xref: /openbmc/linux/arch/arm64/kvm/arch_timer.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/uaccess.h>
13 
14 #include <clocksource/arm_arch_timer.h>
15 #include <asm/arch_timer.h>
16 #include <asm/kvm_emulate.h>
17 #include <asm/kvm_hyp.h>
18 
19 #include <kvm/arm_vgic.h>
20 #include <kvm/arm_arch_timer.h>
21 
22 #include "trace.h"
23 
24 static struct timecounter *timecounter;
25 static unsigned int host_vtimer_irq;
26 static unsigned int host_ptimer_irq;
27 static u32 host_vtimer_irq_flags;
28 static u32 host_ptimer_irq_flags;
29 
30 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
31 
32 static const struct kvm_irq_level default_ptimer_irq = {
33 	.irq	= 30,
34 	.level	= 1,
35 };
36 
37 static const struct kvm_irq_level default_vtimer_irq = {
38 	.irq	= 27,
39 	.level	= 1,
40 };
41 
42 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
43 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
44 				 struct arch_timer_context *timer_ctx);
45 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
46 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
47 				struct arch_timer_context *timer,
48 				enum kvm_arch_timer_regs treg,
49 				u64 val);
50 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
51 			      struct arch_timer_context *timer,
52 			      enum kvm_arch_timer_regs treg);
53 
54 u32 timer_get_ctl(struct arch_timer_context *ctxt)
55 {
56 	struct kvm_vcpu *vcpu = ctxt->vcpu;
57 
58 	switch(arch_timer_ctx_index(ctxt)) {
59 	case TIMER_VTIMER:
60 		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
61 	case TIMER_PTIMER:
62 		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
63 	default:
64 		WARN_ON(1);
65 		return 0;
66 	}
67 }
68 
69 u64 timer_get_cval(struct arch_timer_context *ctxt)
70 {
71 	struct kvm_vcpu *vcpu = ctxt->vcpu;
72 
73 	switch(arch_timer_ctx_index(ctxt)) {
74 	case TIMER_VTIMER:
75 		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
76 	case TIMER_PTIMER:
77 		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
78 	default:
79 		WARN_ON(1);
80 		return 0;
81 	}
82 }
83 
84 static u64 timer_get_offset(struct arch_timer_context *ctxt)
85 {
86 	struct kvm_vcpu *vcpu = ctxt->vcpu;
87 
88 	switch(arch_timer_ctx_index(ctxt)) {
89 	case TIMER_VTIMER:
90 		return __vcpu_sys_reg(vcpu, CNTVOFF_EL2);
91 	default:
92 		return 0;
93 	}
94 }
95 
96 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
97 {
98 	struct kvm_vcpu *vcpu = ctxt->vcpu;
99 
100 	switch(arch_timer_ctx_index(ctxt)) {
101 	case TIMER_VTIMER:
102 		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
103 		break;
104 	case TIMER_PTIMER:
105 		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
106 		break;
107 	default:
108 		WARN_ON(1);
109 	}
110 }
111 
112 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
113 {
114 	struct kvm_vcpu *vcpu = ctxt->vcpu;
115 
116 	switch(arch_timer_ctx_index(ctxt)) {
117 	case TIMER_VTIMER:
118 		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
119 		break;
120 	case TIMER_PTIMER:
121 		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
122 		break;
123 	default:
124 		WARN_ON(1);
125 	}
126 }
127 
128 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
129 {
130 	struct kvm_vcpu *vcpu = ctxt->vcpu;
131 
132 	switch(arch_timer_ctx_index(ctxt)) {
133 	case TIMER_VTIMER:
134 		__vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset;
135 		break;
136 	default:
137 		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
138 	}
139 }
140 
141 u64 kvm_phys_timer_read(void)
142 {
143 	return timecounter->cc->read(timecounter->cc);
144 }
145 
146 static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
147 {
148 	if (has_vhe()) {
149 		map->direct_vtimer = vcpu_vtimer(vcpu);
150 		map->direct_ptimer = vcpu_ptimer(vcpu);
151 		map->emul_ptimer = NULL;
152 	} else {
153 		map->direct_vtimer = vcpu_vtimer(vcpu);
154 		map->direct_ptimer = NULL;
155 		map->emul_ptimer = vcpu_ptimer(vcpu);
156 	}
157 
158 	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
159 }
160 
161 static inline bool userspace_irqchip(struct kvm *kvm)
162 {
163 	return static_branch_unlikely(&userspace_irqchip_in_use) &&
164 		unlikely(!irqchip_in_kernel(kvm));
165 }
166 
167 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
168 {
169 	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
170 		      HRTIMER_MODE_ABS_HARD);
171 }
172 
173 static void soft_timer_cancel(struct hrtimer *hrt)
174 {
175 	hrtimer_cancel(hrt);
176 }
177 
178 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
179 {
180 	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
181 	struct arch_timer_context *ctx;
182 	struct timer_map map;
183 
184 	/*
185 	 * We may see a timer interrupt after vcpu_put() has been called which
186 	 * sets the CPU's vcpu pointer to NULL, because even though the timer
187 	 * has been disabled in timer_save_state(), the hardware interrupt
188 	 * signal may not have been retired from the interrupt controller yet.
