1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/traps.c 4 * 5 * Copyright (C) 1995-2009 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/bug.h> 10 #include <linux/signal.h> 11 #include <linux/personality.h> 12 #include <linux/kallsyms.h> 13 #include <linux/spinlock.h> 14 #include <linux/uaccess.h> 15 #include <linux/hardirq.h> 16 #include <linux/kdebug.h> 17 #include <linux/module.h> 18 #include <linux/kexec.h> 19 #include <linux/delay.h> 20 #include <linux/init.h> 21 #include <linux/sched/signal.h> 22 #include <linux/sched/debug.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sizes.h> 25 #include <linux/syscalls.h> 26 #include <linux/mm_types.h> 27 #include <linux/kasan.h> 28 29 #include <asm/atomic.h> 30 #include <asm/bug.h> 31 #include <asm/cpufeature.h> 32 #include <asm/daifflags.h> 33 #include <asm/debug-monitors.h> 34 #include <asm/esr.h> 35 #include <asm/insn.h> 36 #include <asm/traps.h> 37 #include <asm/smp.h> 38 #include <asm/stack_pointer.h> 39 #include <asm/stacktrace.h> 40 #include <asm/exception.h> 41 #include <asm/system_misc.h> 42 #include <asm/sysreg.h> 43 44 static const char *handler[]= { 45 "Synchronous Abort", 46 "IRQ", 47 "FIQ", 48 "Error" 49 }; 50 51 int show_unhandled_signals = 0; 52 53 static void dump_backtrace_entry(unsigned long where) 54 { 55 printk(" %pS\n", (void *)where); 56 } 57 58 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs) 59 { 60 unsigned long addr = instruction_pointer(regs); 61 char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str; 62 int i; 63 64 if (user_mode(regs)) 65 return; 66 67 for (i = -4; i < 1; i++) { 68 unsigned int val, bad; 69 70 bad = aarch64_insn_read(&((u32 *)addr)[i], &val); 71 72 if (!bad) 73 p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val); 74 else { 75 p += sprintf(p, "bad PC value"); 76 break; 77 } 78 } 79 80 printk("%sCode: %s\n", lvl, str); 81 } 82 83 void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk) 84 { 85 struct stackframe frame; 86 int skip = 0; 87 88 pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk); 89 90 if (regs) { 91 if (user_mode(regs)) 92 return; 93 skip = 1; 94 } 95 96 if (!tsk) 97 tsk = current; 98 99 if (!try_get_task_stack(tsk)) 100 return; 101 102 if (tsk == current) { 103 start_backtrace(&frame, 104 (unsigned long)__builtin_frame_address(0), 105 (unsigned long)dump_backtrace); 106 } else { 107 /* 108 * task blocked in __switch_to 109 */ 110 start_backtrace(&frame, 111 thread_saved_fp(tsk), 112 thread_saved_pc(tsk)); 113 } 114 115 printk("Call trace:\n"); 116 do { 117 /* skip until specified stack frame */ 118 if (!skip) { 119 dump_backtrace_entry(frame.pc); 120 } else if (frame.fp == regs->regs[29]) { 121 skip = 0; 122 /* 123 * Mostly, this is the case where this function is 124 * called in panic/abort. As exception handler's 125 * stack frame does not contain the corresponding pc 126 * at which an exception has taken place, use regs->pc 127 * instead. 128 */ 129 dump_backtrace_entry(regs->pc); 130 } 131 } while (!unwind_frame(tsk, &frame)); 132 133 put_task_stack(tsk); 134 } 135 136 void show_stack(struct task_struct *tsk, unsigned long *sp) 137 { 138 dump_backtrace(NULL, tsk); 139 barrier(); 140 } 141 142 #ifdef CONFIG_PREEMPT 143 #define S_PREEMPT " PREEMPT" 144 #else 145 #define S_PREEMPT "" 146 #endif 147 #define S_SMP " SMP" 148 149 static int __die(const char *str, int err, struct pt_regs *regs) 150 { 151 static int die_counter; 152 int ret; 153 154 pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n", 155 str, err, ++die_counter); 156 157 /* trap and error numbers are mostly meaningless on ARM */ 158 ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV); 159 if (ret == NOTIFY_STOP) 160 return ret; 161 162 print_modules(); 163 show_regs(regs); 164 165 dump_kernel_instr(KERN_EMERG, regs); 166 167 return ret; 168 } 169 170 static DEFINE_RAW_SPINLOCK(die_lock); 171 172 /* 173 * This function is protected against re-entrancy. 