xref: /openbmc/linux/arch/arm64/kernel/traps.c (revision d2912cb1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/traps.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/signal.h>
11 #include <linux/personality.h>
12 #include <linux/kallsyms.h>
13 #include <linux/spinlock.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kdebug.h>
17 #include <linux/module.h>
18 #include <linux/kexec.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/sched/signal.h>
22 #include <linux/sched/debug.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sizes.h>
25 #include <linux/syscalls.h>
26 #include <linux/mm_types.h>
27 #include <linux/kasan.h>
28 
29 #include <asm/atomic.h>
30 #include <asm/bug.h>
31 #include <asm/cpufeature.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
34 #include <asm/esr.h>
35 #include <asm/insn.h>
36 #include <asm/traps.h>
37 #include <asm/smp.h>
38 #include <asm/stack_pointer.h>
39 #include <asm/stacktrace.h>
40 #include <asm/exception.h>
41 #include <asm/system_misc.h>
42 #include <asm/sysreg.h>
43 
44 static const char *handler[]= {
45 	"Synchronous Abort",
46 	"IRQ",
47 	"FIQ",
48 	"Error"
49 };
50 
51 int show_unhandled_signals = 0;
52 
53 static void dump_backtrace_entry(unsigned long where)
54 {
55 	printk(" %pS\n", (void *)where);
56 }
57 
58 static void __dump_instr(const char *lvl, struct pt_regs *regs)
59 {
60 	unsigned long addr = instruction_pointer(regs);
61 	char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
62 	int i;
63 
64 	for (i = -4; i < 1; i++) {
65 		unsigned int val, bad;
66 
67 		bad = get_user(val, &((u32 *)addr)[i]);
68 
69 		if (!bad)
70 			p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
71 		else {
72 			p += sprintf(p, "bad PC value");
73 			break;
74 		}
75 	}
76 	printk("%sCode: %s\n", lvl, str);
77 }
78 
79 static void dump_instr(const char *lvl, struct pt_regs *regs)
80 {
81 	if (!user_mode(regs)) {
82 		mm_segment_t fs = get_fs();
83 		set_fs(KERNEL_DS);
84 		__dump_instr(lvl, regs);
85 		set_fs(fs);
86 	} else {
87 		__dump_instr(lvl, regs);
88 	}
89 }
90 
91 void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk)
92 {
93 	struct stackframe frame;
94 	int skip = 0;
95 
96 	pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk);
97 
98 	if (regs) {
99 		if (user_mode(regs))
100 			return;
101 		skip = 1;
102 	}
103 
104 	if (!tsk)
105 		tsk = current;
106 
107 	if (!try_get_task_stack(tsk))
108 		return;
109 
110 	if (tsk == current) {
111 		frame.fp = (unsigned long)__builtin_frame_address(0);
112 		frame.pc = (unsigned long)dump_backtrace;
113 	} else {
114 		/*
115 		 * task blocked in __switch_to
116 		 */
117 		frame.fp = thread_saved_fp(tsk);
118 		frame.pc = thread_saved_pc(tsk);
119 	}
120 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
121 	frame.graph = 0;
122 #endif
123 
124 	printk("Call trace:\n");
125 	do {
126 		/* skip until specified stack frame */
127 		if (!skip) {
128 			dump_backtrace_entry(frame.pc);
129 		} else if (frame.fp == regs->regs[29]) {
130 			skip = 0;
131 			/*
132 			 * Mostly, this is the case where this function is
133 			 * called in panic/abort. As exception handler's
134 			 * stack frame does not contain the corresponding pc
135 			 * at which an exception has taken place, use regs->pc
136 			 * instead.