189 	 */
190 	if (!vcpu)
191 		return IRQ_HANDLED;
192 
193 	get_timer_map(vcpu, &map);
194 
195 	if (irq == host_vtimer_irq)
196 		ctx = map.direct_vtimer;
197 	else
198 		ctx = map.direct_ptimer;
199 
200 	if (kvm_timer_should_fire(ctx))
201 		kvm_timer_update_irq(vcpu, true, ctx);
202 
203 	if (userspace_irqchip(vcpu->kvm) &&
204 	    !static_branch_unlikely(&has_gic_active_state))
205 		disable_percpu_irq(host_vtimer_irq);
206 
207 	return IRQ_HANDLED;
208 }
209 
210 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
211 {
212 	u64 cval, now;
213 
214 	cval = timer_get_cval(timer_ctx);
215 	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
216 
217 	if (now < cval) {
218 		u64 ns;
219 
220 		ns = cyclecounter_cyc2ns(timecounter->cc,
221 					 cval - now,
222 					 timecounter->mask,
223 					 &timecounter->frac);
224 		return ns;
225 	}
226 
227 	return 0;
228 }
229 
230 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
231 {
232 	WARN_ON(timer_ctx && timer_ctx->loaded);
233 	return timer_ctx &&
234 		((timer_get_ctl(timer_ctx) &
235 		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
236 }
237 
238 /*
239  * Returns the earliest expiration time in ns among guest timers.
240  * Note that it will return 0 if none of timers can fire.
241  */
242 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
243 {
244 	u64 min_delta = ULLONG_MAX;
245 	int i;
246 
247 	for (i = 0; i < NR_KVM_TIMERS; i++) {
248 		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
249 
250 		WARN(ctx->loaded, "timer %d loaded\n", i);
251 		if (kvm_timer_irq_can_fire(ctx))
252 			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
253 	}
254 
255 	/* If none of timers can fire, then return 0 */
256 	if (min_delta == ULLONG_MAX)
257 		return 0;
258 
259 	return min_delta;
260 }
261 
262 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
263 {
264 	struct arch_timer_cpu *timer;
265 	struct kvm_vcpu *vcpu;
266 	u64 ns;
267 
268 	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
269 	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
270 
271 	/*
272 	 * Check that the timer has really expired from the guest's
273 	 * PoV (NTP on the host may have forced it to expire
274 	 * early). If we should have slept longer, restart it.
275 	 */
276 	ns = kvm_timer_earliest_exp(vcpu);
277 	if (unlikely(ns)) {
278 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
279 		return HRTIMER_RESTART;
280 	}
281 
282 	kvm_vcpu_wake_up(vcpu);
283 	return HRTIMER_NORESTART;
284 }
285 
286 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
287 {
288 	struct arch_timer_context *ctx;
289 	struct kvm_vcpu *vcpu;
290 	u64 ns;
291 
292 	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
293 	vcpu = ctx->vcpu;
294 
295 	trace_kvm_timer_hrtimer_expire(ctx);
296 
297 	/*
298 	 * Check that the timer has really expired from the guest's
299 	 * PoV (NTP on the host may have forced it to expire
300 	 * early). If not ready, schedule for a later time.
