer_cancel(struct hrtimer *hrt)
219 {
220 	hrtimer_cancel(hrt);
221 }
222 
223 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
224 {
225 	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
226 	struct arch_timer_context *ctx;
227 	struct timer_map map;
228 
229 	/*
230 	 * We may see a timer interrupt after vcpu_put() has been called which
231 	 * sets the CPU's vcpu pointer to NULL, because even though the timer
232 	 * has been disabled in timer_save_state(), the hardware interrupt
233 	 * signal may not have been retired from the interrupt controller yet.
234 	 */
235 	if (!vcpu)
236 		return IRQ_HANDLED;
237 
238 	get_timer_map(vcpu, &map);
239 
240 	if (irq == host_vtimer_irq)
241 		ctx = map.direct_vtimer;
242 	else
243 		ctx = map.direct_ptimer;
244 
245 	if (kvm_timer_should_fire(ctx))
246 		kvm_timer_update_irq(vcpu, true, ctx);
247 
248 	if (userspace_irqchip(vcpu->kvm) &&
249 	    !static_branch_unlikely(&has_gic_active_state))
250 		disable_percpu_irq(host_vtimer_irq);
251 
252 	return IRQ_HANDLED;
253 }
254 
255 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
256 				     u64 val)
257 {
258 	u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
259 
260 	if (now < val) {
261 		u64 ns;
262 
263 		ns = cyclecounter_cyc2ns(timecounter->cc,
264 					 val - now,
265 					 timecounter->mask,
266 					 &timer_ctx->ns_frac);
267 		return ns;
268 	}
269 
270 	return 0;
271 }
272 
273 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
274 {
275 	return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
276 }
277 
278 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
279 {
280 	WARN_ON(timer_ctx && timer_ctx->loaded);
281 	return timer_ctx &&
282 		((timer_get_ctl(timer_ctx) &
283 		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
284 }
285 
286 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
287 {
288 	return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
289 		vcpu_get_flag(vcpu, IN_WFIT));
290 }
291 
292 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
293 {
294 	u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
295 	struct arch_timer_context *ctx;
296 
297 	ctx = (vcpu_has_nv(vcpu) && is_hyp_ctxt(vcpu)) ? vcpu_hvtimer(vcpu)
298 						       : vcpu_vtimer(vcpu);
299 
300 	return kvm_counter_compute_delta(ctx, val);
301 }
302 
303 /*
304  * Returns the earliest expiration time in ns among guest timers.
305  * Note that it will return 0 if none of timers can fire.
306  */
307 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
308 {
309 	u64 min_delta = ULLONG_MAX;
310 	int i;
311 
312 	for (i = 0; i < nr_timers(vcpu); i++) {
313 		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
314 
315 		WARN(ctx->loaded, "timer %d loaded\n", i);
316 		if (kvm_timer_irq_can_fire(ctx))
317 			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
318 	}
319 
320 	if (vcpu_has_wfit_active(vcpu))
321 		min_delta = min(min_delta, wfit_delay_ns(vcpu));
322 
323 	/* If none of timers can fire, then return 0 */
324 	if (min_delta == ULLONG_MAX)
325 		return 0;
326 
327 	return min_delta;
328 }
329 
330 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
331 {
332 	struct arch_timer_cpu *timer;
333 	struct kvm_vcpu *vcpu;
334 	u64 ns;
335 
336 	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
337 	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
338 
339 	/*
340 	 * Check that the timer has really expired from the guest's
341 	 * PoV (NTP on the host may have forced it to expire
342 	 * early). If we should have slept longer, restart it.
343 	 */
344 	ns = kvm_timer_earliest_exp(vcpu);
345 	if (unlikely(ns)) {
346 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
347 		return HRTIMER_RESTART;
348 	}
349 
350 	kvm_vcpu_wake_up(vcpu);
351 	return HRTIMER_NORESTART;
352 }
353 
354 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
355 {
356 	struct arch_timer_context *ctx;
357 	struct kvm_vcpu *vcpu;
358 	u64 ns;
359 
360 	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
361 	vcpu = ctx->vcpu;
362 
363 	trace_kvm_timer_hrtimer_expire(ctx);
364 
365 	/*
366 	 * Check that the timer has really expired from the guest's
367 	 * PoV (NTP on the host may have forced it to expire
368 	 * early). If not ready, schedule for a later time.
