xref: /openbmc/linux/arch/arm64/kernel/traps.c (revision ccc319dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/traps.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/kallsyms.h>
13 #include <linux/kprobes.h>
14 #include <linux/spinlock.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kdebug.h>
18 #include <linux/module.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sizes.h>
26 #include <linux/syscalls.h>
27 #include <linux/mm_types.h>
28 #include <linux/kasan.h>
29 
30 #include <asm/atomic.h>
31 #include <asm/bug.h>
32 #include <asm/cpufeature.h>
33 #include <asm/daifflags.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/esr.h>
36 #include <asm/exception.h>
37 #include <asm/extable.h>
38 #include <asm/insn.h>
39 #include <asm/kprobes.h>
40 #include <asm/patching.h>
41 #include <asm/traps.h>
42 #include <asm/smp.h>
43 #include <asm/stack_pointer.h>
44 #include <asm/stacktrace.h>
45 #include <asm/system_misc.h>
46 #include <asm/sysreg.h>
47 
48 static bool __kprobes __check_eq(unsigned long pstate)
49 {
50 	return (pstate & PSR_Z_BIT) != 0;
51 }
52 
53 static bool __kprobes __check_ne(unsigned long pstate)
54 {
55 	return (pstate & PSR_Z_BIT) == 0;
56 }
57 
58 static bool __kprobes __check_cs(unsigned long pstate)
59 {
60 	return (pstate & PSR_C_BIT) != 0;
61 }
62 
63 static bool __kprobes __check_cc(unsigned long pstate)
64 {
65 	return (pstate & PSR_C_BIT) == 0;
66 }
67 
68 static bool __kprobes __check_mi(unsigned long pstate)
69 {
70 	return (pstate & PSR_N_BIT) != 0;
71 }
72 
73 static bool __kprobes __check_pl(unsigned long pstate)
74 {
75 	return (pstate & PSR_N_BIT) == 0;
76 }
77 
78 static bool __kprobes __check_vs(unsigned long pstate)
79 {
80 	return (pstate & PSR_V_BIT) != 0;
81 }
82 
83 static bool __kprobes __check_vc(unsigned long pstate)
84 {
85 	return (pstate & PSR_V_BIT) == 0;
86 }
87 
88 static bool __kprobes __check_hi(unsigned long pstate)
89 {
90 	pstate &= ~(pstate >> 1);	/* PSR_C_BIT &= ~PSR_Z_BIT */
91 	return (pstate & PSR_C_BIT) != 0;
92 }
93 
94 static bool __kprobes __check_ls(unsigned long pstate)
95 {
96 	pstate &= ~(pstate >> 1);	/* PSR_C_BIT &= ~PSR_Z_BIT */
97 	return (pstate & PSR_C_BIT) == 0;
98 }
99 
100 static bool __kprobes __check_ge(unsigned long pstate)
101 {
102 	pstate ^= (pstate << 3);	/* PSR_N_BIT ^= PSR_V_BIT */
103 	return (pstate & PSR_N_BIT) == 0;
104 }
105 
106 static bool __kprobes __check_lt(unsigned long pstate)
107 {
108 	pstate ^= (pstate << 3);	/* PSR_N_BIT ^= PSR_V_BIT */
109 	return (pstate & PSR_N_BIT) != 0;
110 }
111 
112 static bool __kprobes __check_gt(unsigned long pstate)
113 {
114 	/*PSR_N_BIT ^= PSR_V_BIT */
115 	unsigned long temp = pstate ^ (pstate << 3);
116 
117 	temp |= (pstate << 1);	/*PSR_N_BIT |= PSR_Z_BIT */
118 	return (temp & PSR_N_BIT) == 0;
119 }
120 
121 static bool __kprobes __check_le(unsigned long pstate)
122 {
123 	/*PSR_N_BIT ^= PSR_V_BIT */
124 	unsigned long temp = pstate ^ (pstate << 3);
125 
126 	temp |= (pstate << 1);	/*PSR_N_BIT |= PSR_Z_BIT */
127 	return (temp & PSR_N_BIT) != 0;
128 }
129 
130 static bool __kprobes __check_al(unsigned long pstate)
131 {
132 	return true;
133 }
134 
135 /*
136  * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
137  * it behaves identically to 0b1110 ("al").