301 	 */
302 	ns = kvm_timer_compute_delta(ctx);
303 	if (unlikely(ns)) {
304 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
305 		return HRTIMER_RESTART;
306 	}
307 
308 	kvm_timer_update_irq(vcpu, true, ctx);
309 	return HRTIMER_NORESTART;
310 }
311 
312 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
313 {
314 	enum kvm_arch_timers index;
315 	u64 cval, now;
316 
317 	if (!timer_ctx)
318 		return false;
319 
320 	index = arch_timer_ctx_index(timer_ctx);
321 
322 	if (timer_ctx->loaded) {
323 		u32 cnt_ctl = 0;
324 
325 		switch (index) {
326 		case TIMER_VTIMER:
327 			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
328 			break;
329 		case TIMER_PTIMER:
330 			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
331 			break;
332 		case NR_KVM_TIMERS:
333 			/* GCC is braindead */
334 			cnt_ctl = 0;
335 			break;
336 		}
337 
338 		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
339 		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
340 		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
341 	}
342 
343 	if (!kvm_timer_irq_can_fire(timer_ctx))
344 		return false;
345 
346 	cval = timer_get_cval(timer_ctx);
347 	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
348 
349 	return cval <= now;
350 }
351 
352 bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
353 {
354 	struct timer_map map;
355 
356 	get_timer_map(vcpu, &map);
357 
358 	return kvm_timer_should_fire(map.direct_vtimer) ||
359 	       kvm_timer_should_fire(map.direct_ptimer) ||
360 	       kvm_timer_should_fire(map.emul_ptimer);
361 }
362 
363 /*
364  * Reflect the timer output level into the kvm_run structure
365  */
366 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
367 {
368 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
369 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
370 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
371 
372 	/* Populate the device bitmap with the timer states */
373 	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
374 				    KVM_ARM_DEV_EL1_PTIMER);
375 	if (kvm_timer_should_fire(vtimer))
376 		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
377 	if (kvm_timer_should_fire(ptimer))
378 		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
379 }
380 
381 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
382 				 struct arch_timer_context *timer_ctx)
383 {
384 	int ret;
385 
386 	timer_ctx->irq.level = new_level;
387 	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
388 				   timer_ctx->irq.level);
389 
390 	if (!userspace_irqchip(vcpu->kvm)) {
391 		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
392 					  timer_ctx->irq.irq,
393 					  timer_ctx->irq.level,
394 					  timer_ctx);
395 		WARN_ON(ret);
396 	}
397 }
398 
399 /* Only called for a fully emulated timer */
400 static void timer_emulate(struct arch_timer_context *ctx)
401 {
402 	bool should_fire = kvm_timer_should_fire(ctx);
403 
404 	trace_kvm_timer_emulate(ctx, should_fire);
405 
406 	if (should_fire != ctx->irq.level) {
407 		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
408 		return;
409 	}
410 
411 	/*
412 	 * If the timer can fire now, we don't need to have a soft timer
413 	 * scheduled for the future.  If the timer cannot fire at all,
414 	 * then we also don't need a soft timer.
415 	 */
416 	if (!kvm_timer_irq_can_fire(ctx)) {
417 		soft_timer_cancel(&ctx->hrtimer);
418 		return;
419 	}
420 
421 	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
422 }
423 
424 static void timer_save_state(struct arch_timer_context *ctx)
425 {
426 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
427 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
428 	unsigned long flags;
429 
430 	if (!timer->enabled)
431 		return;
432 
433 	local_irq_save(flags);
434 
435 	if (!ctx->loaded)
436 		goto out;
437 
438 	switch (index) {
439 	case TIMER_VTIMER:
440 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
441 		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
442 
443 		/* Disable the timer */
444 		write_sysreg_el0(0, SYS_CNTV_CTL);
445 		isb();
446 
447 		break;
448 	case TIMER_PTIMER:
449 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
450 		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL));
451 
452 		/* Disable the timer */
453 		write_sysreg_el0(0, SYS_CNTP_CTL);
454 		isb();
455 
456 		break;
457 	case NR_KVM_TIMERS:
458 		BUG();
459 	}
460 
461 	trace_kvm_timer_save_state(ctx);
462 
463 	ctx->loaded = false;
464 out:
465 	local_irq_restore(flags);
466 }
467 
468 /*
469  * Schedule the background timer before calling kvm_vcpu_block, so that this
470  * thread is removed from its waitqueue and made runnable when there's a timer
471  * interrupt to handle.