137 			 */
138 			dump_backtrace_entry(regs->pc);
139 		}
140 	} while (!unwind_frame(tsk, &frame));
141 
142 	put_task_stack(tsk);
143 }
144 
145 void show_stack(struct task_struct *tsk, unsigned long *sp)
146 {
147 	dump_backtrace(NULL, tsk);
148 	barrier();
149 }
150 
151 #ifdef CONFIG_PREEMPT
152 #define S_PREEMPT " PREEMPT"
153 #else
154 #define S_PREEMPT ""
155 #endif
156 #define S_SMP " SMP"
157 
158 static int __die(const char *str, int err, struct pt_regs *regs)
159 {
160 	static int die_counter;
161 	int ret;
162 
163 	pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
164 		 str, err, ++die_counter);
165 
166 	/* trap and error numbers are mostly meaningless on ARM */
167 	ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
168 	if (ret == NOTIFY_STOP)
169 		return ret;
170 
171 	print_modules();
172 	show_regs(regs);
173 
174 	if (!user_mode(regs))
175 		dump_instr(KERN_EMERG, regs);
176 
177 	return ret;
178 }
179 
180 static DEFINE_RAW_SPINLOCK(die_lock);
181 
182 /*
183  * This function is protected against re-entrancy.
184  */
185 void die(const char *str, struct pt_regs *regs, int err)
186 {
187 	int ret;
188 	unsigned long flags;
189 
190 	raw_spin_lock_irqsave(&die_lock, flags);
191 
192 	oops_enter();
193 
194 	console_verbose();
195 	bust_spinlocks(1);
196 	ret = __die(str, err, regs);
197 
198 	if (regs && kexec_should_crash(current))
199 		crash_kexec(regs);
200 
201 	bust_spinlocks(0);
202 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
203 	oops_exit();
204 
205 	if (in_interrupt())
206 		panic("Fatal exception in interrupt");
207 	if (panic_on_oops)
208 		panic("Fatal exception");
209 
210 	raw_spin_unlock_irqrestore(&die_lock, flags);
211 
212 	if (ret != NOTIFY_STOP)
213 		do_exit(SIGSEGV);
214 }
215 
216 static void arm64_show_signal(int signo, const char *str)
217 {
218 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
219 				      DEFAULT_RATELIMIT_BURST);
220 	struct task_struct *tsk = current;
221 	unsigned int esr = tsk->thread.fault_code;
222 	struct pt_regs *regs = task_pt_regs(tsk);
223 
224 	/* Leave if the signal won't be shown */
225 	if (!show_unhandled_signals ||
226 	    !unhandled_signal(tsk, signo) ||
227 	    !__ratelimit(&rs))
228 		return;
229 
230 	pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
231 	if (esr)
232 		pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
233 
234 	pr_cont("%s", str);
235 	print_vma_addr(KERN_CONT " in ", regs->pc);
236 	pr_cont("\n");
237 	__show_regs(regs);
238 }
239 
240 void arm64_force_sig_fault(int signo, int code, void __user *addr,
241 			   const char *str)
242 {
243 	arm64_show_signal(signo, str);
244 	if (signo == SIGKILL)
245 		force_sig(SIGKILL, current);
246 	else
247 		force_sig_fault(signo, code, addr, current);
248 }
249 
250 void arm64_force_sig_mceerr(int code, void __user *addr, short lsb,
251 			    const char *str)
252 {
253 	arm64_show_signal(SIGBUS, str);
254 	force_sig_mceerr(code, addr, lsb, current);
255 }
256 
257 void arm64_force_sig_ptrace_errno_trap(int errno, void __user *addr,
258 				       const char *str)
259 {
260 	arm64_show_signal(SIGTRAP, str);
261 	force_sig_ptrace_errno_trap(errno, addr);
262 }
263 
264 void arm64_notify_die(const char *str, struct pt_regs *regs,
265 		      int signo, int sicode, void __user *addr,
266 		      int err)
267 {
268 	if (user_mode(regs)) {
269 		WARN_ON(regs != current_pt_regs());
270 		current->thread.fault_address = 0;
271 		current->thread.fault_code = err;
272 
273 		arm64_force_sig_fault(signo, sicode, addr, str);
274 	} else {
275 		die(str, regs, err);
276 	}
277 }
278 
279 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
280 {
281 	regs->pc += size;
282 
283 	/*
284 	 * If we were single stepping, we want to get the step exception after
285 	 * we return from the trap.
