xref: /openbmc/linux/arch/arm64/kernel/traps.c (revision dfe94d40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/traps.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/personality.h>
13 #include <linux/kallsyms.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kdebug.h>
19 #include <linux/module.h>
20 #include <linux/kexec.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/debug.h>
25 #include <linux/sched/task_stack.h>
26 #include <linux/sizes.h>
27 #include <linux/syscalls.h>
28 #include <linux/mm_types.h>
29 #include <linux/kasan.h>
30 
31 #include <asm/atomic.h>
32 #include <asm/bug.h>
33 #include <asm/cpufeature.h>
34 #include <asm/daifflags.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/esr.h>
37 #include <asm/exception.h>
38 #include <asm/extable.h>
39 #include <asm/insn.h>
40 #include <asm/kprobes.h>
41 #include <asm/traps.h>
42 #include <asm/smp.h>
43 #include <asm/stack_pointer.h>
44 #include <asm/stacktrace.h>
45 #include <asm/exception.h>
46 #include <asm/system_misc.h>
47 #include <asm/sysreg.h>
48 
49 static const char *handler[]= {
50 	"Synchronous Abort",
51 	"IRQ",
52 	"FIQ",
53 	"Error"
54 };
55 
56 int show_unhandled_signals = 0;
57 
58 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
59 {
60 	unsigned long addr = instruction_pointer(regs);
61 	char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
62 	int i;
63 
64 	if (user_mode(regs))
65 		return;
66 
67 	for (i = -4; i < 1; i++) {
68 		unsigned int val, bad;
69 
70 		bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
71 
72 		if (!bad)
73 			p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
74 		else {
75 			p += sprintf(p, "bad PC value");
76 			break;
77 		}
78 	}
79 
80 	printk("%sCode: %s\n", lvl, str);
81 }
82 
83 #ifdef CONFIG_PREEMPT
84 #define S_PREEMPT " PREEMPT"
85 #elif defined(CONFIG_PREEMPT_RT)
86 #define S_PREEMPT " PREEMPT_RT"
87 #else
88 #define S_PREEMPT ""
89 #endif
90 
91 #define S_SMP " SMP"
92 
93 static int __die(const char *str, int err, struct pt_regs *regs)
94 {
95 	static int die_counter;
96 	int ret;
97 
98 	pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
99 		 str, err, ++die_counter);
100 
101 	/* trap and error numbers are mostly meaningless on ARM */
102 	ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
103 	if (ret == NOTIFY_STOP)
104 		return ret;
105 
106 	print_modules();
107 	show_regs(regs);
108 
109 	dump_kernel_instr(KERN_EMERG, regs);
110 
111 	return ret;
112 }
113 
114 static DEFINE_RAW_SPINLOCK(die_lock);
115 
116 /*
117  * This function is protected against re-entrancy.
118  */
119 void die(const char *str, struct pt_regs *regs, int err)
120 {
121 	int ret;
122 	unsigned long flags;
123 
124 	raw_spin_lock_irqsave(&die_lock, flags);
125 
126 	oops_enter();
127 
128 	console_verbose();
129 	bust_spinlocks(1);
130 	ret = __die(str, err, regs);
131 
132 	if (regs && kexec_should_crash(current))
133 		crash_kexec(regs);
134 
135 	bust_spinlocks(0);
136 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
137 	oops_exit();
138 
139 	if (in_interrupt())
140 		panic("%s: Fatal exception in interrupt", str);
141 	if (panic_on_oops)
142 		panic("%s: Fatal exception", str);
143 
144 	raw_spin_unlock_irqrestore(&die_lock, flags);
145 
146 	if (ret != NOTIFY_STOP)
147 		do_exit(SIGSEGV);
148 }
149 
150 static void arm64_show_signal(int signo, const char *str)