472  */
473 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
474 {
475 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
476 	struct timer_map map;
477 
478 	get_timer_map(vcpu, &map);
479 
480 	/*
481 	 * If no timers are capable of raising interrupts (disabled or
482 	 * masked), then there's no more work for us to do.
483 	 */
484 	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
485 	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
486 	    !kvm_timer_irq_can_fire(map.emul_ptimer))
487 		return;
488 
489 	/*
490 	 * At least one guest time will expire. Schedule a background timer.
491 	 * Set the earliest expiration time among the guest timers.
492 	 */
493 	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
494 }
495 
496 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
497 {
498 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
499 
500 	soft_timer_cancel(&timer->bg_timer);
501 }
502 
503 static void timer_restore_state(struct arch_timer_context *ctx)
504 {
505 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
506 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
507 	unsigned long flags;
508 
509 	if (!timer->enabled)
510 		return;
511 
512 	local_irq_save(flags);
513 
514 	if (ctx->loaded)
515 		goto out;
516 
517 	switch (index) {
518 	case TIMER_VTIMER:
519 		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
520 		isb();
521 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
522 		break;
523 	case TIMER_PTIMER:
524 		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL);
525 		isb();
526 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
527 		break;
528 	case NR_KVM_TIMERS:
529 		BUG();
530 	}
531 
532 	trace_kvm_timer_restore_state(ctx);
533 
534 	ctx->loaded = true;
535 out:
536 	local_irq_restore(flags);
537 }
538 
539 static void set_cntvoff(u64 cntvoff)
540 {
541 	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
542 }
543 
544 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
545 {
546 	int r;
547 	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
548 	WARN_ON(r);
549 }
550 
551 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
552 {
553 	struct kvm_vcpu *vcpu = ctx->vcpu;
554 	bool phys_active = false;
555 
556 	/*
557 	 * Update the timer output so that it is likely to match the
558 	 * state we're about to restore. If the timer expires between
559 	 * this point and the register restoration, we'll take the
560 	 * interrupt anyway.
561 	 */
562 	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
563 
564 	if (irqchip_in_kernel(vcpu->kvm))
565 		phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
566 
567 	phys_active |= ctx->irq.level;
568 
569 	set_timer_irq_phys_active(ctx, phys_active);
570 }
571 
572 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
573 {
574 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
575 
576 	/*
577 	 * Update the timer output so that it is likely to match the
578 	 * state we're about to restore. If the timer expires between
579 	 * this point and the register restoration, we'll take the
580 	 * interrupt anyway.
581 	 */
582 	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
583 
584 	/*
585 	 * When using a userspace irqchip with the architected timers and a
586 	 * host interrupt controller that doesn't support an active state, we
587 	 * must still prevent continuously exiting from the guest, and
588 	 * therefore mask the physical interrupt by disabling it on the host
589 	 * interrupt controller when the virtual level is high, such that the
590 	 * guest can make forward progress.  Once we detect the output level
591 	 * being de-asserted, we unmask the interrupt again so that we exit
592 	 * from the guest when the timer fires.
593 	 */
594 	if (vtimer->irq.level)
595 		disable_percpu_irq(host_vtimer_irq);
596 	else
597 		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
598 }
599 
600 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
601 {
602 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
603 	struct timer_map map;
604 
605 	if (unlikely(!timer->enabled))
606 		return;
607 
608 	get_timer_map(vcpu, &map);
609 
610 	if (static_branch_likely(&has_gic_active_state)) {
611 		kvm_timer_vcpu_load_gic(map.direct_vtimer);
612 		if (map.direct_ptimer)
613 			kvm_timer_vcpu_load_gic(map.direct_ptimer);
614 	} else {
615 		kvm_timer_vcpu_load_nogic(vcpu);
616 	}
617 
618 	set_cntvoff(timer_get_offset(map.direct_vtimer));
619 
620 	kvm_timer_unblocking(vcpu);
621 
622 	timer_restore_state(map.direct_vtimer);
623 	if (map.direct_ptimer)
624 		timer_restore_state(map.direct_ptimer);
625 
626 	if (map.emul_ptimer)
627 		timer_emulate(map.emul_ptimer);
628 }
629 
630 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
631 {
632 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
633 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
634 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
635 	bool vlevel, plevel;
636 
637 	if (likely(irqchip_in_kernel(vcpu->kvm)))
638 		return false;
639 
640 	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
641 	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
642 
643 	return kvm_timer_should_fire(vtimer) != vlevel ||
644 	       kvm_timer_should_fire(ptimer) != plevel;
645 }
646 
647 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
648 {
649 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
650 	struct timer_map map;
651 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
652 
653 	if (unlikely(!timer->enabled))
654 		return;
655 
656 	get_timer_map(vcpu, &map);
657 
658 	timer_save_state(map.direct_vtimer);
659 	if (map.direct_ptimer)
660 		timer_save_state(map.direct_ptimer);
661 
662 	/*
663 	 * Cancel soft timer emulation, because the only case where we
664 	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
665 	 * in that case we already factor in the deadline for the physical
666 	 * timer when scheduling the bg_timer.