174 */ 175 void die(const char *str, struct pt_regs *regs, int err) 176 { 177 int ret; 178 unsigned long flags; 179 180 raw_spin_lock_irqsave(&die_lock, flags); 181 182 oops_enter(); 183 184 console_verbose(); 185 bust_spinlocks(1); 186 ret = __die(str, err, regs); 187 188 if (regs && kexec_should_crash(current)) 189 crash_kexec(regs); 190 191 bust_spinlocks(0); 192 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 193 oops_exit(); 194 195 if (in_interrupt()) 196 panic("Fatal exception in interrupt"); 197 if (panic_on_oops) 198 panic("Fatal exception"); 199 200 raw_spin_unlock_irqrestore(&die_lock, flags); 201 202 if (ret != NOTIFY_STOP) 203 do_exit(SIGSEGV); 204 } 205 206 static void arm64_show_signal(int signo, const char *str) 207 { 208 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 209 DEFAULT_RATELIMIT_BURST); 210 struct task_struct *tsk = current; 211 unsigned int esr = tsk->thread.fault_code; 212 struct pt_regs *regs = task_pt_regs(tsk); 213 214 /* Leave if the signal won't be shown */ 215 if (!show_unhandled_signals || 216 !unhandled_signal(tsk, signo) || 217 !__ratelimit(&rs)) 218 return; 219 220 pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk)); 221 if (esr) 222 pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr); 223 224 pr_cont("%s", str); 225 print_vma_addr(KERN_CONT " in ", regs->pc); 226 pr_cont("\n"); 227 __show_regs(regs); 228 } 229 230 void arm64_force_sig_fault(int signo, int code, void __user *addr, 231 const char *str) 232 { 233 arm64_show_signal(signo, str); 234 if (signo == SIGKILL) 235 force_sig(SIGKILL); 236 else 237 force_sig_fault(signo, code, addr); 238 } 239 240 void arm64_force_sig_mceerr(int code, void __user *addr, short lsb, 241 const char *str) 242 { 243 arm64_show_signal(SIGBUS, str); 244 force_sig_mceerr(code, addr, lsb); 245 } 246 247 void arm64_force_sig_ptrace_errno_trap(int errno, void __user *addr, 248 const char *str) 249 { 250 arm64_show_signal(SIGTRAP, str); 251 force_sig_ptrace_errno_trap(errno, addr); 252 } 253 254 void arm64_notify_die(const char *str, struct pt_regs *regs, 255 int signo, int sicode, void __user *addr, 256 int err) 257 { 258 if (user_mode(regs)) { 259 WARN_ON(regs != current_pt_regs()); 260 current->thread.fault_address = 0; 261 current->thread.fault_code = err; 262 263 arm64_force_sig_fault(signo, sicode, addr, str); 264 } else { 265 die(str, regs, err); 266 } 267 } 268 269 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size) 270 { 271 regs->pc += size; 272 273 /* 274 * If we were single stepping, we want to get the step exception after 275 * we return from the trap. 276 */ 277 if (user_mode(regs)) 278 user_fastforward_single_step(current); 279 } 280 281 static LIST_HEAD(undef_hook); 282 static DEFINE_RAW_SPINLOCK(undef_lock); 283 284 void register_undef_hook(struct undef_hook *hook) 285 { 286 unsigned long flags; 287 288 raw_spin_lock_irqsave(&undef_lock, flags); 289 list_add(&hook->node, &undef_hook); 290 raw_spin_unlock_irqrestore(&undef_lock, flags); 291 } 292 293 void unregister_undef_hook(struct undef_hook *hook) 294 { 295 unsigned long flags; 296 297 raw_spin_lock_irqsave(&undef_lock, flags); 298 list_del(&hook->node); 299 raw_spin_unlock_irqrestore(&undef_lock, flags); 300 } 301 302 static int call_undef_hook(struct pt_regs *regs) 303 { 304 struct undef_hook *hook; 305 unsigned long flags; 306 u32 instr; 307 int (*fn)(struct pt_regs *regs, u32 instr) = NULL; 308 void __user *pc = (void __user *)instruction_pointer(regs); 309 310 if (!user_mode(regs)) { 311 __le32 instr_le; 312 if (probe_kernel_address((__force __le32 *)pc, instr_le)) 313 goto exit; 314 instr = le32_to_cpu(instr_le); 315 } else if (compat_thumb_mode(regs)) { 316 /* 16-bit Thumb instruction */ 317 __le16 instr_le; 318 if (get_user(instr_le, (__le16 __user *)pc)) 319 goto exit; 320 instr = le16_to_cpu(instr_le); 321 if (aarch32_insn_is_wide(instr)) { 322 u32 instr2; 323 324 if (get_user(instr_le, (__le16 __user *)(pc + 2))) 325 goto exit; 326 instr2 = le16_to_cpu(instr_le); 327 instr = (instr << 16) | instr2; 328 } 329 } else { 330 /* 32-bit ARM instruction */ 331 __le32 instr_le; 332 if (get_user(instr_le, (__le32 __user *)pc)) 333 goto exit; 334 