151 {
152 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
153 				      DEFAULT_RATELIMIT_BURST);
154 	struct task_struct *tsk = current;
155 	unsigned int esr = tsk->thread.fault_code;
156 	struct pt_regs *regs = task_pt_regs(tsk);
157 
158 	/* Leave if the signal won't be shown */
159 	if (!show_unhandled_signals ||
160 	    !unhandled_signal(tsk, signo) ||
161 	    !__ratelimit(&rs))
162 		return;
163 
164 	pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
165 	if (esr)
166 		pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
167 
168 	pr_cont("%s", str);
169 	print_vma_addr(KERN_CONT " in ", regs->pc);
170 	pr_cont("\n");
171 	__show_regs(regs);
172 }
173 
174 void arm64_force_sig_fault(int signo, int code, unsigned long far,
175 			   const char *str)
176 {
177 	arm64_show_signal(signo, str);
178 	if (signo == SIGKILL)
179 		force_sig(SIGKILL);
180 	else
181 		force_sig_fault(signo, code, (void __user *)far);
182 }
183 
184 void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
185 			    const char *str)
186 {
187 	arm64_show_signal(SIGBUS, str);
188 	force_sig_mceerr(code, (void __user *)far, lsb);
189 }
190 
191 void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
192 				       const char *str)
193 {
194 	arm64_show_signal(SIGTRAP, str);
195 	force_sig_ptrace_errno_trap(errno, (void __user *)far);
196 }
197 
198 void arm64_notify_die(const char *str, struct pt_regs *regs,
199 		      int signo, int sicode, unsigned long far,
200 		      int err)
201 {
202 	if (user_mode(regs)) {
203 		WARN_ON(regs != current_pt_regs());
204 		current->thread.fault_address = 0;
205 		current->thread.fault_code = err;
206 
207 		arm64_force_sig_fault(signo, sicode, far, str);
208 	} else {
209 		die(str, regs, err);
210 	}
211 }
212 
213 #ifdef CONFIG_COMPAT
214 #define PSTATE_IT_1_0_SHIFT	25
215 #define PSTATE_IT_1_0_MASK	(0x3 << PSTATE_IT_1_0_SHIFT)
216 #define PSTATE_IT_7_2_SHIFT	10
217 #define PSTATE_IT_7_2_MASK	(0x3f << PSTATE_IT_7_2_SHIFT)
218 
219 static u32 compat_get_it_state(struct pt_regs *regs)
220 {
221 	u32 it, pstate = regs->pstate;
222 
223 	it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
224 	it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
225 
226 	return it;
227 }
228 
229 static void compat_set_it_state(struct pt_regs *regs, u32 it)
230 {
231 	u32 pstate_it;
232 
233 	pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
234 	pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
235 
236 	regs->pstate &= ~PSR_AA32_IT_MASK;
237 	regs->pstate |= pstate_it;
238 }
239 
240 static void advance_itstate(struct pt_regs *regs)
241 {
242 	u32 it;
243 
244 	/* ARM mode */
245 	if (!(regs->pstate & PSR_AA32_T_BIT) ||
246 	    !(regs->pstate & PSR_AA32_IT_MASK))
247 		return;
248 
249 	it  = compat_get_it_state(regs);
250 
251 	/*
252 	 * If this is the last instruction of the block, wipe the IT
253 	 * state. Otherwise advance it.
254 	 */
255 	if (!(it & 7))
256 		it = 0;
257 	else
258 		it = (it & 0xe0) | ((it << 1) & 0x1f);
259 
260 	compat_set_it_state(regs, it);
261 }
262 #else
263 static void advance_itstate(struct pt_regs *regs)
264 {
265 }
266 #endif
267 
268 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
269 {
270 	regs->pc += size;
271 
272 	/*
273 	 * If we were single stepping, we want to get the step exception after
274 	 * we return from the trap.