369 	 */
370 	ns = kvm_timer_compute_delta(ctx);
371 	if (unlikely(ns)) {
372 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
373 		return HRTIMER_RESTART;
374 	}
375 
376 	kvm_timer_update_irq(vcpu, true, ctx);
377 	return HRTIMER_NORESTART;
378 }
379 
380 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
381 {
382 	enum kvm_arch_timers index;
383 	u64 cval, now;
384 
385 	if (!timer_ctx)
386 		return false;
387 
388 	index = arch_timer_ctx_index(timer_ctx);
389 
390 	if (timer_ctx->loaded) {
391 		u32 cnt_ctl = 0;
392 
393 		switch (index) {
394 		case TIMER_VTIMER:
395 		case TIMER_HVTIMER:
396 			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
397 			break;
398 		case TIMER_PTIMER:
399 		case TIMER_HPTIMER:
400 			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
401 			break;
402 		case NR_KVM_TIMERS:
403 			/* GCC is braindead */
404 			cnt_ctl = 0;
405 			break;
406 		}
407 
408 		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
409 		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
410 		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
411 	}
412 
413 	if (!kvm_timer_irq_can_fire(timer_ctx))
414 		return false;
415 
416 	cval = timer_get_cval(timer_ctx);
417 	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
418 
419 	return cval <= now;
420 }
421 
422 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
423 {
424 	return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
425 }
426 
427 /*
428  * Reflect the timer output level into the kvm_run structure
429  */
430 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
431 {
432 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
433 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
434 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
435 
436 	/* Populate the device bitmap with the timer states */
437 	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
438 				    KVM_ARM_DEV_EL1_PTIMER);
439 	if (kvm_timer_should_fire(vtimer))
440 		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
441 	if (kvm_timer_should_fire(ptimer))
442 		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
443 }
444 
445 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
446 				 struct arch_timer_context *timer_ctx)
447 {
448 	int ret;
449 
450 	timer_ctx->irq.level = new_level;
451 	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
452 				   timer_ctx->irq.level);
453 
454 	if (!userspace_irqchip(vcpu->kvm)) {
455 		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
456 					  timer_irq(timer_ctx),
457 					  timer_ctx->irq.level,
458 					  timer_ctx);
459 		WARN_ON(ret);
460 	}
461 }
462 
463 /* Only called for a fully emulated timer */
464 static void timer_emulate(struct arch_timer_context *ctx)
465 {
466 	bool should_fire = kvm_timer_should_fire(ctx);
467 
468 	trace_kvm_timer_emulate(ctx, should_fire);
469 
470 	if (should_fire != ctx->irq.level) {
471 		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
472 		return;
473 	}
474 
475 	/*
476 	 * If the timer can fire now, we don't need to have a soft timer
477 	 * scheduled for the future.  If the timer cannot fire at all,
478 	 * then we also don't need a soft timer.
479 	 */
480 	if (should_fire || !kvm_timer_irq_can_fire(ctx))
481 		return;
482 
483 	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
484 }
485 
486 static void set_cntvoff(u64 cntvoff)
487 {
488 	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
489 }
490 
491 static void set_cntpoff(u64 cntpoff)
492 {
493 	if (has_cntpoff())
494 		write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
495 }
496 
497 static void timer_save_state(struct arch_timer_context *ctx)
498 {
499 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
500 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
501 	unsigned long flags;
502 
503 	if (!timer->enabled)
504 		return;
505 
506 	local_irq_save(flags);
507 
508 	if (!ctx->loaded)
509 		goto out;
510 
511 	switch (index) {
512 		u64 cval;
513 
514 	case TIMER_VTIMER:
515 	case TIMER_HVTIMER:
516 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
517 		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
518 
519 		/* Disable the timer */
520 		write_sysreg_el0(0, SYS_CNTV_CTL);
521 		isb();
522 
523 		/*
524 		 * The kernel may decide to run userspace after
525 		 * calling vcpu_put, so we reset cntvoff to 0 to
526 		 * ensure a consistent read between user accesses to
527 		 * the virtual counter and kernel access to the
528 		 * physical counter of non-VHE case.
529 		 *
530 		 * For VHE, the virtual counter uses a fixed virtual
531 		 * offset of zero, so no need to zero CNTVOFF_EL2
532 		 * register, but this is actually useful when switching
533 		 * between EL1/vEL2 with NV.
534 		 *
535 		 * Do it unconditionally, as this is either unavoidable
536 		 * or dirt cheap.
537 		 */
538 		set_cntvoff(0);
539 		break;
540 	case TIMER_PTIMER:
541 	case TIMER_HPTIMER:
542 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
543 		cval = read_sysreg_el0(SYS_CNTP_CVAL);
544 
545 		cval -= timer_get_offset(ctx);
546 
547 		timer_set_cval(ctx, cval);
548 
549 		/* Disable the timer */
550 		write_sysreg_el0(0, SYS_CNTP_CTL);
551 		isb();
552 
553 		set_cntpoff(0);
554 		break;
555 	case NR_KVM_TIMERS:
556 		BUG();
557 	}
558 
559 	trace_kvm_timer_save_state(ctx);
560 
561 	ctx->loaded = false;
562 out:
563 	local_irq_restore(flags);
564 }
565 
566 /*
567  * Schedule the background timer before calling kvm_vcpu_halt, so that this
568  * thread is removed from its waitqueue and made runnable when there's a timer
569  * interrupt to handle.
570  */
571 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
572 {
573 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
574 	struct timer_map map;
575 
576 	get_timer_map(vcpu, &map);
577 
578 	/*
579 	 * If no timers are capable of raising interrupts (disabled or
580 	 * masked), then there's no more work for us to do.
581 	 */
582 	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
583 	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
584 	    !kvm_timer_irq_can_fire(map.emul_vtimer) &&
585 	    !kvm_timer_irq_can_fire(map.emul_ptimer) &&
586 	    !vcpu_has_wfit_active(vcpu))
587 		return;
588 
589 	/*
590 	 * At least one guest time will expire. Schedule a background timer.
591 	 * Set the earliest expiration time among the guest timers.