instr = le32_to_cpu(instr_le); 335 } 336 337 raw_spin_lock_irqsave(&undef_lock, flags); 338 list_for_each_entry(hook, &undef_hook, node) 339 if ((instr & hook->instr_mask) == hook->instr_val && 340 (regs->pstate & hook->pstate_mask) == hook->pstate_val) 341 fn = hook->fn; 342 343 raw_spin_unlock_irqrestore(&undef_lock, flags); 344 exit: 345 return fn ? fn(regs, instr) : 1; 346 } 347 348 void force_signal_inject(int signal, int code, unsigned long address) 349 { 350 const char *desc; 351 struct pt_regs *regs = current_pt_regs(); 352 353 if (WARN_ON(!user_mode(regs))) 354 return; 355 356 switch (signal) { 357 case SIGILL: 358 desc = "undefined instruction"; 359 break; 360 case SIGSEGV: 361 desc = "illegal memory access"; 362 break; 363 default: 364 desc = "unknown or unrecoverable error"; 365 break; 366 } 367 368 /* Force signals we don't understand to SIGKILL */ 369 if (WARN_ON(signal != SIGKILL && 370 siginfo_layout(signal, code) != SIL_FAULT)) { 371 signal = SIGKILL; 372 } 373 374 arm64_notify_die(desc, regs, signal, code, (void __user *)address, 0); 375 } 376 377 /* 378 * Set up process info to signal segmentation fault - called on access error. 379 */ 380 void arm64_notify_segfault(unsigned long addr) 381 { 382 int code; 383 384 down_read(¤t->mm->mmap_sem); 385 if (find_vma(current->mm, addr) == NULL) 386 code = SEGV_MAPERR; 387 else 388 code = SEGV_ACCERR; 389 up_read(¤t->mm->mmap_sem); 390 391 force_signal_inject(SIGSEGV, code, addr); 392 } 393 394 asmlinkage void __exception do_undefinstr(struct pt_regs *regs) 395 { 396 /* check for AArch32 breakpoint instructions */ 397 if (!aarch32_break_handler(regs)) 398 return; 399 400 if (call_undef_hook(regs) == 0) 401 return; 402 403 BUG_ON(!user_mode(regs)); 404 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc); 405 } 406 407 #define __user_cache_maint(insn, address, res) \ 408 if (address >= user_addr_max()) { \ 409 res = -EFAULT; \ 410 } else { \ 411 uaccess_ttbr0_enable(); \ 412 asm volatile ( \ 413 "1: " insn ", %1\n" \ 414 " mov %w0, #0\n" \ 415 "2:\n" \ 416 " .pushsection .fixup,\"ax\"\n" \ 417 " .align 2\n" \ 418 "3: mov %w0, %w2\n" \ 419 " b 2b\n" \ 420 " .popsection\n" \ 421 _ASM_EXTABLE(1b, 3b) \ 422 : "=r" (res) \ 423 : "r" (address), "i" (-EFAULT)); \ 424 uaccess_ttbr0_disable(); \ 425 } 426 427 static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs) 428 { 429 unsigned long address; 430 int rt = ESR_ELx_SYS64_ISS_RT(esr); 431 int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT; 432 int ret = 0; 433 434 address = untagged_addr(pt_regs_read_reg(regs, rt)); 435 436 switch (crm) { 437 case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */ 438 __user_cache_maint("dc civac", address, ret); 439 break; 440 case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */ 441 __user_cache_maint("dc civac", address, ret); 442 break; 443 case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */ 444 __user_cache_maint("sys 3, c7, c13, 1", address, ret); 445 break; 446 case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */ 447 __user_cache_maint("sys 3, c7, c12, 1", address, ret); 448 break; 449 case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */ 450 __user_cache_maint("dc civac", address, ret); 451 break; 452 case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */ 453 __user_cache_maint("ic ivau", address, ret); 454 break; 455 default: 456 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc); 457 return; 458 } 459 460 if (ret) 461 arm64_notify_segfault(address); 462 else 463 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 464 } 465 466 static void ctr_read_handler(unsigned int esr, struct pt_regs *regs) 467 { 468 int rt = ESR_ELx_SYS64_ISS_RT(esr); 469 unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0); 470 471 pt_regs_write_reg(regs, rt, val); 472 473 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 474 } 475 476 static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs) 477 { 478 int rt = ESR_ELx_SYS64_ISS_RT(esr); 479 480 pt_regs_write_reg(regs, rt, arch_timer_read_counter()); 481 