138  */
139 pstate_check_t * const aarch32_opcode_cond_checks[16] = {
140 	__check_eq, __check_ne, __check_cs, __check_cc,
141 	__check_mi, __check_pl, __check_vs, __check_vc,
142 	__check_hi, __check_ls, __check_ge, __check_lt,
143 	__check_gt, __check_le, __check_al, __check_al
144 };
145 
146 int show_unhandled_signals = 0;
147 
148 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
149 {
150 	unsigned long addr = instruction_pointer(regs);
151 	char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
152 	int i;
153 
154 	if (user_mode(regs))
155 		return;
156 
157 	for (i = -4; i < 1; i++) {
158 		unsigned int val, bad;
159 
160 		bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
161 
162 		if (!bad)
163 			p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
164 		else {
165 			p += sprintf(p, "bad PC value");
166 			break;
167 		}
168 	}
169 
170 	printk("%sCode: %s\n", lvl, str);
171 }
172 
173 #ifdef CONFIG_PREEMPT
174 #define S_PREEMPT " PREEMPT"
175 #elif defined(CONFIG_PREEMPT_RT)
176 #define S_PREEMPT " PREEMPT_RT"
177 #else
178 #define S_PREEMPT ""
179 #endif
180 
181 #define S_SMP " SMP"
182 
183 static int __die(const char *str, int err, struct pt_regs *regs)
184 {
185 	static int die_counter;
186 	int ret;
187 
188 	pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
189 		 str, err, ++die_counter);
190 
191 	/* trap and error numbers are mostly meaningless on ARM */
192 	ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
193 	if (ret == NOTIFY_STOP)
194 		return ret;
195 
196 	print_modules();
197 	show_regs(regs);
198 
199 	dump_kernel_instr(KERN_EMERG, regs);
200 
201 	return ret;
202 }
203 
204 static DEFINE_RAW_SPINLOCK(die_lock);
205 
206 /*
207  * This function is protected against re-entrancy.
208  */
209 void die(const char *str, struct pt_regs *regs, int err)
210 {
211 	int ret;
212 	unsigned long flags;
213 
214 	raw_spin_lock_irqsave(&die_lock, flags);
215 
216 	oops_enter();
217 
218 	console_verbose();
219 	bust_spinlocks(1);
220 	ret = __die(str, err, regs);
221 
222 	if (regs && kexec_should_crash(current))
223 		crash_kexec(regs);
224 
225 	bust_spinlocks(0);
226 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
227 	oops_exit();
228 
229 	if (in_interrupt())
230 		panic("%s: Fatal exception in interrupt", str);
231 	if (panic_on_oops)
232 		panic("%s: Fatal exception", str);
233 
234 	raw_spin_unlock_irqrestore(&die_lock, flags);
235 
236 	if (ret != NOTIFY_STOP)
237 		make_task_dead(SIGSEGV);
238 }
239 
240 static void arm64_show_signal(int signo, const char *str)
241 {
242 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
243 				      DEFAULT_RATELIMIT_BURST);
244 	struct task_struct *tsk = current;
245 	unsigned long esr = tsk->thread.fault_code;
246 	struct pt_regs *regs = task_pt_regs(tsk);
247 
248 	/* Leave if the signal won't be shown */
249 	if (!show_unhandled_signals ||
250 	    !unhandled_signal(tsk, signo) ||
251 	    !__ratelimit(&rs))
252 		return;
253 
254 	pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
255 	if (esr)
256 		pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
257 
258 	pr_cont("%s", str);
259 	print_vma_addr(KERN_CONT " in ", regs->pc);
260 	pr_cont("\n");
261 	__show_regs(regs);
262 }
263 
264 void arm64_force_sig_fault(int signo, int code, unsigned long far,
265 			   const char *str)
266 {
267 	arm64_show_signal(signo, str);
268 	if (signo == SIGKILL)
269 		force_sig(SIGKILL);
270 	else
271 		force_sig_fault(signo, code, (void __user *)far);
272 }
273 
274 void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
275 			    const char *str)
276 {
277 	arm64_show_signal(SIGBUS, str);
278 	force_sig_mceerr(code, (void __user *)far, lsb);
279 }
280 
281 void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
282 				       const char *str)
283 {
284 	arm64_show_signal(SIGTRAP, str);
285 	force_sig_ptrace_errno_trap(errno, (void __user *)far);
286 }
287 
288 void arm64_notify_die(const char *str, struct pt_regs *regs,
289 		      int signo, int sicode, unsigned long far,
290 		      unsigned long err)
291 {
292 	if (user_mode(regs)) {
293 		WARN_ON(regs != current_pt_regs());
294 		current->thread.fault_address = 0;
295 		current->thread.fault_code = err;
296 
297 		arm64_force_sig_fault(signo, sicode, far, str);
298 	} else {
299 		die(str, regs, err);
300 	}
301 }
302 
303 #ifdef CONFIG_COMPAT
304 #define PSTATE_IT_1_0_SHIFT	25
305 #define PSTATE_IT_1_0_MASK	(0x3 << PSTATE_IT_1_0_SHIFT)