286 	 */
287 	if (user_mode(regs))
288 		user_fastforward_single_step(current);
289 }
290 
291 static LIST_HEAD(undef_hook);
292 static DEFINE_RAW_SPINLOCK(undef_lock);
293 
294 void register_undef_hook(struct undef_hook *hook)
295 {
296 	unsigned long flags;
297 
298 	raw_spin_lock_irqsave(&undef_lock, flags);
299 	list_add(&hook->node, &undef_hook);
300 	raw_spin_unlock_irqrestore(&undef_lock, flags);
301 }
302 
303 void unregister_undef_hook(struct undef_hook *hook)
304 {
305 	unsigned long flags;
306 
307 	raw_spin_lock_irqsave(&undef_lock, flags);
308 	list_del(&hook->node);
309 	raw_spin_unlock_irqrestore(&undef_lock, flags);
310 }
311 
312 static int call_undef_hook(struct pt_regs *regs)
313 {
314 	struct undef_hook *hook;
315 	unsigned long flags;
316 	u32 instr;
317 	int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
318 	void __user *pc = (void __user *)instruction_pointer(regs);
319 
320 	if (!user_mode(regs)) {
321 		__le32 instr_le;
322 		if (probe_kernel_address((__force __le32 *)pc, instr_le))
323 			goto exit;
324 		instr = le32_to_cpu(instr_le);
325 	} else if (compat_thumb_mode(regs)) {
326 		/* 16-bit Thumb instruction */
327 		__le16 instr_le;
328 		if (get_user(instr_le, (__le16 __user *)pc))
329 			goto exit;
330 		instr = le16_to_cpu(instr_le);
331 		if (aarch32_insn_is_wide(instr)) {
332 			u32 instr2;
333 
334 			if (get_user(instr_le, (__le16 __user *)(pc + 2)))
335 				goto exit;
336 			instr2 = le16_to_cpu(instr_le);
337 			instr = (instr << 16) | instr2;
338 		}
339 	} else {
340 		/* 32-bit ARM instruction */
341 		__le32 instr_le;
342 		if (get_user(instr_le, (__le32 __user *)pc))
343 			goto exit;
344 		instr = le32_to_cpu(instr_le);
345 	}
346 
347 	raw_spin_lock_irqsave(&undef_lock, flags);
348 	list_for_each_entry(hook, &undef_hook, node)
349 		if ((instr & hook->instr_mask) == hook->instr_val &&
350 			(regs->pstate & hook->pstate_mask) == hook->pstate_val)
351 			fn = hook->fn;
352 
353 	raw_spin_unlock_irqrestore(&undef_lock, flags);
354 exit:
355 	return fn ? fn(regs, instr) : 1;
356 }
357 
358 void force_signal_inject(int signal, int code, unsigned long address)
359 {
360 	const char *desc;
361 	struct pt_regs *regs = current_pt_regs();
362 
363 	if (WARN_ON(!user_mode(regs)))
364 		return;
365 
366 	switch (signal) {
367 	case SIGILL:
368 		desc = "undefined instruction";
369 		break;
370 	case SIGSEGV:
371 		desc = "illegal memory access";
372 		break;
373 	default:
374 		desc = "unknown or unrecoverable error";
375 		break;
376 	}
377 
378 	/* Force signals we don't understand to SIGKILL */
379 	if (WARN_ON(signal != SIGKILL &&
380 		    siginfo_layout(signal, code) != SIL_FAULT)) {
381 		signal = SIGKILL;
382 	}
383 
384 	arm64_notify_die(desc, regs, signal, code, (void __user *)address, 0);
385 }
386 
387 /*
388  * Set up process info to signal segmentation fault - called on access error.