275 	 */
276 	if (user_mode(regs))
277 		user_fastforward_single_step(current);
278 
279 	if (compat_user_mode(regs))
280 		advance_itstate(regs);
281 	else
282 		regs->pstate &= ~PSR_BTYPE_MASK;
283 }
284 
285 static LIST_HEAD(undef_hook);
286 static DEFINE_RAW_SPINLOCK(undef_lock);
287 
288 void register_undef_hook(struct undef_hook *hook)
289 {
290 	unsigned long flags;
291 
292 	raw_spin_lock_irqsave(&undef_lock, flags);
293 	list_add(&hook->node, &undef_hook);
294 	raw_spin_unlock_irqrestore(&undef_lock, flags);
295 }
296 
297 void unregister_undef_hook(struct undef_hook *hook)
298 {
299 	unsigned long flags;
300 
301 	raw_spin_lock_irqsave(&undef_lock, flags);
302 	list_del(&hook->node);
303 	raw_spin_unlock_irqrestore(&undef_lock, flags);
304 }
305 
306 static int call_undef_hook(struct pt_regs *regs)
307 {
308 	struct undef_hook *hook;
309 	unsigned long flags;
310 	u32 instr;
311 	int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
312 	void __user *pc = (void __user *)instruction_pointer(regs);
313 
314 	if (!user_mode(regs)) {
315 		__le32 instr_le;
316 		if (get_kernel_nofault(instr_le, (__force __le32 *)pc))
317 			goto exit;
318 		instr = le32_to_cpu(instr_le);
319 	} else if (compat_thumb_mode(regs)) {
320 		/* 16-bit Thumb instruction */
321 		__le16 instr_le;
322 		if (get_user(instr_le, (__le16 __user *)pc))
323 			goto exit;
324 		instr = le16_to_cpu(instr_le);
325 		if (aarch32_insn_is_wide(instr)) {
326 			u32 instr2;
327 
328 			if (get_user(instr_le, (__le16 __user *)(pc + 2)))
329 				goto exit;
330 			instr2 = le16_to_cpu(instr_le);
331 			instr = (instr << 16) | instr2;
332 		}
333 	} else {
334 		/* 32-bit ARM instruction */
335 		__le32 instr_le;
336 		if (get_user(instr_le, (__le32 __user *)pc))
337 			goto exit;
338 		instr = le32_to_cpu(instr_le);
339 	}
340 
341 	raw_spin_lock_irqsave(&undef_lock, flags);
342 	list_for_each_entry(hook, &undef_hook, node)
343 		if ((instr & hook->instr_mask) == hook->instr_val &&
344 			(regs->pstate & hook->pstate_mask) == hook->pstate_val)
345 			fn = hook->fn;
346 
347 	raw_spin_unlock_irqrestore(&undef_lock, flags);
348 exit:
349 	return fn ? fn(regs, instr) : 1;
350 }
351 
352 void force_signal_inject(int signal, int code, unsigned long address, unsigned int err)
353 {
354 	const char *desc;
355 	struct pt_regs *regs = current_pt_regs();
356 
357 	if (WARN_ON(!user_mode(regs)))
358 		return;
359 
360 	switch (signal) {
361 	case SIGILL:
362 		desc = "undefined instruction";
363 		break;
364 	case SIGSEGV:
365 		desc = "illegal memory access";
366 		break;
367 	default:
368 		desc = "unknown or unrecoverable error";
369 		break;
370 	}
371 
372 	/* Force signals we don't understand to SIGKILL */
373 	if (WARN_ON(signal != SIGKILL &&
374 		    siginfo_layout(signal, code) != SIL_FAULT)) {
375 		signal = SIGKILL;
376 	}
377 
378 	arm64_notify_die(desc, regs, signal, code, address, err);
379 }
380 
381 /*
382  * Set up process info to signal segmentation fault - called on access error.
383  */
384 void arm64_notify_segfault(unsigned long addr)
385 {
386 	int code;
387 
388 	mmap_read_lock(current->mm);
389 	if (find_vma(current->mm, untagged_addr(addr)) == NULL)
390 		code = SEGV_MAPERR;
391 	else
392 		code = SEGV_ACCERR;
393 	mmap_read_unlock(current->mm);
394 
395 	force_signal_inject(SIGSEGV, code, addr, 0);
396 }
397 
398 void do_undefinstr(struct pt_regs *regs)
399 {
400 	/* check for AArch32 breakpoint instructions */
401 	if (!aarch32_break_handler(regs))
402 		return;
403 
404 	if (call_undef_hook(regs) == 0)
405 		return;
406 
407 	BUG_ON(!user_mode(regs));
408 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
409 }
410 NOKPROBE_SYMBOL(do_undefinstr);
411 
412 void do_bti(struct pt_regs *regs)
413 {
414 	BUG_ON(!user_mode(regs));
415 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
416 }
417 NOKPROBE_SYMBOL(do_bti);
418 
419 void do_ptrauth_fault(struct pt_regs *regs, unsigned int esr)
420 {
421 	/*
422 	 * Unexpected FPAC exception or pointer authentication failure in
423 	 * the kernel: kill the task before it does any more harm.