306 #define PSTATE_IT_7_2_SHIFT	10
307 #define PSTATE_IT_7_2_MASK	(0x3f << PSTATE_IT_7_2_SHIFT)
308 
309 static u32 compat_get_it_state(struct pt_regs *regs)
310 {
311 	u32 it, pstate = regs->pstate;
312 
313 	it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
314 	it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
315 
316 	return it;
317 }
318 
319 static void compat_set_it_state(struct pt_regs *regs, u32 it)
320 {
321 	u32 pstate_it;
322 
323 	pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
324 	pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
325 
326 	regs->pstate &= ~PSR_AA32_IT_MASK;
327 	regs->pstate |= pstate_it;
328 }
329 
330 static void advance_itstate(struct pt_regs *regs)
331 {
332 	u32 it;
333 
334 	/* ARM mode */
335 	if (!(regs->pstate & PSR_AA32_T_BIT) ||
336 	    !(regs->pstate & PSR_AA32_IT_MASK))
337 		return;
338 
339 	it  = compat_get_it_state(regs);
340 
341 	/*
342 	 * If this is the last instruction of the block, wipe the IT
343 	 * state. Otherwise advance it.
344 	 */
345 	if (!(it & 7))
346 		it = 0;
347 	else
348 		it = (it & 0xe0) | ((it << 1) & 0x1f);
349 
350 	compat_set_it_state(regs, it);
351 }
352 #else
353 static void advance_itstate(struct pt_regs *regs)
354 {
355 }
356 #endif
357 
358 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
359 {
360 	regs->pc += size;
361 
362 	/*
363 	 * If we were single stepping, we want to get the step exception after
364 	 * we return from the trap.
365 	 */
366 	if (user_mode(regs))
367 		user_fastforward_single_step(current);
368 
369 	if (compat_user_mode(regs))
370 		advance_itstate(regs);
371 	else
372 		regs->pstate &= ~PSR_BTYPE_MASK;
373 }
374 
375 static LIST_HEAD(undef_hook);
376 static DEFINE_RAW_SPINLOCK(undef_lock);
377 
378 void register_undef_hook(struct undef_hook *hook)
379 {
380 	unsigned long flags;
381 
382 	raw_spin_lock_irqsave(&undef_lock, flags);
383 	list_add(&hook->node, &undef_hook);
384 	raw_spin_unlock_irqrestore(&undef_lock, flags);
385 }
386 
387 void unregister_undef_hook(struct undef_hook *hook)
388 {
389 	unsigned long flags;
390 
391 	raw_spin_lock_irqsave(&undef_lock, flags);
392 	list_del(&hook->node);
393 	raw_spin_unlock_irqrestore(&undef_lock, flags);
394 }
395 
396 static int call_undef_hook(struct pt_regs *regs)
397 {
398 	struct undef_hook *hook;
399 	unsigned long flags;
400 	u32 instr;
401 	int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
402 	unsigned long pc = instruction_pointer(regs);
403 
404 	if (!user_mode(regs)) {
405 		__le32 instr_le;
406 		if (get_kernel_nofault(instr_le, (__le32 *)pc))
407 			goto exit;
408 		instr = le32_to_cpu(instr_le);
409 	} else if (compat_thumb_mode(regs)) {
410 		/* 16-bit Thumb instruction */
411 		__le16 instr_le;
412 		if (get_user(instr_le, (__le16 __user *)pc))
413 			goto exit;
414 		instr = le16_to_cpu(instr_le);
415 		if (aarch32_insn_is_wide(instr)) {
416 			u32 instr2;
417 
418 			if (get_user(instr_le, (__le16 __user *)(pc + 2)))
419 				goto exit;
420 			instr2 = le16_to_cpu(instr_le);
421 			instr = (instr << 16) | instr2;
422 		}
423 	} else {
424 		/* 32-bit ARM instruction */
425 		__le32 instr_le;
426 		if (get_user(instr_le, (__le32 __user *)pc))
427 			goto exit;
428 		instr = le32_to_cpu(instr_le);
429 	}
430 
431 	raw_spin_lock_irqsave(&undef_lock, flags);
432 	list_for_each_entry(hook, &undef_hook, node)
433 		if ((instr & hook->instr_mask) == hook->instr_val &&
434 			(regs->pstate & hook->pstate_mask) == hook->pstate_val)
435 			fn = hook->fn;
436 
437 	raw_spin_unlock_irqrestore(&undef_lock, flags);
438 exit:
439 	return fn ? fn(regs, instr) : 1;
440 }
441 
442 void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
443 {
444 	const char *desc;
445 	struct pt_regs *regs = current_pt_regs();
446 
447 	if (WARN_ON(!user_mode(regs)))
448 		return;
449 
450 	switch (signal) {
451 	case SIGILL:
452 		desc = "undefined instruction";
453 		break;
454 	case SIGSEGV:
455 		desc = "illegal memory access";
456 		break;
457 	default:
458 		desc = "unknown or unrecoverable error";
459 		break;
460 	}
461 
462 	/* Force signals we don't understand to SIGKILL */
463 	if (WARN_ON(signal != SIGKILL &&
464 		    siginfo_layout(signal, code) != SIL_FAULT)) {
465 		signal = SIGKILL;
466 	}
467 
468 	arm64_notify_die(desc, regs, signal, code, address, err);
469 }
470 
471 /*
472  * Set up process info to signal segmentation fault - called on access error.