592 	 */
593 	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
594 }
595 
596 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
597 {
598 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
599 
600 	soft_timer_cancel(&timer->bg_timer);
601 }
602 
603 static void timer_restore_state(struct arch_timer_context *ctx)
604 {
605 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
606 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
607 	unsigned long flags;
608 
609 	if (!timer->enabled)
610 		return;
611 
612 	local_irq_save(flags);
613 
614 	if (ctx->loaded)
615 		goto out;
616 
617 	switch (index) {
618 		u64 cval, offset;
619 
620 	case TIMER_VTIMER:
621 	case TIMER_HVTIMER:
622 		set_cntvoff(timer_get_offset(ctx));
623 		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
624 		isb();
625 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
626 		break;
627 	case TIMER_PTIMER:
628 	case TIMER_HPTIMER:
629 		cval = timer_get_cval(ctx);
630 		offset = timer_get_offset(ctx);
631 		set_cntpoff(offset);
632 		cval += offset;
633 		write_sysreg_el0(cval, SYS_CNTP_CVAL);
634 		isb();
635 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
636 		break;
637 	case NR_KVM_TIMERS:
638 		BUG();
639 	}
640 
641 	trace_kvm_timer_restore_state(ctx);
642 
643 	ctx->loaded = true;
644 out:
645 	local_irq_restore(flags);
646 }
647 
648 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
649 {
650 	int r;
651 	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
652 	WARN_ON(r);
653 }
654 
655 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
656 {
657 	struct kvm_vcpu *vcpu = ctx->vcpu;
658 	bool phys_active = false;
659 
660 	/*
661 	 * Update the timer output so that it is likely to match the
662 	 * state we're about to restore. If the timer expires between
663 	 * this point and the register restoration, we'll take the
664 	 * interrupt anyway.
665 	 */
666 	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
667 
668 	if (irqchip_in_kernel(vcpu->kvm))
669 		phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
670 
671 	phys_active |= ctx->irq.level;
672 
673 	set_timer_irq_phys_active(ctx, phys_active);
674 }
675 
676 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
677 {
678 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
679 
680 	/*
681 	 * Update the timer output so that it is likely to match the
682 	 * state we're about to restore. If the timer expires between
683 	 * this point and the register restoration, we'll take the
684 	 * interrupt anyway.
685 	 */
686 	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
687 
688 	/*
689 	 * When using a userspace irqchip with the architected timers and a
690 	 * host interrupt controller that doesn't support an active state, we
691 	 * must still prevent continuously exiting from the guest, and
692 	 * therefore mask the physical interrupt by disabling it on the host
693 	 * interrupt controller when the virtual level is high, such that the
694 	 * guest can make forward progress.  Once we detect the output level
695 	 * being de-asserted, we unmask the interrupt again so that we exit
696 	 * from the guest when the timer fires.
697 	 */
698 	if (vtimer->irq.level)
699 		disable_percpu_irq(host_vtimer_irq);
700 	else
701 		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
702 }
703 
704 /* If _pred is true, set bit in _set, otherwise set it in _clr */
705 #define assign_clear_set_bit(_pred, _bit, _clr, _set)			\
706 	do {								\
707 		if (_pred)						\
708 			(_set) |= (_bit);				\
709 		else							\
710 			(_clr) |= (_bit);				\
711 	} while (0)
712 
713 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
714 					      struct timer_map *map)
715 {
716 	int hw, ret;
717 
718 	if (!irqchip_in_kernel(vcpu->kvm))
719 		return;
720 
721 	/*
722 	 * We only ever unmap the vtimer irq on a VHE system that runs nested
723 	 * virtualization, in which case we have both a valid emul_vtimer,
724 	 * emul_ptimer, direct_vtimer, and direct_ptimer.
725 	 *
726 	 * Since this is called from kvm_timer_vcpu_load(), a change between
727 	 * vEL2 and vEL1/0 will have just happened, and the timer_map will
728 	 * represent this, and therefore we switch the emul/direct mappings
729 	 * below.
730 	 */
731 	hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
732 	if (hw < 0) {
733 		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
734 		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
735 
736 		ret = kvm_vgic_map_phys_irq(vcpu,
737 					    map->direct_vtimer->host_timer_irq,
738 					    timer_irq(map->direct_vtimer),
739 					    &arch_timer_irq_ops);
740 		WARN_ON_ONCE(ret);
741 		ret = kvm_vgic_map_phys_irq(vcpu,
742 					    map->direct_ptimer->host_timer_irq,
743 					    timer_irq(map->direct_ptimer),
744 					    &arch_timer_irq_ops);
745 		WARN_ON_ONCE(ret);
746 
747 		/*
748 		 * The virtual offset behaviour is "interresting", as it
749 		 * always applies when HCR_EL2.E2H==0, but only when
750 		 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
751 		 * track E2H when putting the HV timer in "direct" mode.
752 		 */
753 		if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
754 			struct arch_timer_offset *offs = &map->direct_vtimer->offset;
755 
756 			if (vcpu_el2_e2h_is_set(vcpu))
757 				offs->vcpu_offset = NULL;
758 			else
759 				offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
760 		}
761 	}
762 }
763 
764 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
765 {
766 	bool tpt, tpc;
767 	u64 clr, set;
768 
769 	/*
770 	 * No trapping gets configured here with nVHE. See
771 	 * __timer_enable_traps(), which is where the stuff happens.
772 	 */
773 	if (!has_vhe())
774 		return;
775 
776 	/*
777 	 * Our default policy is not to trap anything. As we progress
778 	 * within this function, reality kicks in and we start adding
779 	 * traps based on emulation requirements.