424 	 */
425 	BUG_ON(!user_mode(regs));
426 	force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
427 }
428 NOKPROBE_SYMBOL(do_ptrauth_fault);
429 
430 #define __user_cache_maint(insn, address, res)			\
431 	if (address >= user_addr_max()) {			\
432 		res = -EFAULT;					\
433 	} else {						\
434 		uaccess_ttbr0_enable();				\
435 		asm volatile (					\
436 			"1:	" insn ", %1\n"			\
437 			"	mov	%w0, #0\n"		\
438 			"2:\n"					\
439 			"	.pushsection .fixup,\"ax\"\n"	\
440 			"	.align	2\n"			\
441 			"3:	mov	%w0, %w2\n"		\
442 			"	b	2b\n"			\
443 			"	.popsection\n"			\
444 			_ASM_EXTABLE(1b, 3b)			\
445 			: "=r" (res)				\
446 			: "r" (address), "i" (-EFAULT));	\
447 		uaccess_ttbr0_disable();			\
448 	}
449 
450 static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
451 {
452 	unsigned long tagged_address, address;
453 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
454 	int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
455 	int ret = 0;
456 
457 	tagged_address = pt_regs_read_reg(regs, rt);
458 	address = untagged_addr(tagged_address);
459 
460 	switch (crm) {
461 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:	/* DC CVAU, gets promoted */
462 		__user_cache_maint("dc civac", address, ret);
463 		break;
464 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:	/* DC CVAC, gets promoted */
465 		__user_cache_maint("dc civac", address, ret);
466 		break;
467 	case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:	/* DC CVADP */
468 		__user_cache_maint("sys 3, c7, c13, 1", address, ret);
469 		break;
470 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:	/* DC CVAP */
471 		__user_cache_maint("sys 3, c7, c12, 1", address, ret);
472 		break;
473 	case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:	/* DC CIVAC */
474 		__user_cache_maint("dc civac", address, ret);
475 		break;
476 	case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:	/* IC IVAU */
477 		__user_cache_maint("ic ivau", address, ret);
478 		break;
479 	default:
480 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
481 		return;
482 	}
483 
484 	if (ret)
485 		arm64_notify_segfault(tagged_address);
486 	else
487 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
488 }
489 
490 static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
491 {
492 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
493 	unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
494 
495 	if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
496 		/* Hide DIC so that we can trap the unnecessary maintenance...*/
497 		val &= ~BIT(CTR_DIC_SHIFT);
498 
499 		/* ... and fake IminLine to reduce the number of traps. */
500 		val &= ~CTR_IMINLINE_MASK;
501 		val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK;
502 	}
503 
504 	pt_regs_write_reg(regs, rt, val);
505 
506 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
507 }
508 
509 static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
510 {
511 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
512 
513 	pt_regs_write_reg(regs, rt, arch_timer_read_counter());
514 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
515 }
516 
517 static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
518 {
519 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
520 
521 	pt_regs_write_reg(regs, rt, arch_timer_get_rate());
522 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
523 }
524 
525 static void mrs_handler(unsigned int esr, struct pt_regs *regs)
526 {
527 	u32 sysreg, rt;
528 
529 	rt = ESR_ELx_SYS64_ISS_RT(esr);
530 	sysreg = esr_sys64_to_sysreg(esr);
531 
532 	if (do_emulate_mrs(regs, sysreg, rt) != 0)
533 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
534 }
535 
536 static void wfi_handler(unsigned int esr, struct pt_regs *regs)
537 {
538 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
539 }
540 
541 struct sys64_hook {
542 	unsigned int esr_mask;
543 	unsigned int esr_val;
544 	void (*handler)(unsigned int esr, struct pt_regs *regs);
545 };
546 
547 static const struct sys64_hook sys64_hooks[] = {
548 	{
549 		.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
550 		.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
551 		.handler = user_cache_maint_handler,