473  */
474 void arm64_notify_segfault(unsigned long addr)
475 {
476 	int code;
477 
478 	mmap_read_lock(current->mm);
479 	if (find_vma(current->mm, untagged_addr(addr)) == NULL)
480 		code = SEGV_MAPERR;
481 	else
482 		code = SEGV_ACCERR;
483 	mmap_read_unlock(current->mm);
484 
485 	force_signal_inject(SIGSEGV, code, addr, 0);
486 }
487 
488 void do_undefinstr(struct pt_regs *regs)
489 {
490 	/* check for AArch32 breakpoint instructions */
491 	if (!aarch32_break_handler(regs))
492 		return;
493 
494 	if (call_undef_hook(regs) == 0)
495 		return;
496 
497 	BUG_ON(!user_mode(regs));
498 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
499 }
500 NOKPROBE_SYMBOL(do_undefinstr);
501 
502 void do_bti(struct pt_regs *regs)
503 {
504 	BUG_ON(!user_mode(regs));
505 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
506 }
507 NOKPROBE_SYMBOL(do_bti);
508 
509 void do_ptrauth_fault(struct pt_regs *regs, unsigned long esr)
510 {
511 	/*
512 	 * Unexpected FPAC exception or pointer authentication failure in
513 	 * the kernel: kill the task before it does any more harm.
514 	 */
515 	BUG_ON(!user_mode(regs));
516 	force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
517 }
518 NOKPROBE_SYMBOL(do_ptrauth_fault);
519 
520 #define __user_cache_maint(insn, address, res)			\
521 	if (address >= TASK_SIZE_MAX) {				\
522 		res = -EFAULT;					\
523 	} else {						\
524 		uaccess_ttbr0_enable();				\
525 		asm volatile (					\
526 			"1:	" insn ", %1\n"			\
527 			"	mov	%w0, #0\n"		\
528 			"2:\n"					\
529 			_ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0)	\
530 			: "=r" (res)				\
531 			: "r" (address));			\
532 		uaccess_ttbr0_disable();			\
533 	}
534 
535 static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
536 {
537 	unsigned long tagged_address, address;
538 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
539 	int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
540 	int ret = 0;
541 
542 	tagged_address = pt_regs_read_reg(regs, rt);
543 	address = untagged_addr(tagged_address);
544 
545 	switch (crm) {
546 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:	/* DC CVAU, gets promoted */
547 		__user_cache_maint("dc civac", address, ret);
548 		break;
549 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:	/* DC CVAC, gets promoted */
550 		__user_cache_maint("dc civac", address, ret);
551 		break;
552 	case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:	/* DC CVADP */
553 		__user_cache_maint("sys 3, c7, c13, 1", address, ret);
554 		break;
555 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:	/* DC CVAP */
556 		__user_cache_maint("sys 3, c7, c12, 1", address, ret);
557 		break;
558 	case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:	/* DC CIVAC */
559 		__user_cache_maint("dc civac", address, ret);
560 		break;
561 	case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:	/* IC IVAU */
562 		__user_cache_maint("ic ivau", address, ret);
563 		break;
564 	default:
565 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
566 		return;
567 	}
568 
569 	if (ret)
570 		arm64_notify_segfault(tagged_address);
571 	else
572 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
573 }
574 
575 static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
576 {
577 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
578 	unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
579 
580 	if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
581 		/* Hide DIC so that we can trap the unnecessary maintenance...*/
582 		val &= ~BIT(CTR_DIC_SHIFT);
583 
584 		/* ... and fake IminLine to reduce the number of traps. */
585 		val &= ~CTR_IMINLINE_MASK;
586 		val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK;
587 	}
588 
589 	pt_regs_write_reg(regs, rt, val);
590 
591 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
592 }
593 
594 static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
595 {
596 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
597 
598 	pt_regs_write_reg(regs, rt, arch_timer_read_counter());
599 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
600 }
601 
602 static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
603 {
604 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
605 
606 	pt_regs_write_reg(regs, rt, arch_timer_get_rate());