667 	 *
668 	 * In any case, we re-schedule the hrtimer for the physical timer when
669 	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
670 	 */
671 	if (map.emul_ptimer)
672 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
673 
674 	if (rcuwait_active(wait))
675 		kvm_timer_blocking(vcpu);
676 
677 	/*
678 	 * The kernel may decide to run userspace after calling vcpu_put, so
679 	 * we reset cntvoff to 0 to ensure a consistent read between user
680 	 * accesses to the virtual counter and kernel access to the physical
681 	 * counter of non-VHE case. For VHE, the virtual counter uses a fixed
682 	 * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
683 	 */
684 	set_cntvoff(0);
685 }
686 
687 /*
688  * With a userspace irqchip we have to check if the guest de-asserted the
689  * timer and if so, unmask the timer irq signal on the host interrupt
690  * controller to ensure that we see future timer signals.
691  */
692 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
693 {
694 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
695 
696 	if (!kvm_timer_should_fire(vtimer)) {
697 		kvm_timer_update_irq(vcpu, false, vtimer);
698 		if (static_branch_likely(&has_gic_active_state))
699 			set_timer_irq_phys_active(vtimer, false);
700 		else
701 			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
702 	}
703 }
704 
705 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
706 {
707 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
708 
709 	if (unlikely(!timer->enabled))
710 		return;
711 
712 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
713 		unmask_vtimer_irq_user(vcpu);
714 }
715 
716 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
717 {
718 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
719 	struct timer_map map;
720 
721 	get_timer_map(vcpu, &map);
722 
723 	/*
724 	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
725 	 * and to 0 for ARMv7.  We provide an implementation that always
726 	 * resets the timer to be disabled and unmasked and is compliant with
727 	 * the ARMv7 architecture.
728 	 */
729 	timer_set_ctl(vcpu_vtimer(vcpu), 0);
730 	timer_set_ctl(vcpu_ptimer(vcpu), 0);
731 
732 	if (timer->enabled) {
733 		kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
734 		kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
735 
736 		if (irqchip_in_kernel(vcpu->kvm)) {
737 			kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
738 			if (map.direct_ptimer)
739 				kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
740 		}
741 	}
742 
743 	if (map.emul_ptimer)
744 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
745 
746 	return 0;
747 }
748 
749 /* Make the updates of cntvoff for all vtimer contexts atomic */
750 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
751 {
752 	int i;
753 	struct kvm *kvm = vcpu->kvm;
754 	struct kvm_vcpu *tmp;
755 
756 	mutex_lock(&kvm->lock);
757 	kvm_for_each_vcpu(i, tmp, kvm)
758 		timer_set_offset(vcpu_vtimer(tmp), cntvoff);
759 
760 	/*
761 	 * When called from the vcpu create path, the CPU being created is not
762 	 * included in the loop above, so we just set it here as well.