389  */
390 void arm64_notify_segfault(unsigned long addr)
391 {
392 	int code;
393 
394 	down_read(&current->mm->mmap_sem);
395 	if (find_vma(current->mm, addr) == NULL)
396 		code = SEGV_MAPERR;
397 	else
398 		code = SEGV_ACCERR;
399 	up_read(&current->mm->mmap_sem);
400 
401 	force_signal_inject(SIGSEGV, code, addr);
402 }
403 
404 asmlinkage void __exception do_undefinstr(struct pt_regs *regs)
405 {
406 	/* check for AArch32 breakpoint instructions */
407 	if (!aarch32_break_handler(regs))
408 		return;
409 
410 	if (call_undef_hook(regs) == 0)
411 		return;
412 
413 	BUG_ON(!user_mode(regs));
414 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
415 }
416 
417 #define __user_cache_maint(insn, address, res)			\
418 	if (address >= user_addr_max()) {			\
419 		res = -EFAULT;					\
420 	} else {						\
421 		uaccess_ttbr0_enable();				\
422 		asm volatile (					\
423 			"1:	" insn ", %1\n"			\
424 			"	mov	%w0, #0\n"		\
425 			"2:\n"					\
426 			"	.pushsection .fixup,\"ax\"\n"	\
427 			"	.align	2\n"			\
428 			"3:	mov	%w0, %w2\n"		\
429 			"	b	2b\n"			\
430 			"	.popsection\n"			\
431 			_ASM_EXTABLE(1b, 3b)			\
432 			: "=r" (res)				\
433 			: "r" (address), "i" (-EFAULT));	\
434 		uaccess_ttbr0_disable();			\
435 	}
436 
437 static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
438 {
439 	unsigned long address;
440 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
441 	int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
442 	int ret = 0;
443 
444 	address = untagged_addr(pt_regs_read_reg(regs, rt));
445 
446 	switch (crm) {
447 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:	/* DC CVAU, gets promoted */
448 		__user_cache_maint("dc civac", address, ret);
449 		break;
450 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:	/* DC CVAC, gets promoted */
451 		__user_cache_maint("dc civac", address, ret);
452 		break;
453 	case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:	/* DC CVADP */
454 		__user_cache_maint("sys 3, c7, c13, 1", address, ret);
455 		break;
456 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:	/* DC CVAP */
457 		__user_cache_maint("sys 3, c7, c12, 1", address, ret);
458 		break;
459 	case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:	/* DC CIVAC */
460 		__user_cache_maint("dc civac", address, ret);
461 		break;
462 	case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:	/* IC IVAU */
463 		__user_cache_maint("ic ivau", address, ret);
464 		break;
465 	default:
466 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
467 		return;
468 	}
469 
470 	if (ret)
471 		arm64_notify_segfault(address);
472 	else
473 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
474 }
475 
476 static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
477 {
478 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
479 	unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
480 
481 	pt_regs_write_reg(regs, rt, val);
482 
483 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
484 }
485 
486 static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
487 {
488 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
489 
490 	pt_regs_write_reg(regs, rt, arch_timer_read_counter());
491 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
492 }
493 
494 static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
495 {
496 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
497 
498 	pt_regs_write_reg(regs, rt, arch_timer_get_rate());
499 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
500 }
501 
502 static void mrs_handler(unsigned int esr, struct pt_regs *regs)
503 {
504 	u32 sysreg, rt;
505 
506 	rt = ESR_ELx_SYS64_ISS_RT(esr);
507 	sysreg = esr_sys64_to_sysreg(esr);
508 
509 	if (do_emulate_mrs(regs, sysreg, rt) != 0)
510 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
511 }
512 
513 static void wfi_handler(unsigned int esr, struct pt_regs *regs)
514 {
515 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
516 }
517 
518 struct sys64_hook {
519 	unsigned int esr_mask;
520 	unsigned int esr_val;
521 	void (*handler)(unsigned int esr, struct pt_regs *regs);
522 };
523 
524 static struct sys64_hook sys64_hooks[] = {
525 	{
526 		.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
527 		.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
528 		.handler = user_cache_maint_handler,
529 	},
530 	{
531 		/* Trap read access to CTR_EL0 */
532 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
533 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
534 		.handler = ctr_read_handler,
535 	},
536 	{
537 		/* Trap read access to CNTVCT_EL0 */
538 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
539 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
540 		.handler = cntvct_read_handler,