607 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
608 }
609 
610 static void mrs_handler(unsigned long esr, struct pt_regs *regs)
611 {
612 	u32 sysreg, rt;
613 
614 	rt = ESR_ELx_SYS64_ISS_RT(esr);
615 	sysreg = esr_sys64_to_sysreg(esr);
616 
617 	if (do_emulate_mrs(regs, sysreg, rt) != 0)
618 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
619 }
620 
621 static void wfi_handler(unsigned long esr, struct pt_regs *regs)
622 {
623 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
624 }
625 
626 struct sys64_hook {
627 	unsigned long esr_mask;
628 	unsigned long esr_val;
629 	void (*handler)(unsigned long esr, struct pt_regs *regs);
630 };
631 
632 static const struct sys64_hook sys64_hooks[] = {
633 	{
634 		.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
635 		.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
636 		.handler = user_cache_maint_handler,
637 	},
638 	{
639 		/* Trap read access to CTR_EL0 */
640 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
641 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
642 		.handler = ctr_read_handler,
643 	},
644 	{
645 		/* Trap read access to CNTVCT_EL0 */
646 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
647 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
648 		.handler = cntvct_read_handler,
649 	},
650 	{
651 		/* Trap read access to CNTVCTSS_EL0 */
652 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
653 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS,
654 		.handler = cntvct_read_handler,
655 	},
656 	{
657 		/* Trap read access to CNTFRQ_EL0 */
658 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
659 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
660 		.handler = cntfrq_read_handler,
661 	},
662 	{
663 		/* Trap read access to CPUID registers */
664 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
665 		.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
666 		.handler = mrs_handler,
667 	},
668 	{
669 		/* Trap WFI instructions executed in userspace */
670 		.esr_mask = ESR_ELx_WFx_MASK,
671 		.esr_val = ESR_ELx_WFx_WFI_VAL,
672 		.handler = wfi_handler,
673 	},
674 	{},
675 };
676 
677 #ifdef CONFIG_COMPAT
678 static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
679 {
680 	int cond;
681 
682 	/* Only a T32 instruction can trap without CV being set */
683 	if (!(esr & ESR_ELx_CV)) {
684 		u32 it;
685 
686 		it = compat_get_it_state(regs);
687 		if (!it)
688 			return true;
689 
690 		cond = it >> 4;
691 	} else {
692 		cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
693 	}
694 
695 	return aarch32_opcode_cond_checks[cond](regs->pstate);
696 }
697 
698 static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
699 {
700 	int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
701 
702 	pt_regs_write_reg(regs, reg, arch_timer_get_rate());
703 	arm64_skip_faulting_instruction(regs, 4);
704 }
705 
706 static const struct sys64_hook cp15_32_hooks[] = {
707 	{
708 		.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
709 		.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
710 		.handler = compat_cntfrq_read_handler,
711 	},
712 	{},
713 };
714 
715 static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
716 {
717 	int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
718 	int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
719 	u64 val = arch_timer_read_counter();
720 
721 	pt_regs_write_reg(regs, rt, lower_32_bits(val));
722 	pt_regs_write_reg(regs, rt2, upper_32_bits(val));
723 	arm64_skip_faulting_instruction(regs, 4);
724 }
725 
726 static const struct sys64_hook cp15_64_hooks[] = {
727 	{
728 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
729 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
730 		.handler = compat_cntvct_read_handler,
731 	},
732 	{
733 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
734 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS,
735 		.handler = compat_cntvct_read_handler,
736 	},
737 	{},
738 };
739 
740 void do_cp15instr(unsigned long esr, struct pt_regs *regs)
741 {
742 	const struct sys64_hook *hook, *hook_base;
743 
744 	if (!cp15_cond_valid(esr, regs)) {
745 		/*
746 		 * There is no T16 variant of a CP access, so we
747 		 * always advance PC by 4 bytes.