763 	 */
764 	timer_set_offset(vcpu_vtimer(vcpu), cntvoff);
765 	mutex_unlock(&kvm->lock);
766 }
767 
768 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
769 {
770 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
771 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
772 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
773 
774 	vtimer->vcpu = vcpu;
775 	ptimer->vcpu = vcpu;
776 
777 	/* Synchronize cntvoff across all vtimers of a VM. */
778 	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
779 	timer_set_offset(ptimer, 0);
780 
781 	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
782 	timer->bg_timer.function = kvm_bg_timer_expire;
783 
784 	hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
785 	hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
786 	vtimer->hrtimer.function = kvm_hrtimer_expire;
787 	ptimer->hrtimer.function = kvm_hrtimer_expire;
788 
789 	vtimer->irq.irq = default_vtimer_irq.irq;
790 	ptimer->irq.irq = default_ptimer_irq.irq;
791 
792 	vtimer->host_timer_irq = host_vtimer_irq;
793 	ptimer->host_timer_irq = host_ptimer_irq;
794 
795 	vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
796 	ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
797 }
798 
799 static void kvm_timer_init_interrupt(void *info)
800 {
801 	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
802 	enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
803 }
804 
805 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
806 {
807 	struct arch_timer_context *timer;
808 
809 	switch (regid) {
810 	case KVM_REG_ARM_TIMER_CTL:
811 		timer = vcpu_vtimer(vcpu);
812 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
813 		break;
814 	case KVM_REG_ARM_TIMER_CNT:
815 		timer = vcpu_vtimer(vcpu);
816 		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
817 		break;
818 	case KVM_REG_ARM_TIMER_CVAL:
819 		timer = vcpu_vtimer(vcpu);
820 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
821 		break;
822 	case KVM_REG_ARM_PTIMER_CTL:
823 		timer = vcpu_ptimer(vcpu);
824 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
825 		break;
826 	case KVM_REG_ARM_PTIMER_CVAL:
827 		timer = vcpu_ptimer(vcpu);
828 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
829 		break;
830 
831 	default:
832 		return -1;
833 	}
834 
835 	return 0;
836 }
837 
838 static u64 read_timer_ctl(struct arch_timer_context *timer)
839 {
840 	/*
841 	 * Set ISTATUS bit if it's expired.
842 	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
843 	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
844 	 * regardless of ENABLE bit for our implementation convenience.
845 	 */
846 	u32 ctl = timer_get_ctl(timer);
847 
848 	if (!kvm_timer_compute_delta(timer))
849 		ctl |= ARCH_TIMER_CTRL_IT_STAT;
850 
851 	return ctl;
852 }
853 
854 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
855 {
856 	switch (regid) {
857 	case KVM_REG_ARM_TIMER_CTL:
858 		return kvm_arm_timer_read(vcpu,
859 					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
860 	case KVM_REG_ARM_TIMER_CNT:
861 		return kvm_arm_timer_read(vcpu,
862 					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
863 	case KVM_REG_ARM_TIMER_CVAL:
864 		return kvm_arm_timer_read(vcpu,
865 					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
866 	case KVM_REG_ARM_PTIMER_CTL:
867 		return kvm_arm_timer_read(vcpu,
868 					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
869 	case KVM_REG_ARM_PTIMER_CNT:
870 		return kvm_arm_timer_read(vcpu,
871 					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
872 	case KVM_REG_ARM_PTIMER_CVAL:
873 		return kvm_arm_timer_read(vcpu,
874 					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
875 	}
876 	return (u64)-1;
877 }
878 
879 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
880 			      struct arch_timer_context *timer,
881 			      enum kvm_arch_timer_regs treg)
882 {
883 	u64 val;
884 
885 	switch (treg) {
886 	case TIMER_REG_TVAL:
887 		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
888 		val = lower_32_bits(val);
889 		break;
890 
891 	case TIMER_REG_CTL:
892 		val = read_timer_ctl(timer);
893 		break;
894 
895 	case TIMER_REG_CVAL:
896 		val = timer_get_cval(timer);
897 		break;
898 
899 	case TIMER_REG_CNT:
900 		val = kvm_phys_timer_read() - timer_get_offset(timer);
901 		break;
902 
903 	default:
904 		BUG();
905 	}
906 
907 	return val;
908 }
909 
910 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
911 			      enum kvm_arch_timers tmr,
912 			      enum kvm_arch_timer_regs treg)
913 {
914 	u64 val;
915 
916 	preempt_disable();
917 	kvm_timer_vcpu_put(vcpu);
918 
919 	val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);
920 
921 	kvm_timer_vcpu_load(vcpu);