541 	},
542 	{
543 		/* Trap read access to CNTFRQ_EL0 */
544 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
545 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
546 		.handler = cntfrq_read_handler,
547 	},
548 	{
549 		/* Trap read access to CPUID registers */
550 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
551 		.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
552 		.handler = mrs_handler,
553 	},
554 	{
555 		/* Trap WFI instructions executed in userspace */
556 		.esr_mask = ESR_ELx_WFx_MASK,
557 		.esr_val = ESR_ELx_WFx_WFI_VAL,
558 		.handler = wfi_handler,
559 	},
560 	{},
561 };
562 
563 
564 #ifdef CONFIG_COMPAT
565 #define PSTATE_IT_1_0_SHIFT	25
566 #define PSTATE_IT_1_0_MASK	(0x3 << PSTATE_IT_1_0_SHIFT)
567 #define PSTATE_IT_7_2_SHIFT	10
568 #define PSTATE_IT_7_2_MASK	(0x3f << PSTATE_IT_7_2_SHIFT)
569 
570 static u32 compat_get_it_state(struct pt_regs *regs)
571 {
572 	u32 it, pstate = regs->pstate;
573 
574 	it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
575 	it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
576 
577 	return it;
578 }
579 
580 static void compat_set_it_state(struct pt_regs *regs, u32 it)
581 {
582 	u32 pstate_it;
583 
584 	pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
585 	pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
586 
587 	regs->pstate &= ~PSR_AA32_IT_MASK;
588 	regs->pstate |= pstate_it;
589 }
590 
591 static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
592 {
593 	int cond;
594 
595 	/* Only a T32 instruction can trap without CV being set */
596 	if (!(esr & ESR_ELx_CV)) {
597 		u32 it;
598 
599 		it = compat_get_it_state(regs);
600 		if (!it)
601 			return true;
602 
603 		cond = it >> 4;
604 	} else {
605 		cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
606 	}
607 
608 	return aarch32_opcode_cond_checks[cond](regs->pstate);
609 }
610 
611 static void advance_itstate(struct pt_regs *regs)
612 {
613 	u32 it;
614 
615 	/* ARM mode */
616 	if (!(regs->pstate & PSR_AA32_T_BIT) ||
617 	    !(regs->pstate & PSR_AA32_IT_MASK))
618 		return;
619 
620 	it  = compat_get_it_state(regs);
621 
622 	/*
623 	 * If this is the last instruction of the block, wipe the IT
624 	 * state. Otherwise advance it.
625 	 */
626 	if (!(it & 7))
627 		it = 0;
628 	else
629 		it = (it & 0xe0) | ((it << 1) & 0x1f);
630 
631 	compat_set_it_state(regs, it);
632 }
633 
634 static void arm64_compat_skip_faulting_instruction(struct pt_regs *regs,
635 						   unsigned int sz)
636 {
637 	advance_itstate(regs);
638 	arm64_skip_faulting_instruction(regs, sz);
639 }
640 
641 static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
642 {
643 	int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
644 
645 	pt_regs_write_reg(regs, reg, arch_timer_get_rate());
646 	arm64_compat_skip_faulting_instruction(regs, 4);
647 }
648 
649 static struct sys64_hook cp15_32_hooks[] = {
650 	{
651 		.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
652 		.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
653 		.handler = compat_cntfrq_read_handler,
654 	},
655 	{},
656 };
657 
658 static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
659 {
660 	int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
661 	int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
662 	u64 val = arch_timer_read_counter();
663 
664 	pt_regs_write_reg(regs, rt, lower_32_bits(val));
665 	pt_regs_write_reg(regs, rt2, upper_32_bits(val));
666 	arm64_compat_skip_faulting_instruction(regs, 4);
667 }
668 
669 static struct sys64_hook cp15_64_hooks[] = {
670 	{
671 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
672 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
673 		.handler = compat_cntvct_read_handler,
674 	},
675 	{},
676 };
677 
678 asmlinkage void __exception do_cp15instr(unsigned int esr, struct pt_regs *regs)
679 {
680 	struct sys64_hook *hook, *hook_base;
681 
682 	if (!cp15_cond_valid(esr, regs)) {
683 		/*
684 		 * There is no T16 variant of a CP access, so we
685 		 * always advance PC by 4 bytes.
686 		 */
687 		arm64_compat_skip_faulting_instruction(regs, 4);
688 		return;
689 	}
690 
691 	switch (ESR_ELx_EC(esr)) {
692 	case ESR_ELx_EC_CP15_32:
693 		hook_base = cp15_32_hooks;
694 		break;
695 	case ESR_ELx_EC_CP15_64:
696 		hook_base = cp15_64_hooks;
697 		break;
698 	default:
699 		do_undefinstr(regs);
700 		return;
701 	}
702 
703 	for (hook = hook_base; hook->handler; hook++)
704 		if ((hook->esr_mask & esr) == hook->esr_val) {
705 			hook->handler(esr, regs);
706 			return;
707 		}
708 
709 	/*
710 	 * New cp15 instructions may previously have been undefined at
711 	 * EL0. Fall back to our usual undefined instruction handler
712 	 * so that we handle these consistently.