748 		 */
749 		arm64_skip_faulting_instruction(regs, 4);
750 		return;
751 	}
752 
753 	switch (ESR_ELx_EC(esr)) {
754 	case ESR_ELx_EC_CP15_32:
755 		hook_base = cp15_32_hooks;
756 		break;
757 	case ESR_ELx_EC_CP15_64:
758 		hook_base = cp15_64_hooks;
759 		break;
760 	default:
761 		do_undefinstr(regs);
762 		return;
763 	}
764 
765 	for (hook = hook_base; hook->handler; hook++)
766 		if ((hook->esr_mask & esr) == hook->esr_val) {
767 			hook->handler(esr, regs);
768 			return;
769 		}
770 
771 	/*
772 	 * New cp15 instructions may previously have been undefined at
773 	 * EL0. Fall back to our usual undefined instruction handler
774 	 * so that we handle these consistently.
775 	 */
776 	do_undefinstr(regs);
777 }
778 NOKPROBE_SYMBOL(do_cp15instr);
779 #endif
780 
781 void do_sysinstr(unsigned long esr, struct pt_regs *regs)
782 {
783 	const struct sys64_hook *hook;
784 
785 	for (hook = sys64_hooks; hook->handler; hook++)
786 		if ((hook->esr_mask & esr) == hook->esr_val) {
787 			hook->handler(esr, regs);
788 			return;
789 		}
790 
791 	/*
792 	 * New SYS instructions may previously have been undefined at EL0. Fall
793 	 * back to our usual undefined instruction handler so that we handle
794 	 * these consistently.
795 	 */
796 	do_undefinstr(regs);
797 }
798 NOKPROBE_SYMBOL(do_sysinstr);
799 
800 static const char *esr_class_str[] = {
801 	[0 ... ESR_ELx_EC_MAX]		= "UNRECOGNIZED EC",
802 	[ESR_ELx_EC_UNKNOWN]		= "Unknown/Uncategorized",
803 	[ESR_ELx_EC_WFx]		= "WFI/WFE",
804 	[ESR_ELx_EC_CP15_32]		= "CP15 MCR/MRC",
805 	[ESR_ELx_EC_CP15_64]		= "CP15 MCRR/MRRC",
806 	[ESR_ELx_EC_CP14_MR]		= "CP14 MCR/MRC",
807 	[ESR_ELx_EC_CP14_LS]		= "CP14 LDC/STC",
808 	[ESR_ELx_EC_FP_ASIMD]		= "ASIMD",
809 	[ESR_ELx_EC_CP10_ID]		= "CP10 MRC/VMRS",
810 	[ESR_ELx_EC_PAC]		= "PAC",
811 	[ESR_ELx_EC_CP14_64]		= "CP14 MCRR/MRRC",
812 	[ESR_ELx_EC_BTI]		= "BTI",
813 	[ESR_ELx_EC_ILL]		= "PSTATE.IL",
814 	[ESR_ELx_EC_SVC32]		= "SVC (AArch32)",
815 	[ESR_ELx_EC_HVC32]		= "HVC (AArch32)",
816 	[ESR_ELx_EC_SMC32]		= "SMC (AArch32)",
817 	[ESR_ELx_EC_SVC64]		= "SVC (AArch64)",
818 	[ESR_ELx_EC_HVC64]		= "HVC (AArch64)",
819 	[ESR_ELx_EC_SMC64]		= "SMC (AArch64)",
820 	[ESR_ELx_EC_SYS64]		= "MSR/MRS (AArch64)",
821 	[ESR_ELx_EC_SVE]		= "SVE",
822 	[ESR_ELx_EC_ERET]		= "ERET/ERETAA/ERETAB",
823 	[ESR_ELx_EC_FPAC]		= "FPAC",
824 	[ESR_ELx_EC_SME]		= "SME",
825 	[ESR_ELx_EC_IMP_DEF]		= "EL3 IMP DEF",
826 	[ESR_ELx_EC_IABT_LOW]		= "IABT (lower EL)",
827 	[ESR_ELx_EC_IABT_CUR]		= "IABT (current EL)",
828 	[ESR_ELx_EC_PC_ALIGN]		= "PC Alignment",
829 	[ESR_ELx_EC_DABT_LOW]		= "DABT (lower EL)",
830 	[ESR_ELx_EC_DABT_CUR]		= "DABT (current EL)",
831 	[ESR_ELx_EC_SP_ALIGN]		= "SP Alignment",
832 	[ESR_ELx_EC_FP_EXC32]		= "FP (AArch32)",
833 	[ESR_ELx_EC_FP_EXC64]		= "FP (AArch64)",
834 	[ESR_ELx_EC_SERROR]		= "SError",
835 	[ESR_ELx_EC_BREAKPT_LOW]	= "Breakpoint (lower EL)",
836 	[ESR_ELx_EC_BREAKPT_CUR]	= "Breakpoint (current EL)",
837 	[ESR_ELx_EC_SOFTSTP_LOW]	= "Software Step (lower EL)",
838 	[ESR_ELx_EC_SOFTSTP_CUR]	= "Software Step (current EL)",
839 	[ESR_ELx_EC_WATCHPT_LOW]	= "Watchpoint (lower EL)",
840 	[ESR_ELx_EC_WATCHPT_CUR]	= "Watchpoint (current EL)",
841 	[ESR_ELx_EC_BKPT32]		= "BKPT (AArch32)",
842 	[ESR_ELx_EC_VECTOR32]		= "Vector catch (AArch32)",
843 	[ESR_ELx_EC_BRK64]		= "BRK (AArch64)",
844 };
845 
846 const char *esr_get_class_string(unsigned long esr)