922 	preempt_enable();
923 
924 	return val;
925 }
926 
927 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
928 				struct arch_timer_context *timer,
929 				enum kvm_arch_timer_regs treg,
930 				u64 val)
931 {
932 	switch (treg) {
933 	case TIMER_REG_TVAL:
934 		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
935 		break;
936 
937 	case TIMER_REG_CTL:
938 		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
939 		break;
940 
941 	case TIMER_REG_CVAL:
942 		timer_set_cval(timer, val);
943 		break;
944 
945 	default:
946 		BUG();
947 	}
948 }
949 
950 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
951 				enum kvm_arch_timers tmr,
952 				enum kvm_arch_timer_regs treg,
953 				u64 val)
954 {
955 	preempt_disable();
956 	kvm_timer_vcpu_put(vcpu);
957 
958 	kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);
959 
960 	kvm_timer_vcpu_load(vcpu);
961 	preempt_enable();
962 }
963 
964 static int kvm_timer_starting_cpu(unsigned int cpu)
965 {
966 	kvm_timer_init_interrupt(NULL);
967 	return 0;
968 }
969 
970 static int kvm_timer_dying_cpu(unsigned int cpu)
971 {
972 	disable_percpu_irq(host_vtimer_irq);
973 	return 0;
974 }
975 
976 int kvm_timer_hyp_init(bool has_gic)
977 {
978 	struct arch_timer_kvm_info *info;
979 	int err;
980 
981 	info = arch_timer_get_kvm_info();
982 	timecounter = &info->timecounter;
983 
984 	if (!timecounter->cc) {
985 		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
986 		return -ENODEV;
987 	}
988 
989 	/* First, do the virtual EL1 timer irq */
990 
991 	if (info->virtual_irq <= 0) {
992 		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
993 			info->virtual_irq);
994 		return -ENODEV;
995 	}
996 	host_vtimer_irq = info->virtual_irq;
997 
998 	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
999 	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
1000 	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
1001 		kvm_err("Invalid trigger for vtimer IRQ%d, assuming level low\n",
1002 			host_vtimer_irq);
1003 		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
1004 	}
1005 
1006 	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1007 				 "kvm guest vtimer", kvm_get_running_vcpus());
1008 	if (err) {
1009 		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1010 			host_vtimer_irq, err);
1011 		return err;
1012 	}
1013 
1014 	if (has_gic) {
1015 		err = irq_set_vcpu_affinity(host_vtimer_irq,
1016 					    kvm_get_running_vcpus());
1017 		if (err) {
1018 			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1019 			goto out_free_irq;
1020 		}
1021 
1022 		static_branch_enable(&has_gic_active_state);
1023 	}
1024 
1025 	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1026 
1027 	/* Now let's do the physical EL1 timer irq */
1028 
1029 	if (info->physical_irq > 0) {
1030 		host_ptimer_irq = info->physical_irq;
1031 		host_ptimer_irq_flags = irq_get_trigger_type(host_ptimer_irq);
1032 		if (host_ptimer_irq_flags != IRQF_TRIGGER_HIGH &&
1033 		    host_ptimer_irq_flags != IRQF_TRIGGER_LOW) {
1034 			kvm_err("Invalid trigger for ptimer IRQ%d, assuming level low\n",
1035 				host_ptimer_irq);
1036 			host_ptimer_irq_flags = IRQF_TRIGGER_LOW;
1037 		}
1038 
1039 		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1040 					 "kvm guest ptimer", kvm_get_running_vcpus());
1041 		if (err) {
1042 			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1043 				host_ptimer_irq, err);
1044 			return err;
1045 		}
1046 
1047 		if (has_gic) {
1048 			err = irq_set_vcpu_affinity(host_ptimer_irq,
1049 						    kvm_get_running_vcpus());
1050 			if (err) {
1051 				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1052 				goto out_free_irq;
1053 			}
1054 		}
1055 
1056 		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1057 	} else if (has_vhe()) {
1058 		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1059 			info->physical_irq);
1060 		err = -ENODEV;
1061 		goto out_free_irq;
1062 	}
1063 
1064 	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
1065 			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
1066 			  kvm_timer_dying_cpu);
1067 	return 0;
1068 out_free_irq:
1069 	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1070 	return err;
1071 }
1072 
1073 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1074 {
1075 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1076 
1077 	soft_timer_cancel(&timer->bg_timer);
1078 }
1079 
1080 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1081 {
1082 	int vtimer_irq, ptimer_irq;
1083 	int i, ret;
1084 
1085 	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
1086 	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
1087 	if (ret)
1088 		return false;
1089 