552 	},
553 	{
554 		/* Trap read access to CTR_EL0 */
555 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
556 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
557 		.handler = ctr_read_handler,
558 	},
559 	{
560 		/* Trap read access to CNTVCT_EL0 */
561 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
562 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
563 		.handler = cntvct_read_handler,
564 	},
565 	{
566 		/* Trap read access to CNTFRQ_EL0 */
567 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
568 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
569 		.handler = cntfrq_read_handler,
570 	},
571 	{
572 		/* Trap read access to CPUID registers */
573 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
574 		.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
575 		.handler = mrs_handler,
576 	},
577 	{
578 		/* Trap WFI instructions executed in userspace */
579 		.esr_mask = ESR_ELx_WFx_MASK,
580 		.esr_val = ESR_ELx_WFx_WFI_VAL,
581 		.handler = wfi_handler,
582 	},
583 	{},
584 };
585 
586 #ifdef CONFIG_COMPAT
587 static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
588 {
589 	int cond;
590 
591 	/* Only a T32 instruction can trap without CV being set */
592 	if (!(esr & ESR_ELx_CV)) {
593 		u32 it;
594 
595 		it = compat_get_it_state(regs);
596 		if (!it)
597 			return true;
598 
599 		cond = it >> 4;
600 	} else {
601 		cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
602 	}
603 
604 	return aarch32_opcode_cond_checks[cond](regs->pstate);
605 }
606 
607 static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
608 {
609 	int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
610 
611 	pt_regs_write_reg(regs, reg, arch_timer_get_rate());
612 	arm64_skip_faulting_instruction(regs, 4);
613 }
614 
615 static const struct sys64_hook cp15_32_hooks[] = {
616 	{
617 		.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
618 		.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
619 		.handler = compat_cntfrq_read_handler,
620 	},
621 	{},
622 };
623 
624 static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
625 {
626 	int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
627 	int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
628 	u64 val = arch_timer_read_counter();
629 
630 	pt_regs_write_reg(regs, rt, lower_32_bits(val));
631 	pt_regs_write_reg(regs, rt2, upper_32_bits(val));
632 	arm64_skip_faulting_instruction(regs, 4);
633 }
634 
635 static const struct sys64_hook cp15_64_hooks[] = {
636 	{
637 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
638 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
639 		.handler = compat_cntvct_read_handler,
640 	},
641 	{},
642 };
643 
644 void do_cp15instr(unsigned int esr, struct pt_regs *regs)
645 {
646 	const struct sys64_hook *hook, *hook_base;
647 
648 	if (!cp15_cond_valid(esr, regs)) {
649 		/*
650 		 * There is no T16 variant of a CP access, so we
651 		 * always advance PC by 4 bytes.
652 		 */
653 		arm64_skip_faulting_instruction(regs, 4);
654 		return;
655 	}
656 
657 	switch (ESR_ELx_EC(esr)) {
658 	case ESR_ELx_EC_CP15_32:
659 		hook_base = cp15_32_hooks;
660 		break;
661 	case ESR_ELx_EC_CP15_64:
662 		hook_base = cp15_64_hooks;
663 		break;
664 	default:
665 		do_undefinstr(regs);
666 		return;
667 	}
668 
669 	for (hook = hook_base; hook->handler; hook++)
670 		if ((hook->esr_mask & esr) == hook->esr_val) {
671 			hook->handler(esr, regs);
672 			return;
673 		}
674 
675 	/*
676 	 * New cp15 instructions may previously have been undefined at
677 	 * EL0. Fall back to our usual undefined instruction handler
678 	 * so that we handle these consistently.
679 	 */
680 	do_undefinstr(regs);
681 }
682 NOKPROBE_SYMBOL(do_cp15instr);
683 #endif
684 
685 void do_sysinstr(unsigned int esr, struct pt_regs *regs)
686 {
687 	const struct sys64_hook *hook;
688 
689 	for (hook = sys64_hooks; hook->handler; hook++)
690 		if ((hook->esr_mask & esr) == hook->esr_val) {
691 			hook->handler(esr, regs);
692 			return;
693 		}
694 
695 	/*
696 	 * New SYS instructions may previously have been undefined at EL0. Fall
697 	 * back to our usual undefined instruction handler so that we handle
698 	 * these consistently.