847 {
848 	return esr_class_str[ESR_ELx_EC(esr)];
849 }
850 
851 /*
852  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
853  * exceptions taken from EL0.
854  */
855 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
856 {
857 	unsigned long pc = instruction_pointer(regs);
858 
859 	current->thread.fault_address = 0;
860 	current->thread.fault_code = esr;
861 
862 	arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
863 			      "Bad EL0 synchronous exception");
864 }
865 
866 #ifdef CONFIG_VMAP_STACK
867 
868 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
869 	__aligned(16);
870 
871 void panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
872 {
873 	unsigned long tsk_stk = (unsigned long)current->stack;
874 	unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
875 	unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
876 
877 	console_verbose();
878 	pr_emerg("Insufficient stack space to handle exception!");
879 
880 	pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
881 	pr_emerg("FAR: 0x%016lx\n", far);
882 
883 	pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
884 		 tsk_stk, tsk_stk + THREAD_SIZE);
885 	pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
886 		 irq_stk, irq_stk + IRQ_STACK_SIZE);
887 	pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
888 		 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
889 
890 	__show_regs(regs);
891 
892 	/*
893 	 * We use nmi_panic to limit the potential for recusive overflows, and
894 	 * to get a better stack trace.
895 	 */
896 	nmi_panic(NULL, "kernel stack overflow");
897 	cpu_park_loop();
898 }
899 #endif
900 
901 void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
902 {
903 	console_verbose();
904 
905 	pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
906 		smp_processor_id(), esr, esr_get_class_string(esr));
907 	if (regs)
908 		__show_regs(regs);
909 
910 	nmi_panic(regs, "Asynchronous SError Interrupt");
911 
912 	cpu_park_loop();
913 	unreachable();
914 }
915 
916 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
917 {
918 	unsigned long aet = arm64_ras_serror_get_severity(esr);
919 
920 	switch (aet) {
921 	case ESR_ELx_AET_CE:	/* corrected error */
922 	case ESR_ELx_AET_UEO:	/* restartable, not yet consumed */
923 		/*
924 		 * The CPU can make progress. We may take UEO again as
925 		 * a more severe error.
926 		 */
927 		return false;
928 
929 	case ESR_ELx_AET_UEU:	/* Uncorrected Unrecoverable */
930 	case ESR_ELx_AET_UER:	/* Uncorrected Recoverable */
931 		/*
932 		 * The CPU can't make progress. The exception may have
933 		 * been imprecise.
934 		 *
935 		 * Neoverse-N1 #1349291 means a non-KVM SError reported as
936 		 * Unrecoverable should be treated as Uncontainable. We
937 		 * call arm64_serror_panic() in both cases.
938 		 */
939 		return true;
940 
941 	case ESR_ELx_AET_UC:	/* Uncontainable or Uncategorized error */
942 	default:
943 		/* Error has been silently propagated */
944 		arm64_serror_panic(regs, esr);
945 	}
946 }
947 
948 void do_serror(struct pt_regs *regs, unsigned long esr)
949 {
950 	/* non-RAS errors are not containable */
951 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
952 		arm64_serror_panic(regs, esr);
953 }
954 
955 /* GENERIC_BUG traps */
956 
957 int is_valid_bugaddr(unsigned long addr)
958 {
959 	/*
960 	 * bug_handler() only called for BRK #BUG_BRK_IMM.