780 	 */
781 	tpt = tpc = false;
782 
783 	/*
784 	 * We have two possibility to deal with a physical offset:
785 	 *
786 	 * - Either we have CNTPOFF (yay!) or the offset is 0:
787 	 *   we let the guest freely access the HW
788 	 *
789 	 * - or neither of these condition apply:
790 	 *   we trap accesses to the HW, but still use it
791 	 *   after correcting the physical offset
792 	 */
793 	if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
794 		tpt = tpc = true;
795 
796 	/*
797 	 * Apply the enable bits that the guest hypervisor has requested for
798 	 * its own guest. We can only add traps that wouldn't have been set
799 	 * above.
800 	 */
801 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
802 		u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
803 
804 		/* Use the VHE format for mental sanity */
805 		if (!vcpu_el2_e2h_is_set(vcpu))
806 			val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
807 
808 		tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
809 		tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
810 	}
811 
812 	/*
813 	 * Now that we have collected our requirements, compute the
814 	 * trap and enable bits.
815 	 */
816 	set = 0;
817 	clr = 0;
818 
819 	assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
820 	assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
821 
822 	/* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
823 	sysreg_clear_set(cnthctl_el2, clr, set);
824 }
825 
826 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
827 {
828 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
829 	struct timer_map map;
830 
831 	if (unlikely(!timer->enabled))
832 		return;
833 
834 	get_timer_map(vcpu, &map);
835 
836 	if (static_branch_likely(&has_gic_active_state)) {
837 		if (vcpu_has_nv(vcpu))
838 			kvm_timer_vcpu_load_nested_switch(vcpu, &map);
839 
840 		kvm_timer_vcpu_load_gic(map.direct_vtimer);
841 		if (map.direct_ptimer)
842 			kvm_timer_vcpu_load_gic(map.direct_ptimer);
843 	} else {
844 		kvm_timer_vcpu_load_nogic(vcpu);
845 	}
846 
847 	kvm_timer_unblocking(vcpu);
848 
849 	timer_restore_state(map.direct_vtimer);
850 	if (map.direct_ptimer)
851 		timer_restore_state(map.direct_ptimer);
852 	if (map.emul_vtimer)
853 		timer_emulate(map.emul_vtimer);
854 	if (map.emul_ptimer)
855 		timer_emulate(map.emul_ptimer);
856 
857 	timer_set_traps(vcpu, &map);
858 }
859 
860 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
861 {
862 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
863 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
864 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
865 	bool vlevel, plevel;
866 
867 	if (likely(irqchip_in_kernel(vcpu->kvm)))
868 		return false;
869 
870 	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
871 	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
872 
873 	return kvm_timer_should_fire(vtimer) != vlevel ||
874 	       kvm_timer_should_fire(ptimer) != plevel;
875 }
876 
877 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
878 {
879 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
880 	struct timer_map map;
881 
882 	if (unlikely(!timer->enabled))
883 		return;
884 
885 	get_timer_map(vcpu, &map);
886 
887 	timer_save_state(map.direct_vtimer);
888 	if (map.direct_ptimer)
889 		timer_save_state(map.direct_ptimer);
890 
891 	/*
892 	 * Cancel soft timer emulation, because the only case where we
893 	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
894 	 * in that case we already factor in the deadline for the physical
895 	 * timer when scheduling the bg_timer.
896 	 *
897 	 * In any case, we re-schedule the hrtimer for the physical timer when
898 	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
899 	 */
900 	if (map.emul_vtimer)
901 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
902 	if (map.emul_ptimer)
903 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
904 
905 	if (kvm_vcpu_is_blocking(vcpu))
906 		kvm_timer_blocking(vcpu);
907 }
908 
909 /*
910  * With a userspace irqchip we have to check if the guest de-asserted the
911  * timer and if so, unmask the timer irq signal on the host interrupt
912  * controller to ensure that we see future timer signals.
913  */
914 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
915 {
916 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
917 
918 	if (!kvm_timer_should_fire(vtimer)) {
919 		kvm_timer_update_irq(vcpu, false, vtimer);
920 		if (static_branch_likely(&has_gic_active_state))
921 			set_timer_irq_phys_active(vtimer, false);
922 		else
923 			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
924 	}
925 }
926 
927 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
928 {
929 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
930 
931 	if (unlikely(!timer->enabled))
932 		return;
933 
934 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
935 		unmask_vtimer_irq_user(vcpu);
936 }
937 
938 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
939 {
940 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
941 	struct timer_map map;
942 
943 	get_timer_map(vcpu, &map);
944 
945 	/*
946 	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
947 	 * and to 0 for ARMv7.  We provide an implementation that always
948 	 * resets the timer to be disabled and unmasked and is compliant with
949 	 * the ARMv7 architecture.
950 	 */
951 	for (int i = 0; i < nr_timers(vcpu); i++)
952 		timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
953 
954 	/*
955 	 * A vcpu running at EL2 is in charge of the offset applied to
956 	 * the virtual timer, so use the physical VM offset, and point
957 	 * the vcpu offset to CNTVOFF_EL2.