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 482 } 483 484 static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs) 485 { 486 int rt = ESR_ELx_SYS64_ISS_RT(esr); 487 488 pt_regs_write_reg(regs, rt, arch_timer_get_rate()); 489 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 490 } 491 492 static void mrs_handler(unsigned int esr, struct pt_regs *regs) 493 { 494 u32 sysreg, rt; 495 496 rt = ESR_ELx_SYS64_ISS_RT(esr); 497 sysreg = esr_sys64_to_sysreg(esr); 498 499 if (do_emulate_mrs(regs, sysreg, rt) != 0) 500 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc); 501 } 502 503 static void wfi_handler(unsigned int esr, struct pt_regs *regs) 504 { 505 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 506 } 507 508 struct sys64_hook { 509 unsigned int esr_mask; 510 unsigned int esr_val; 511 void (*handler)(unsigned int esr, struct pt_regs *regs); 512 }; 513 514 static struct sys64_hook sys64_hooks[] = { 515 { 516 .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK, 517 .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL, 518 .handler = user_cache_maint_handler, 519 }, 520 { 521 /* Trap read access to CTR_EL0 */ 522 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, 523 .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ, 524 .handler = ctr_read_handler, 525 }, 526 { 527 /* Trap read access to CNTVCT_EL0 */ 528 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, 529 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT, 530 .handler = cntvct_read_handler, 531 }, 532 { 533 /* Trap read access to CNTFRQ_EL0 */ 534 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, 535 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ, 536 .handler = cntfrq_read_handler, 537 }, 538 { 539 /* Trap read access to CPUID registers */ 540 .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK, 541 .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL, 542 .handler = mrs_handler, 543 }, 544 { 545 /* Trap WFI instructions executed in userspace */ 546 .esr_mask = ESR_ELx_WFx_MASK, 547 .esr_val = ESR_ELx_WFx_WFI_VAL, 548 .handler = wfi_handler, 549 }, 550 {}, 551 }; 552 553 554 #ifdef CONFIG_COMPAT 555 #define PSTATE_IT_1_0_SHIFT 25 556 #define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT) 557 #define PSTATE_IT_7_2_SHIFT 10 558 #define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT) 559 560 static u32 compat_get_it_state(struct pt_regs *regs) 561 { 562 u32 it, pstate = regs->pstate; 563 564 it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT; 565 it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2; 566 567 return it; 568 } 569 570 static void compat_set_it_state(struct pt_regs *regs, u32 it) 571 { 572 u32 pstate_it; 573 574 pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK; 575 pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK; 576 577 regs->pstate &= ~PSR_AA32_IT_MASK; 578 regs->pstate |= pstate_it; 579 } 580 581 static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs) 582 { 583 int cond; 584 585 /* Only a T32 instruction can trap without CV being set */ 586 if (!(esr & ESR_ELx_CV)) { 587 u32 it; 588 589 it = compat_get_it_state(regs); 590 if (!it) 591 return true; 592 593 cond = it >> 4; 594 } else { 595 cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT; 596 } 597 598 return aarch32_opcode_cond_checks[cond](regs->pstate); 599 } 600 601 static void advance_itstate(struct pt_regs *regs) 602 { 603 u32 it; 604 605 /* ARM mode */ 606 if (!(regs->pstate & PSR_AA32_T_BIT) || 607 !(regs->pstate & PSR_AA32_IT_MASK)) 608 return; 609 610 it = compat_get_it_state(regs); 611 612 /* 613 * If this is the last instruction of the block, wipe the IT 614 * state. Otherwise advance it. 615 */ 616 if (!(it & 7)) 617 it = 0; 618 else 619 it = (it & 0xe0) | ((it << 1) & 0x1f); 620 621 compat_set_it_state(regs, it); 622 } 623 624 static void arm64_compat_skip_faulting_instruction(struct pt_regs *regs, 625 unsigned int sz) 626 { 627 advance_itstate(regs); 628 arm64_skip_faulting_instruction(regs, sz); 629 } 630 631 static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs) 632 { 633 int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT; 634 635 pt_regs_write_reg(regs, reg, arch_timer_get_rate()); 636 arm64_compat_skip_faulting_instruction(regs, 4); 637 } 638 639 static struct sys64_hook cp15_32_hooks[] = { 640 { 641 .