699 	 */
700 	do_undefinstr(regs);
701 }
702 NOKPROBE_SYMBOL(do_sysinstr);
703 
704 static const char *esr_class_str[] = {
705 	[0 ... ESR_ELx_EC_MAX]		= "UNRECOGNIZED EC",
706 	[ESR_ELx_EC_UNKNOWN]		= "Unknown/Uncategorized",
707 	[ESR_ELx_EC_WFx]		= "WFI/WFE",
708 	[ESR_ELx_EC_CP15_32]		= "CP15 MCR/MRC",
709 	[ESR_ELx_EC_CP15_64]		= "CP15 MCRR/MRRC",
710 	[ESR_ELx_EC_CP14_MR]		= "CP14 MCR/MRC",
711 	[ESR_ELx_EC_CP14_LS]		= "CP14 LDC/STC",
712 	[ESR_ELx_EC_FP_ASIMD]		= "ASIMD",
713 	[ESR_ELx_EC_CP10_ID]		= "CP10 MRC/VMRS",
714 	[ESR_ELx_EC_PAC]		= "PAC",
715 	[ESR_ELx_EC_CP14_64]		= "CP14 MCRR/MRRC",
716 	[ESR_ELx_EC_BTI]		= "BTI",
717 	[ESR_ELx_EC_ILL]		= "PSTATE.IL",
718 	[ESR_ELx_EC_SVC32]		= "SVC (AArch32)",
719 	[ESR_ELx_EC_HVC32]		= "HVC (AArch32)",
720 	[ESR_ELx_EC_SMC32]		= "SMC (AArch32)",
721 	[ESR_ELx_EC_SVC64]		= "SVC (AArch64)",
722 	[ESR_ELx_EC_HVC64]		= "HVC (AArch64)",
723 	[ESR_ELx_EC_SMC64]		= "SMC (AArch64)",
724 	[ESR_ELx_EC_SYS64]		= "MSR/MRS (AArch64)",
725 	[ESR_ELx_EC_SVE]		= "SVE",
726 	[ESR_ELx_EC_ERET]		= "ERET/ERETAA/ERETAB",
727 	[ESR_ELx_EC_FPAC]		= "FPAC",
728 	[ESR_ELx_EC_IMP_DEF]		= "EL3 IMP DEF",
729 	[ESR_ELx_EC_IABT_LOW]		= "IABT (lower EL)",
730 	[ESR_ELx_EC_IABT_CUR]		= "IABT (current EL)",
731 	[ESR_ELx_EC_PC_ALIGN]		= "PC Alignment",
732 	[ESR_ELx_EC_DABT_LOW]		= "DABT (lower EL)",
733 	[ESR_ELx_EC_DABT_CUR]		= "DABT (current EL)",
734 	[ESR_ELx_EC_SP_ALIGN]		= "SP Alignment",
735 	[ESR_ELx_EC_FP_EXC32]		= "FP (AArch32)",
736 	[ESR_ELx_EC_FP_EXC64]		= "FP (AArch64)",
737 	[ESR_ELx_EC_SERROR]		= "SError",
738 	[ESR_ELx_EC_BREAKPT_LOW]	= "Breakpoint (lower EL)",
739 	[ESR_ELx_EC_BREAKPT_CUR]	= "Breakpoint (current EL)",
740 	[ESR_ELx_EC_SOFTSTP_LOW]	= "Software Step (lower EL)",
741 	[ESR_ELx_EC_SOFTSTP_CUR]	= "Software Step (current EL)",
742 	[ESR_ELx_EC_WATCHPT_LOW]	= "Watchpoint (lower EL)",
743 	[ESR_ELx_EC_WATCHPT_CUR]	= "Watchpoint (current EL)",
744 	[ESR_ELx_EC_BKPT32]		= "BKPT (AArch32)",
745 	[ESR_ELx_EC_VECTOR32]		= "Vector catch (AArch32)",
746 	[ESR_ELx_EC_BRK64]		= "BRK (AArch64)",
747 };
748 
749 const char *esr_get_class_string(u32 esr)
750 {
751 	return esr_class_str[ESR_ELx_EC(esr)];
752 }
753 
754 /*
755  * bad_mode handles the impossible case in the exception vector. This is always
756  * fatal.