958 	 */
959 	if (vcpu_has_nv(vcpu)) {
960 		struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
961 
962 		offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
963 		offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
964 	}
965 
966 	if (timer->enabled) {
967 		for (int i = 0; i < nr_timers(vcpu); i++)
968 			kvm_timer_update_irq(vcpu, false,
969 					     vcpu_get_timer(vcpu, i));
970 
971 		if (irqchip_in_kernel(vcpu->kvm)) {
972 			kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
973 			if (map.direct_ptimer)
974 				kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
975 		}
976 	}
977 
978 	if (map.emul_vtimer)
979 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
980 	if (map.emul_ptimer)
981 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
982 
983 	return 0;
984 }
985 
986 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
987 {
988 	struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
989 	struct kvm *kvm = vcpu->kvm;
990 
991 	ctxt->vcpu = vcpu;
992 
993 	if (timerid == TIMER_VTIMER)
994 		ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
995 	else
996 		ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
997 
998 	hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
999 	ctxt->hrtimer.function = kvm_hrtimer_expire;
1000 
1001 	switch (timerid) {
1002 	case TIMER_PTIMER:
1003 	case TIMER_HPTIMER:
1004 		ctxt->host_timer_irq = host_ptimer_irq;
1005 		break;
1006 	case TIMER_VTIMER:
1007 	case TIMER_HVTIMER:
1008 		ctxt->host_timer_irq = host_vtimer_irq;
1009 		break;
1010 	}
1011 }
1012 
1013 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1014 {
1015 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1016 
1017 	for (int i = 0; i < NR_KVM_TIMERS; i++)
1018 		timer_context_init(vcpu, i);
1019 
1020 	/* Synchronize offsets across timers of a VM if not already provided */
1021 	if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1022 		timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1023 		timer_set_offset(vcpu_ptimer(vcpu), 0);
1024 	}
1025 
1026 	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1027 	timer->bg_timer.function = kvm_bg_timer_expire;
1028 }
1029 
1030 void kvm_timer_init_vm(struct kvm *kvm)
1031 {
1032 	for (int i = 0; i < NR_KVM_TIMERS; i++)
1033 		kvm->arch.timer_data.ppi[i] = default_ppi[i];
1034 }
1035 
1036 void kvm_timer_cpu_up(void)
1037 {
1038 	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1039 	if (host_ptimer_irq)
1040 		enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1041 }
1042 
1043 void kvm_timer_cpu_down(void)
1044 {
1045 	disable_percpu_irq(host_vtimer_irq);
1046 	if (host_ptimer_irq)
1047 		disable_percpu_irq(host_ptimer_irq);
1048 }
1049 
1050 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1051 {
1052 	struct arch_timer_context *timer;
1053 
1054 	switch (regid) {
1055 	case KVM_REG_ARM_TIMER_CTL:
1056 		timer = vcpu_vtimer(vcpu);
1057 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1058 		break;
1059 	case KVM_REG_ARM_TIMER_CNT:
1060 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1061 			      &vcpu->kvm->arch.flags)) {
1062 			timer = vcpu_vtimer(vcpu);
1063 			timer_set_offset(timer, kvm_phys_timer_read() - value);
1064 		}
1065 		break;
1066 	case KVM_REG_ARM_TIMER_CVAL:
1067 		timer = vcpu_vtimer(vcpu);
1068 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1069 		break;
1070 	case KVM_REG_ARM_PTIMER_CTL:
1071 		timer = vcpu_ptimer(vcpu);
1072 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1073 		break;
1074 	case KVM_REG_ARM_PTIMER_CNT:
1075 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1076 			      &vcpu->kvm->arch.flags)) {
1077 			timer = vcpu_ptimer(vcpu);
1078 			timer_set_offset(timer, kvm_phys_timer_read() - value);
1079 		}
1080 		break;
1081 	case KVM_REG_ARM_PTIMER_CVAL:
1082 		timer = vcpu_ptimer(vcpu);
1083 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1084 		break;
1085 
1086 	default:
1087 		return -1;
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 static u64 read_timer_ctl(struct arch_timer_context *timer)
1094 {
1095 	/*
1096 	 * Set ISTATUS bit if it's expired.
1097 	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1098 	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1099 	 * regardless of ENABLE bit for our implementation convenience.