713 	 */
714 	do_undefinstr(regs);
715 }
716 #endif
717 
718 asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs)
719 {
720 	struct sys64_hook *hook;
721 
722 	for (hook = sys64_hooks; hook->handler; hook++)
723 		if ((hook->esr_mask & esr) == hook->esr_val) {
724 			hook->handler(esr, regs);
725 			return;
726 		}
727 
728 	/*
729 	 * New SYS instructions may previously have been undefined at EL0. Fall
730 	 * back to our usual undefined instruction handler so that we handle
731 	 * these consistently.
732 	 */
733 	do_undefinstr(regs);
734 }
735 
736 static const char *esr_class_str[] = {
737 	[0 ... ESR_ELx_EC_MAX]		= "UNRECOGNIZED EC",
738 	[ESR_ELx_EC_UNKNOWN]		= "Unknown/Uncategorized",
739 	[ESR_ELx_EC_WFx]		= "WFI/WFE",
740 	[ESR_ELx_EC_CP15_32]		= "CP15 MCR/MRC",
741 	[ESR_ELx_EC_CP15_64]		= "CP15 MCRR/MRRC",
742 	[ESR_ELx_EC_CP14_MR]		= "CP14 MCR/MRC",
743 	[ESR_ELx_EC_CP14_LS]		= "CP14 LDC/STC",
744 	[ESR_ELx_EC_FP_ASIMD]		= "ASIMD",
745 	[ESR_ELx_EC_CP10_ID]		= "CP10 MRC/VMRS",
746 	[ESR_ELx_EC_CP14_64]		= "CP14 MCRR/MRRC",
747 	[ESR_ELx_EC_ILL]		= "PSTATE.IL",
748 	[ESR_ELx_EC_SVC32]		= "SVC (AArch32)",
749 	[ESR_ELx_EC_HVC32]		= "HVC (AArch32)",
750 	[ESR_ELx_EC_SMC32]		= "SMC (AArch32)",
751 	[ESR_ELx_EC_SVC64]		= "SVC (AArch64)",
752 	[ESR_ELx_EC_HVC64]		= "HVC (AArch64)",
753 	[ESR_ELx_EC_SMC64]		= "SMC (AArch64)",
754 	[ESR_ELx_EC_SYS64]		= "MSR/MRS (AArch64)",
755 	[ESR_ELx_EC_SVE]		= "SVE",
756 	[ESR_ELx_EC_IMP_DEF]		= "EL3 IMP DEF",
757 	[ESR_ELx_EC_IABT_LOW]		= "IABT (lower EL)",
758 	[ESR_ELx_EC_IABT_CUR]		= "IABT (current EL)",
759 	[ESR_ELx_EC_PC_ALIGN]		= "PC Alignment",
760 	[ESR_ELx_EC_DABT_LOW]		= "DABT (lower EL)",
761 	[ESR_ELx_EC_DABT_CUR]		= "DABT (current EL)",
762 	[ESR_ELx_EC_SP_ALIGN]		= "SP Alignment",
763 	[ESR_ELx_EC_FP_EXC32]		= "FP (AArch32)",
764 	[ESR_ELx_EC_FP_EXC64]		= "FP (AArch64)",
765 	[ESR_ELx_EC_SERROR]		= "SError",
766 	[ESR_ELx_EC_BREAKPT_LOW]	= "Breakpoint (lower EL)",
767 	[ESR_ELx_EC_BREAKPT_CUR]	= "Breakpoint (current EL)",
768 	[ESR_ELx_EC_SOFTSTP_LOW]	= "Software Step (lower EL)",
769 	[ESR_ELx_EC_SOFTSTP_CUR]	= "Software Step (current EL)",
770 	[ESR_ELx_EC_WATCHPT_LOW]	= "Watchpoint (lower EL)",
771 	[ESR_ELx_EC_WATCHPT_CUR]	= "Watchpoint (current EL)",
772 	[ESR_ELx_EC_BKPT32]		= "BKPT (AArch32)",
773 	[ESR_ELx_EC_VECTOR32]		= "Vector catch (AArch32)",
774 	[ESR_ELx_EC_BRK64]		= "BRK (AArch64)",
775 };
776 
777 const char *esr_get_class_string(u32 esr)
778 {
779 	return esr_class_str[ESR_ELx_EC(esr)];
780 }
781 
782 /*
783  * bad_mode handles the impossible case in the exception vector. This is always
784  * fatal.