757  */
758 asmlinkage void notrace bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
759 {
760 	arm64_enter_nmi(regs);
761 
762 	console_verbose();
763 
764 	pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
765 		handler[reason], smp_processor_id(), esr,
766 		esr_get_class_string(esr));
767 
768 	__show_regs(regs);
769 	local_daif_mask();
770 	panic("bad mode");
771 }
772 
773 /*
774  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
775  * exceptions taken from EL0. Unlike bad_mode, this returns.
776  */
777 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
778 {
779 	unsigned long pc = instruction_pointer(regs);
780 
781 	current->thread.fault_address = 0;
782 	current->thread.fault_code = esr;
783 
784 	arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
785 			      "Bad EL0 synchronous exception");
786 }
787 
788 #ifdef CONFIG_VMAP_STACK
789 
790 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
791 	__aligned(16);
792 
793 asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs)
794 {
795 	unsigned long tsk_stk = (unsigned long)current->stack;
796 	unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
797 	unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
798 	unsigned int esr = read_sysreg(esr_el1);
799 	unsigned long far = read_sysreg(far_el1);
800 
801 	arm64_enter_nmi(regs);
802 
803 	console_verbose();
804 	pr_emerg("Insufficient stack space to handle exception!");
805 
806 	pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
807 	pr_emerg("FAR: 0x%016lx\n", far);
808 
809 	pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
810 		 tsk_stk, tsk_stk + THREAD_SIZE);
811 	pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
812 		 irq_stk, irq_stk + IRQ_STACK_SIZE);
813 	pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
814 		 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
815 
816 	__show_regs(regs);
817 
818 	/*
819 	 * We use nmi_panic to limit the potential for recusive overflows, and
820 	 * to get a better stack trace.
821 	 */
822 	nmi_panic(NULL, "kernel stack overflow");
823 	cpu_park_loop();
824 }
825 #endif
826 
827 void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
828 {
829 	console_verbose();
830 
831 	pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
832 		smp_processor_id(), esr, esr_get_class_string(esr));
833 	if (regs)
834 		__show_regs(regs);
835 
836 	nmi_panic(regs, "Asynchronous SError Interrupt");
837 
838 	cpu_park_loop();
839 	unreachable();
840 }
841 
842 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
843 {
844 	u32 aet = arm64_ras_serror_get_severity(esr);
845 
846 	switch (aet) {
847 	case ESR_ELx_AET_CE:	/* corrected error */
848 	case ESR_ELx_AET_UEO:	/* restartable, not yet consumed */
849 		/*
850 		 * The CPU can make progress. We may take UEO again as
851 		 * a more severe error.
852 		 */
853 		return false;
854 
855 	case ESR_ELx_AET_UEU:	/* Uncorrected Unrecoverable */
856 	case ESR_ELx_AET_UER:	/* Uncorrected Recoverable */
857 		/*
858 		 * The CPU can't make progress. The exception may have
859 		 * been imprecise.
860 		 *
861 		 * Neoverse-N1 #1349291 means a non-KVM SError reported as
862 		 * Unrecoverable should be treated as Uncontainable. We
863 		 * call arm64_serror_panic() in both cases.
864 		 */
865 		return true;
866 
867 	case ESR_ELx_AET_UC:	/* Uncontainable or Uncategorized error */
868 	default:
869 		/* Error has been silently propagated */
870 		arm64_serror_panic(regs, esr);
871 	}
872 }
873 
874 asmlinkage void noinstr do_serror(struct pt_regs *regs, unsigned int esr)
875 {
876 	arm64_enter_nmi(regs);
877 
878 	/* non-RAS errors are not containable */
879 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
880 		arm64_serror_panic(regs, esr);
881 
882 	arm64_exit_nmi(regs);
883 }
884 
885 /* GENERIC_BUG traps */
886 
887 int is_valid_bugaddr(unsigned long addr)
888 {
889 	/*
890 	 * bug_handler() only called for BRK #BUG_BRK_IMM.
891 	 * So the answer is trivial -- any spurious instances with no
892 	 * bug table entry will be rejected by report_bug() and passed
893 	 * back to the debug-monitors code and handled as a fatal
894 	 * unexpected debug exception.