1100 	 */
1101 	u32 ctl = timer_get_ctl(timer);
1102 
1103 	if (!kvm_timer_compute_delta(timer))
1104 		ctl |= ARCH_TIMER_CTRL_IT_STAT;
1105 
1106 	return ctl;
1107 }
1108 
1109 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1110 {
1111 	switch (regid) {
1112 	case KVM_REG_ARM_TIMER_CTL:
1113 		return kvm_arm_timer_read(vcpu,
1114 					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
1115 	case KVM_REG_ARM_TIMER_CNT:
1116 		return kvm_arm_timer_read(vcpu,
1117 					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
1118 	case KVM_REG_ARM_TIMER_CVAL:
1119 		return kvm_arm_timer_read(vcpu,
1120 					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1121 	case KVM_REG_ARM_PTIMER_CTL:
1122 		return kvm_arm_timer_read(vcpu,
1123 					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
1124 	case KVM_REG_ARM_PTIMER_CNT:
1125 		return kvm_arm_timer_read(vcpu,
1126 					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
1127 	case KVM_REG_ARM_PTIMER_CVAL:
1128 		return kvm_arm_timer_read(vcpu,
1129 					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1130 	}
1131 	return (u64)-1;
1132 }
1133 
1134 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1135 			      struct arch_timer_context *timer,
1136 			      enum kvm_arch_timer_regs treg)
1137 {
1138 	u64 val;
1139 
1140 	switch (treg) {
1141 	case TIMER_REG_TVAL:
1142 		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1143 		val = lower_32_bits(val);
1144 		break;
1145 
1146 	case TIMER_REG_CTL:
1147 		val = read_timer_ctl(timer);
1148 		break;
1149 
1150 	case TIMER_REG_CVAL:
1151 		val = timer_get_cval(timer);
1152 		break;
1153 
1154 	case TIMER_REG_CNT:
1155 		val = kvm_phys_timer_read() - timer_get_offset(timer);
1156 		break;
1157 
1158 	case TIMER_REG_VOFF:
1159 		val = *timer->offset.vcpu_offset;
1160 		break;
1161 
1162 	default:
1163 		BUG();
1164 	}
1165 
1166 	return val;
1167 }
1168 
1169 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1170 			      enum kvm_arch_timers tmr,
1171 			      enum kvm_arch_timer_regs treg)
1172 {
1173 	struct arch_timer_context *timer;
1174 	struct timer_map map;
1175 	u64 val;
1176 
1177 	get_timer_map(vcpu, &map);
1178 	timer = vcpu_get_timer(vcpu, tmr);
1179 
1180 	if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1181 		return kvm_arm_timer_read(vcpu, timer, treg);
1182 
1183 	preempt_disable();
1184 	timer_save_state(timer);
1185 
1186 	val = kvm_arm_timer_read(vcpu, timer, treg);
1187 
1188 	timer_restore_state(timer);
1189 	preempt_enable();
1190 
1191 	return val;
1192 }
1193 
1194 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1195 				struct arch_timer_context *timer,
1196 				enum kvm_arch_timer_regs treg,
1197 				u64 val)
1198 {
1199 	switch (treg) {
1200 	case TIMER_REG_TVAL:
1201 		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1202 		break;
1203 
1204 	case TIMER_REG_CTL:
1205 		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1206 		break;
1207 
1208 	case TIMER_REG_CVAL:
1209 		timer_set_cval(timer, val);
1210 		break;
1211 
1212 	case TIMER_REG_VOFF:
1213 		*timer->offset.vcpu_offset = val;
1214 		break;
1215 
1216 	default:
1217 		BUG();
1218 	}
1219 }
1220 
1221 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1222 				enum kvm_arch_timers tmr,
1223 				enum kvm_arch_timer_regs treg,
1224 				u64 val)
1225 {
1226 	struct arch_timer_context *timer;
1227 	struct timer_map map;
1228 
1229 	get_timer_map(vcpu, &map);
1230 	timer = vcpu_get_timer(vcpu, tmr);
1231 	if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1232 		soft_timer_cancel(&timer->hrtimer);
1233 		kvm_arm_timer_write(vcpu, timer, treg, val);
1234 		timer_emulate(timer);
1235 	} else {
1236 		preempt_disable();
1237 		timer_save_state(timer);
1238 		kvm_arm_timer_write(vcpu, timer, treg, val);
1239 		timer_restore_state(timer);
1240 		preempt_enable();
1241 	}
1242 }
1243 
1244 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1245 {
1246 	if (vcpu)
1247 		irqd_set_forwarded_to_vcpu(d);
1248 	else
1249 		irqd_clr_forwarded_to_vcpu(d);
1250 
1251 	return 0;
1252 }
1253 
1254 static int timer_irq_set_irqchip_state(struct irq_data *d,
1255 				       enum irqchip_irq_state which, bool val)
1256 {
1257 	if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1258 		return irq_chip_set_parent_state(d, which, val);
1259 
1260 	if (val)
1261 		irq_chip_mask_parent(d);
1262 	else
1263 		irq_chip_unmask_parent(d);
1264 
1265 	return 0;
1266 }
1267 
1268 static void timer_irq_eoi(struct irq_data *d)
1269 {
1270 	if (!irqd_is_forwarded_to_vcpu(d))
1271 		irq_chip_eoi_parent(d);
1272 }
1273 
1274 static void timer_irq_ack(struct irq_data *d)
1275 {
1276 	d = d->parent_data;
1277 	if (d->chip->irq_ack)
1278 		d->chip->irq_ack(d);
1279 }
1280 
1281 static struct irq_chip timer_chip = {
1282 	.name			= "KVM",
1283 	.irq_ack		= timer_irq_ack,
1284 	.irq_mask		= irq_chip_mask_parent,
1285 	.irq_unmask		= irq_chip_unmask_parent,
1286 	.irq_eoi		= timer_irq_eoi,
1287 	.irq_set_type		= irq_chip_set_type_parent,
1288 	.irq_set_vcpu_affinity	= timer_irq_set_vcpu_affinity,
1289 	.irq_set_irqchip_state	= timer_irq_set_irqchip_state,
1290 };
1291 