1090 	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
1091 	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
1092 	if (ret)
1093 		return false;
1094 
1095 	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
1096 		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
1097 		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
1098 			return false;
1099 	}
1100 
1101 	return true;
1102 }
1103 
1104 bool kvm_arch_timer_get_input_level(int vintid)
1105 {
1106 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1107 	struct arch_timer_context *timer;
1108 
1109 	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
1110 		timer = vcpu_vtimer(vcpu);
1111 	else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
1112 		timer = vcpu_ptimer(vcpu);
1113 	else
1114 		BUG();
1115 
1116 	return kvm_timer_should_fire(timer);
1117 }
1118 
1119 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1120 {
1121 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1122 	struct timer_map map;
1123 	int ret;
1124 
1125 	if (timer->enabled)
1126 		return 0;
1127 
1128 	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1129 	if (!irqchip_in_kernel(vcpu->kvm))
1130 		goto no_vgic;
1131 
1132 	if (!vgic_initialized(vcpu->kvm))
1133 		return -ENODEV;
1134 
1135 	if (!timer_irqs_are_valid(vcpu)) {
1136 		kvm_debug("incorrectly configured timer irqs\n");
1137 		return -EINVAL;
1138 	}
1139 
1140 	get_timer_map(vcpu, &map);
1141 
1142 	ret = kvm_vgic_map_phys_irq(vcpu,
1143 				    map.direct_vtimer->host_timer_irq,
1144 				    map.direct_vtimer->irq.irq,
1145 				    kvm_arch_timer_get_input_level);
1146 	if (ret)
1147 		return ret;
1148 
1149 	if (map.direct_ptimer) {
1150 		ret = kvm_vgic_map_phys_irq(vcpu,
1151 					    map.direct_ptimer->host_timer_irq,
1152 					    map.direct_ptimer->irq.irq,
1153 					    kvm_arch_timer_get_input_level);
1154 	}
1155 
1156 	if (ret)
1157 		return ret;
1158 
1159 no_vgic:
1160 	timer->enabled = 1;
1161 	return 0;
1162 }
1163 
1164 /*
1165  * On VHE system, we only need to configure the EL2 timer trap register once,
1166  * not for every world switch.
1167  * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
1168  * and this makes those bits have no effect for the host kernel execution.
1169  */
1170 void kvm_timer_init_vhe(void)
1171 {
1172 	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
1173 	u32 cnthctl_shift = 10;
1174 	u64 val;
1175 
1176 	/*
1177 	 * VHE systems allow the guest direct access to the EL1 physical
1178 	 * timer/counter.
1179 	 */
1180 	val = read_sysreg(cnthctl_el2);
1181 	val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
1182 	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
1183 	write_sysreg(val, cnthctl_el2);
1184 }
1185 
1186 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
1187 {
1188 	struct kvm_vcpu *vcpu;
1189 	int i;
1190 
1191 	kvm_for_each_vcpu(i, vcpu, kvm) {
1192 		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
1193 		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
1194 	}
1195 }
1196 
1197 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1198 {
1199 	int __user *uaddr = (int __user *)(long)attr->addr;
1200 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
1201 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
1202 	int irq;
1203 
1204 	if (!irqchip_in_kernel(vcpu->kvm))
1205 		return -EINVAL;
1206 
1207 	if (get_user(irq, uaddr))
1208 		return -EFAULT;
1209 
1210 	if (!(irq_is_ppi(irq)))
1211 		return -EINVAL;
1212 
1213 	if (vcpu->arch.timer_cpu.enabled)
1214 		return -EBUSY;
1215 
1216 	switch (attr->attr) {
1217 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1218 		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
1219 		break;
1220 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1221 		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
1222 		break;
1223 	default:
1224 		return -ENXIO;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1231 {
1232 	int __user *uaddr = (int __user *)(long)attr->addr;
1233 	struct arch_timer_context *timer;
1234 	int irq;
1235 
1236 	switch (attr->attr) {
1237 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1238 		timer = vcpu_vtimer(vcpu);
1239 		break;
1240 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1241 		timer = vcpu_ptimer(vcpu);
1242 		break;
1243 	default:
1244 		return -ENXIO;
1245 	}
1246 
1247 	irq = timer->irq.irq;
1248 	return put_user(irq, uaddr);
1249 }
1250 
1251 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1252 {
1253 	switch (attr->attr) {
1254 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1255 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1256 		return 0;
1257 	}
1258 
1259 	return -ENXIO;
1260 }
1261