785  */
786 asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
787 {
788 	console_verbose();
789 
790 	pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
791 		handler[reason], smp_processor_id(), esr,
792 		esr_get_class_string(esr));
793 
794 	local_daif_mask();
795 	panic("bad mode");
796 }
797 
798 /*
799  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
800  * exceptions taken from EL0. Unlike bad_mode, this returns.
801  */
802 asmlinkage void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
803 {
804 	void __user *pc = (void __user *)instruction_pointer(regs);
805 
806 	current->thread.fault_address = 0;
807 	current->thread.fault_code = esr;
808 
809 	arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
810 			      "Bad EL0 synchronous exception");
811 }
812 
813 #ifdef CONFIG_VMAP_STACK
814 
815 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
816 	__aligned(16);
817 
818 asmlinkage void handle_bad_stack(struct pt_regs *regs)
819 {
820 	unsigned long tsk_stk = (unsigned long)current->stack;
821 	unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
822 	unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
823 	unsigned int esr = read_sysreg(esr_el1);
824 	unsigned long far = read_sysreg(far_el1);
825 
826 	console_verbose();
827 	pr_emerg("Insufficient stack space to handle exception!");
828 
829 	pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
830 	pr_emerg("FAR: 0x%016lx\n", far);
831 
832 	pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
833 		 tsk_stk, tsk_stk + THREAD_SIZE);
834 	pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
835 		 irq_stk, irq_stk + THREAD_SIZE);
836 	pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
837 		 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
838 
839 	__show_regs(regs);
840 
841 	/*
842 	 * We use nmi_panic to limit the potential for recusive overflows, and
843 	 * to get a better stack trace.
844 	 */
845 	nmi_panic(NULL, "kernel stack overflow");
846 	cpu_park_loop();
847 }
848 #endif
849 
850 void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
851 {
852 	console_verbose();
853 
854 	pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
855 		smp_processor_id(), esr, esr_get_class_string(esr));
856 	if (regs)
857 		__show_regs(regs);
858 
859 	nmi_panic(regs, "Asynchronous SError Interrupt");
860 
861 	cpu_park_loop();
862 	unreachable();
863 }
864 
865 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
866 {
867 	u32 aet = arm64_ras_serror_get_severity(esr);
868 
869 	switch (aet) {
870 	case ESR_ELx_AET_CE:	/* corrected error */
871 	case ESR_ELx_AET_UEO:	/* restartable, not yet consumed */
872 		/*
873 		 * The CPU can make progress. We may take UEO again as
874 		 * a more severe error.
875 		 */
876 		return false;
877 
878 	case ESR_ELx_AET_UEU:	/* Uncorrected Unrecoverable */
879 	case ESR_ELx_AET_UER:	/* Uncorrected Recoverable */
880 		/*
881 		 * The CPU can't make progress. The exception may have
882 		 * been imprecise.
883 		 */
884 		return true;
885 
886 	case ESR_ELx_AET_UC:	/* Uncontainable or Uncategorized error */
887 	default:
888 		/* Error has been silently propagated */
889 		arm64_serror_panic(regs, esr);
890 	}
891 }
892 
893 asmlinkage void do_serror(struct pt_regs *regs, unsigned int esr)
894 {
895 	const bool was_in_nmi = in_nmi();
896 
897 	if (!was_in_nmi)
898 		nmi_enter();
899 
900 	/* non-RAS errors are not containable */
901 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
902 		arm64_serror_panic(regs, esr);
903 
904 	if (!was_in_nmi)
905 		nmi_exit();
906 }
907 
908 void __pte_error(const char *file, int line, unsigned long val)
909 {
910 	pr_err("%s:%d: bad pte %016lx.\n", file, line, val);
911 }
912 
913 void __pmd_error(const char *file, int line, unsigned long val)
914 {
915 	pr_err("%s:%d: bad pmd %016lx.\n", file, line, val);
916 }
917 
918 void __pud_error(const char *file, int line, unsigned long val)
919 {
920 	pr_err("%s:%d: bad pud %016lx.\n", file, line, val);
921 }
922 
923 void __pgd_error(const char *file, int line, unsigned long val)
924 {
925 	pr_err("%s:%d: bad pgd %016lx.\n", file, line, val);
926 }
927 
928 /* GENERIC_BUG traps */
929 
930 int is_valid_bugaddr(unsigned long addr)
931 {
932 	/*
933 	 * bug_handler() only called for BRK #BUG_BRK_IMM.