1292 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1293 				  unsigned int nr_irqs, void *arg)
1294 {
1295 	irq_hw_number_t hwirq = (uintptr_t)arg;
1296 
1297 	return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1298 					     &timer_chip, NULL);
1299 }
1300 
1301 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1302 				  unsigned int nr_irqs)
1303 {
1304 }
1305 
1306 static const struct irq_domain_ops timer_domain_ops = {
1307 	.alloc	= timer_irq_domain_alloc,
1308 	.free	= timer_irq_domain_free,
1309 };
1310 
1311 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1312 {
1313 	*flags = irq_get_trigger_type(virq);
1314 	if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1315 		kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1316 			virq);
1317 		*flags = IRQF_TRIGGER_LOW;
1318 	}
1319 }
1320 
1321 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1322 {
1323 	struct irq_domain *domain = NULL;
1324 
1325 	if (info->virtual_irq <= 0) {
1326 		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1327 			info->virtual_irq);
1328 		return -ENODEV;
1329 	}
1330 
1331 	host_vtimer_irq = info->virtual_irq;
1332 	kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1333 
1334 	if (kvm_vgic_global_state.no_hw_deactivation) {
1335 		struct fwnode_handle *fwnode;
1336 		struct irq_data *data;
1337 
1338 		fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1339 		if (!fwnode)
1340 			return -ENOMEM;
1341 
1342 		/* Assume both vtimer and ptimer in the same parent */
1343 		data = irq_get_irq_data(host_vtimer_irq);
1344 		domain = irq_domain_create_hierarchy(data->domain, 0,
1345 						     NR_KVM_TIMERS, fwnode,
1346 						     &timer_domain_ops, NULL);
1347 		if (!domain) {
1348 			irq_domain_free_fwnode(fwnode);
1349 			return -ENOMEM;
1350 		}
1351 
1352 		arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1353 		WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1354 					    (void *)TIMER_VTIMER));
1355 	}
1356 
1357 	if (info->physical_irq > 0) {
1358 		host_ptimer_irq = info->physical_irq;
1359 		kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1360 
1361 		if (domain)
1362 			WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1363 						    (void *)TIMER_PTIMER));
1364 	}
1365 
1366 	return 0;
1367 }
1368 
1369 int __init kvm_timer_hyp_init(bool has_gic)
1370 {
1371 	struct arch_timer_kvm_info *info;
1372 	int err;
1373 
1374 	info = arch_timer_get_kvm_info();
1375 	timecounter = &info->timecounter;
1376 
1377 	if (!timecounter->cc) {
1378 		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1379 		return -ENODEV;
1380 	}
1381 
1382 	err = kvm_irq_init(info);
1383 	if (err)
1384 		return err;
1385 
1386 	/* First, do the virtual EL1 timer irq */
1387 
1388 	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1389 				 "kvm guest vtimer", kvm_get_running_vcpus());
1390 	if (err) {
1391 		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1392 			host_vtimer_irq, err);
1393 		return err;
1394 	}
1395 
1396 	if (has_gic) {
1397 		err = irq_set_vcpu_affinity(host_vtimer_irq,
1398 					    kvm_get_running_vcpus());
1399 		if (err) {
1400 			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1401 			goto out_free_vtimer_irq;
1402 		}
1403 
1404 		static_branch_enable(&has_gic_active_state);
1405 	}
1406 
1407 	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1408 
1409 	/* Now let's do the physical EL1 timer irq */
1410 
1411 	if (info->physical_irq > 0) {
1412 		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1413 					 "kvm guest ptimer", kvm_get_running_vcpus());
1414 		if (err) {
1415 			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1416 				host_ptimer_irq, err);
1417 			goto out_free_vtimer_irq;
1418 		}
1419 
1420 		if (has_gic) {
1421 			err = irq_set_vcpu_affinity(host_ptimer_irq,
1422 						    kvm_get_running_vcpus());
1423 			if (err) {
1424 				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1425 				goto out_free_ptimer_irq;
1426 			}
1427 		}
1428 
1429 		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1430 	} else if (has_vhe()) {
1431 		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1432 			info->physical_irq);
1433 		err = -ENODEV;
1434 		goto out_free_vtimer_irq;
1435 	}
1436 
1437 	return 0;
1438 
1439 out_free_ptimer_irq:
1440 	if (info->physical_irq > 0)
1441 		free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1442 out_free_vtimer_irq:
1443 	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1444 	return err;
1445 }
1446 
1447 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1448 {
1449 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1450 
1451 	soft_timer_cancel(&timer->bg_timer);
1452 }
1453 
1454 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1455 {
1456 	u32 ppis = 0;
1457 	bool valid;
1458 
1459 	mutex_lock(&vcpu->kvm->arch.config_lock);
1460 
1461 	for (int i = 0; i < nr_timers(vcpu); i++) {
1462 		struct arch_timer_context *ctx;
1463 		int irq;
1464 
1465 		ctx = vcpu_get_timer(vcpu, i);
1466 		irq = timer_irq(ctx);
1467 		if (kvm_vgic_set_owner(vcpu, irq, ctx))
1468 			break;
1469 
1470 		/*
1471 		 * We know by construction that we only have PPIs, so
1472 		 * all values are less than 32.