961 	 * So the answer is trivial -- any spurious instances with no
962 	 * bug table entry will be rejected by report_bug() and passed
963 	 * back to the debug-monitors code and handled as a fatal
964 	 * unexpected debug exception.
965 	 */
966 	return 1;
967 }
968 
969 static int bug_handler(struct pt_regs *regs, unsigned long esr)
970 {
971 	switch (report_bug(regs->pc, regs)) {
972 	case BUG_TRAP_TYPE_BUG:
973 		die("Oops - BUG", regs, 0);
974 		break;
975 
976 	case BUG_TRAP_TYPE_WARN:
977 		break;
978 
979 	default:
980 		/* unknown/unrecognised bug trap type */
981 		return DBG_HOOK_ERROR;
982 	}
983 
984 	/* If thread survives, skip over the BUG instruction and continue: */
985 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
986 	return DBG_HOOK_HANDLED;
987 }
988 
989 static struct break_hook bug_break_hook = {
990 	.fn = bug_handler,
991 	.imm = BUG_BRK_IMM,
992 };
993 
994 static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
995 {
996 	pr_err("%s generated an invalid instruction at %pS!\n",
997 		"Kernel text patching",
998 		(void *)instruction_pointer(regs));
999 
1000 	/* We cannot handle this */
1001 	return DBG_HOOK_ERROR;
1002 }
1003 
1004 static struct break_hook fault_break_hook = {
1005 	.fn = reserved_fault_handler,
1006 	.imm = FAULT_BRK_IMM,
1007 };
1008 
1009 #ifdef CONFIG_KASAN_SW_TAGS
1010 
1011 #define KASAN_ESR_RECOVER	0x20
1012 #define KASAN_ESR_WRITE	0x10
1013 #define KASAN_ESR_SIZE_MASK	0x0f
1014 #define KASAN_ESR_SIZE(esr)	(1 << ((esr) & KASAN_ESR_SIZE_MASK))
1015 
1016 static int kasan_handler(struct pt_regs *regs, unsigned long esr)
1017 {
1018 	bool recover = esr & KASAN_ESR_RECOVER;
1019 	bool write = esr & KASAN_ESR_WRITE;
1020 	size_t size = KASAN_ESR_SIZE(esr);
1021 	u64 addr = regs->regs[0];
1022 	u64 pc = regs->pc;
1023 
1024 	kasan_report(addr, size, write, pc);
1025 
1026 	/*
1027 	 * The instrumentation allows to control whether we can proceed after
1028 	 * a crash was detected. This is done by passing the -recover flag to
1029 	 * the compiler. Disabling recovery allows to generate more compact
1030 	 * code.
1031 	 *
1032 	 * Unfortunately disabling recovery doesn't work for the kernel right
1033 	 * now. KASAN reporting is disabled in some contexts (for example when
1034 	 * the allocator accesses slab object metadata; this is controlled by
1035 	 * current->kasan_depth). All these accesses are detected by the tool,
1036 	 * even though the reports for them are not printed.
1037 	 *
1038 	 * This is something that might be fixed at some point in the future.
1039 	 */
1040 	if (!recover)
1041 		die("Oops - KASAN", regs, 0);
1042 
1043 	/* If thread survives, skip over the brk instruction and continue: */
1044 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1045 	return DBG_HOOK_HANDLED;
1046 }
1047 
1048 static struct break_hook kasan_break_hook = {
1049 	.fn	= kasan_handler,
1050 	.imm	= KASAN_BRK_IMM,
1051 	.mask	= KASAN_BRK_MASK,
1052 };
1053 #endif
1054 
1055 /*
1056  * Initial handler for AArch64 BRK exceptions
1057  * This handler only used until debug_traps_init().
1058  */
1059 int __init early_brk64(unsigned long addr, unsigned long esr,
1060 		struct pt_regs *regs)
1061 {
1062 #ifdef CONFIG_KASAN_SW_TAGS
1063 	unsigned long comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
1064 
1065 	if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1066 		return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1067 #endif
1068 	return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1069 }
1070 
1071 void __init trap_init(void)
1072 {
1073 	register_kernel_break_hook(&bug_break_hook);
1074 	register_kernel_break_hook(&fault_break_hook);
1075 #ifdef CONFIG_KASAN_SW_TAGS
1076 	register_kernel_break_hook(&kasan_break_hook);
1077 #endif
1078 	debug_traps_init();
1079 }
1080