895 	 */
896 	return 1;
897 }
898 
899 static int bug_handler(struct pt_regs *regs, unsigned int esr)
900 {
901 	switch (report_bug(regs->pc, regs)) {
902 	case BUG_TRAP_TYPE_BUG:
903 		die("Oops - BUG", regs, 0);
904 		break;
905 
906 	case BUG_TRAP_TYPE_WARN:
907 		break;
908 
909 	default:
910 		/* unknown/unrecognised bug trap type */
911 		return DBG_HOOK_ERROR;
912 	}
913 
914 	/* If thread survives, skip over the BUG instruction and continue: */
915 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
916 	return DBG_HOOK_HANDLED;
917 }
918 
919 static struct break_hook bug_break_hook = {
920 	.fn = bug_handler,
921 	.imm = BUG_BRK_IMM,
922 };
923 
924 static int reserved_fault_handler(struct pt_regs *regs, unsigned int esr)
925 {
926 	pr_err("%s generated an invalid instruction at %pS!\n",
927 		in_bpf_jit(regs) ? "BPF JIT" : "Kernel text patching",
928 		(void *)instruction_pointer(regs));
929 
930 	/* We cannot handle this */
931 	return DBG_HOOK_ERROR;
932 }
933 
934 static struct break_hook fault_break_hook = {
935 	.fn = reserved_fault_handler,
936 	.imm = FAULT_BRK_IMM,
937 };
938 
939 #ifdef CONFIG_KASAN_SW_TAGS
940 
941 #define KASAN_ESR_RECOVER	0x20
942 #define KASAN_ESR_WRITE	0x10
943 #define KASAN_ESR_SIZE_MASK	0x0f
944 #define KASAN_ESR_SIZE(esr)	(1 << ((esr) & KASAN_ESR_SIZE_MASK))
945 
946 static int kasan_handler(struct pt_regs *regs, unsigned int esr)
947 {
948 	bool recover = esr & KASAN_ESR_RECOVER;
949 	bool write = esr & KASAN_ESR_WRITE;
950 	size_t size = KASAN_ESR_SIZE(esr);
951 	u64 addr = regs->regs[0];
952 	u64 pc = regs->pc;
953 
954 	kasan_report(addr, size, write, pc);
955 
956 	/*
957 	 * The instrumentation allows to control whether we can proceed after
958 	 * a crash was detected. This is done by passing the -recover flag to
959 	 * the compiler. Disabling recovery allows to generate more compact
960 	 * code.
961 	 *
962 	 * Unfortunately disabling recovery doesn't work for the kernel right
963 	 * now. KASAN reporting is disabled in some contexts (for example when
964 	 * the allocator accesses slab object metadata; this is controlled by
965 	 * current->kasan_depth). All these accesses are detected by the tool,
966 	 * even though the reports for them are not printed.
967 	 *
968 	 * This is something that might be fixed at some point in the future.
969 	 */
970 	if (!recover)
971 		die("Oops - KASAN", regs, 0);
972 
973 	/* If thread survives, skip over the brk instruction and continue: */
974 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
975 	return DBG_HOOK_HANDLED;
976 }
977 
978 static struct break_hook kasan_break_hook = {
979 	.fn	= kasan_handler,
980 	.imm	= KASAN_BRK_IMM,
981 	.mask	= KASAN_BRK_MASK,
982 };
983 #endif
984 
985 /*
986  * Initial handler for AArch64 BRK exceptions
987  * This handler only used until debug_traps_init().
988  */
989 int __init early_brk64(unsigned long addr, unsigned int esr,
990 		struct pt_regs *regs)
991 {
992 #ifdef CONFIG_KASAN_SW_TAGS
993 	unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
994 
995 	if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
996 		return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
997 #endif
998 	return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
999 }
1000 
1001 void __init trap_init(void)
1002 {
1003 	register_kernel_break_hook(&bug_break_hook);
1004 	register_kernel_break_hook(&fault_break_hook);
1005 #ifdef CONFIG_KASAN_SW_TAGS
1006 	register_kernel_break_hook(&kasan_break_hook);
1007 #endif
1008 	debug_traps_init();
1009 }
1010