1473 		 */
1474 		ppis |= BIT(irq);
1475 	}
1476 
1477 	valid = hweight32(ppis) == nr_timers(vcpu);
1478 
1479 	if (valid)
1480 		set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1481 
1482 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1483 
1484 	return valid;
1485 }
1486 
1487 static bool kvm_arch_timer_get_input_level(int vintid)
1488 {
1489 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1490 
1491 	if (WARN(!vcpu, "No vcpu context!\n"))
1492 		return false;
1493 
1494 	for (int i = 0; i < nr_timers(vcpu); i++) {
1495 		struct arch_timer_context *ctx;
1496 
1497 		ctx = vcpu_get_timer(vcpu, i);
1498 		if (timer_irq(ctx) == vintid)
1499 			return kvm_timer_should_fire(ctx);
1500 	}
1501 
1502 	/* A timer IRQ has fired, but no matching timer was found? */
1503 	WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1504 
1505 	return false;
1506 }
1507 
1508 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1509 {
1510 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1511 	struct timer_map map;
1512 	int ret;
1513 
1514 	if (timer->enabled)
1515 		return 0;
1516 
1517 	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1518 	if (!irqchip_in_kernel(vcpu->kvm))
1519 		goto no_vgic;
1520 
1521 	/*
1522 	 * At this stage, we have the guarantee that the vgic is both
1523 	 * available and initialized.
1524 	 */
1525 	if (!timer_irqs_are_valid(vcpu)) {
1526 		kvm_debug("incorrectly configured timer irqs\n");
1527 		return -EINVAL;
1528 	}
1529 
1530 	get_timer_map(vcpu, &map);
1531 
1532 	ret = kvm_vgic_map_phys_irq(vcpu,
1533 				    map.direct_vtimer->host_timer_irq,
1534 				    timer_irq(map.direct_vtimer),
1535 				    &arch_timer_irq_ops);
1536 	if (ret)
1537 		return ret;
1538 
1539 	if (map.direct_ptimer) {
1540 		ret = kvm_vgic_map_phys_irq(vcpu,
1541 					    map.direct_ptimer->host_timer_irq,
1542 					    timer_irq(map.direct_ptimer),
1543 					    &arch_timer_irq_ops);
1544 	}
1545 
1546 	if (ret)
1547 		return ret;
1548 
1549 no_vgic:
1550 	timer->enabled = 1;
1551 	return 0;
1552 }
1553 
1554 /* If we have CNTPOFF, permanently set ECV to enable it */
1555 void kvm_timer_init_vhe(void)
1556 {
1557 	if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1558 		sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1559 }
1560 
1561 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1562 {
1563 	int __user *uaddr = (int __user *)(long)attr->addr;
1564 	int irq, idx, ret = 0;
1565 
1566 	if (!irqchip_in_kernel(vcpu->kvm))
1567 		return -EINVAL;
1568 
1569 	if (get_user(irq, uaddr))
1570 		return -EFAULT;
1571 
1572 	if (!(irq_is_ppi(irq)))
1573 		return -EINVAL;
1574 
1575 	mutex_lock(&vcpu->kvm->arch.config_lock);
1576 
1577 	if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1578 		     &vcpu->kvm->arch.flags)) {
1579 		ret = -EBUSY;
1580 		goto out;
1581 	}
1582 
1583 	switch (attr->attr) {
1584 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1585 		idx = TIMER_VTIMER;
1586 		break;
1587 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1588 		idx = TIMER_PTIMER;
1589 		break;
1590 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1591 		idx = TIMER_HVTIMER;
1592 		break;
1593 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1594 		idx = TIMER_HPTIMER;
1595 		break;
1596 	default:
1597 		ret = -ENXIO;
1598 		goto out;
1599 	}
1600 
1601 	/*
1602 	 * We cannot validate the IRQ unicity before we run, so take it at
1603 	 * face value. The verdict will be given on first vcpu run, for each
1604 	 * vcpu. Yes this is late. Blame it on the stupid API.
1605 	 */
1606 	vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1607 
1608 out:
1609 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1610 	return ret;
1611 }
1612 
1613 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1614 {
1615 	int __user *uaddr = (int __user *)(long)attr->addr;
1616 	struct arch_timer_context *timer;
1617 	int irq;
1618 
1619 	switch (attr->attr) {
1620 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1621 		timer = vcpu_vtimer(vcpu);
1622 		break;
1623 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1624 		timer = vcpu_ptimer(vcpu);
1625 		break;
1626 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1627 		timer = vcpu_hvtimer(vcpu);
1628 		break;
1629 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1630 		timer = vcpu_hptimer(vcpu);
1631 		break;
1632 	default:
1633 		return -ENXIO;
1634 	}
1635 
1636 	irq = timer_irq(timer);
1637 	return put_user(irq, uaddr);
1638 }
1639 
1640 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1641 {
1642 	switch (attr->attr) {
1643 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1644 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1645 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1646 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1647 		return 0;
1648 	}
1649 
1650 	return -ENXIO;
1651 }
1652 
1653 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1654 				    struct kvm_arm_counter_offset *offset)
1655 {
1656 	int ret = 0;
1657 
1658 	if (offset->reserved)
1659 		return -EINVAL;
1660 
1661 	mutex_lock(&kvm->lock);
1662 
1663 	if (lock_all_vcpus(kvm)) {
1664 		set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1665 
1666 		/*
1667 		 * If userspace decides to set the offset using this
1668 		 * API rather than merely restoring the counter
1669 		 * values, the offset applies to both the virtual and
1670 		 * physical views.
1671 		 */
1672 		kvm->arch.timer_data.voffset = offset->counter_offset;
1673 		kvm->arch.timer_data.poffset = offset->counter_offset;
1674 
1675 		unlock_all_vcpus(kvm);
1676 	} else {
1677 		ret = -EBUSY;
1678 	}
1679 
1680 	mutex_unlock(&kvm->lock);
1681 
1682 	return ret;
1683 }
1684