934 	 * So the answer is trivial -- any spurious instances with no
935 	 * bug table entry will be rejected by report_bug() and passed
936 	 * back to the debug-monitors code and handled as a fatal
937 	 * unexpected debug exception.
938 	 */
939 	return 1;
940 }
941 
942 static int bug_handler(struct pt_regs *regs, unsigned int esr)
943 {
944 	switch (report_bug(regs->pc, regs)) {
945 	case BUG_TRAP_TYPE_BUG:
946 		die("Oops - BUG", regs, 0);
947 		break;
948 
949 	case BUG_TRAP_TYPE_WARN:
950 		break;
951 
952 	default:
953 		/* unknown/unrecognised bug trap type */
954 		return DBG_HOOK_ERROR;
955 	}
956 
957 	/* If thread survives, skip over the BUG instruction and continue: */
958 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
959 	return DBG_HOOK_HANDLED;
960 }
961 
962 static struct break_hook bug_break_hook = {
963 	.fn = bug_handler,
964 	.imm = BUG_BRK_IMM,
965 };
966 
967 #ifdef CONFIG_KASAN_SW_TAGS
968 
969 #define KASAN_ESR_RECOVER	0x20
970 #define KASAN_ESR_WRITE	0x10
971 #define KASAN_ESR_SIZE_MASK	0x0f
972 #define KASAN_ESR_SIZE(esr)	(1 << ((esr) & KASAN_ESR_SIZE_MASK))
973 
974 static int kasan_handler(struct pt_regs *regs, unsigned int esr)
975 {
976 	bool recover = esr & KASAN_ESR_RECOVER;
977 	bool write = esr & KASAN_ESR_WRITE;
978 	size_t size = KASAN_ESR_SIZE(esr);
979 	u64 addr = regs->regs[0];
980 	u64 pc = regs->pc;
981 
982 	kasan_report(addr, size, write, pc);
983 
984 	/*
985 	 * The instrumentation allows to control whether we can proceed after
986 	 * a crash was detected. This is done by passing the -recover flag to
987 	 * the compiler. Disabling recovery allows to generate more compact
988 	 * code.
989 	 *
990 	 * Unfortunately disabling recovery doesn't work for the kernel right
991 	 * now. KASAN reporting is disabled in some contexts (for example when
992 	 * the allocator accesses slab object metadata; this is controlled by
993 	 * current->kasan_depth). All these accesses are detected by the tool,
994 	 * even though the reports for them are not printed.
995 	 *
996 	 * This is something that might be fixed at some point in the future.
997 	 */
998 	if (!recover)
999 		die("Oops - KASAN", regs, 0);
1000 
1001 	/* If thread survives, skip over the brk instruction and continue: */
1002 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1003 	return DBG_HOOK_HANDLED;
1004 }
1005 
1006 static struct break_hook kasan_break_hook = {
1007 	.fn	= kasan_handler,
1008 	.imm	= KASAN_BRK_IMM,
1009 	.mask	= KASAN_BRK_MASK,
1010 };
1011 #endif
1012 
1013 /*
1014  * Initial handler for AArch64 BRK exceptions
1015  * This handler only used until debug_traps_init().
1016  */
1017 int __init early_brk64(unsigned long addr, unsigned int esr,
1018 		struct pt_regs *regs)
1019 {
1020 #ifdef CONFIG_KASAN_SW_TAGS
1021 	unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
1022 
1023 	if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1024 		return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1025 #endif
1026 	return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1027 }
1028 
1029 /* This registration must happen early, before debug_traps_init(). */
1030 void __init trap_init(void)
1031 {
1032 	register_kernel_break_hook(&bug_break_hook);
1033 #ifdef CONFIG_KASAN_SW_TAGS
1034 	register_kernel_break_hook(&kasan_break_hook);
1035 #endif
1036 }
1037