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK, 642 .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ, 643 .handler = compat_cntfrq_read_handler, 644 }, 645 {}, 646 }; 647 648 static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs) 649 { 650 int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT; 651 int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT; 652 u64 val = arch_timer_read_counter(); 653 654 pt_regs_write_reg(regs, rt, lower_32_bits(val)); 655 pt_regs_write_reg(regs, rt2, upper_32_bits(val)); 656 arm64_compat_skip_faulting_instruction(regs, 4); 657 } 658 659 static struct sys64_hook cp15_64_hooks[] = { 660 { 661 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK, 662 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT, 663 .handler = compat_cntvct_read_handler, 664 }, 665 {}, 666 }; 667 668 asmlinkage void __exception do_cp15instr(unsigned int esr, struct pt_regs *regs) 669 { 670 struct sys64_hook *hook, *hook_base; 671 672 if (!cp15_cond_valid(esr, regs)) { 673 /* 674 * There is no T16 variant of a CP access, so we 675 * always advance PC by 4 bytes. 676 */ 677 arm64_compat_skip_faulting_instruction(regs, 4); 678 return; 679 } 680 681 switch (ESR_ELx_EC(esr)) { 682 case ESR_ELx_EC_CP15_32: 683 hook_base = cp15_32_hooks; 684 break; 685 case ESR_ELx_EC_CP15_64: 686 hook_base = cp15_64_hooks; 687 break; 688 default: 689 do_undefinstr(regs); 690 return; 691 } 692 693 for (hook = hook_base; hook->handler; hook++) 694 if ((hook->esr_mask & esr) == hook->esr_val) { 695 hook->handler(esr, regs); 696 return; 697 } 698 699 /* 700 * New cp15 instructions may previously have been undefined at 701 * EL0. Fall back to our usual undefined instruction handler 702 * so that we handle these consistently. 703 */ 704 do_undefinstr(regs); 705 } 706 #endif 707 708 asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs) 709 { 710 struct sys64_hook *hook; 711 712 for (hook = sys64_hooks; hook->handler; hook++) 713 if ((hook->esr_mask & esr) == hook->esr_val) { 714 hook->handler(esr, regs); 715 return; 716 } 717 718 /* 719 * New SYS instructions may previously have been undefined at EL0. Fall 720 * back to our usual undefined instruction handler so that we handle 721 * these consistently. 722 */ 723 do_undefinstr(regs); 724 } 725 726 static const char *esr_class_str[] = { 727 [0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC", 728 [ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized", 729 [ESR_ELx_EC_WFx] = "WFI/WFE", 730 [ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC", 731 [ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC", 732 [ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC", 733 [ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC", 734 [ESR_ELx_EC_FP_ASIMD] = "ASIMD", 735 [ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS", 736 [ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC", 737 [ESR_ELx_EC_ILL] = "PSTATE.IL", 738 [ESR_ELx_EC_SVC32] = "SVC (AArch32)", 739 [ESR_ELx_EC_HVC32] = "HVC (AArch32)", 740 [ESR_ELx_EC_SMC32] = "SMC (AArch32)", 741 [ESR_ELx_EC_SVC64] = "SVC (AArch64)", 742 [ESR_ELx_EC_HVC64] = "HVC (AArch64)", 743 [ESR_ELx_EC_SMC64] = "SMC (AArch64)", 744 [ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)", 745 [ESR_ELx_EC_SVE] = "SVE", 746 [ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF", 747 [ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)", 748 [ESR_ELx_EC_IABT_CUR] = "IABT (current EL)", 749 [ESR_ELx_EC_PC_ALIGN] = "PC Alignment", 750 [ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)", 751 [ESR_ELx_EC_DABT_CUR] = "DABT (current EL)", 752 [ESR_ELx_EC_SP_ALIGN] = "SP Alignment", 753 [ESR_ELx_EC_FP_EXC32] = "FP (AArch32)", 754 [ESR_ELx_EC_FP_EXC64] = "FP (AArch64)", 755 [ESR_ELx_EC_SERROR] = "SError", 756 [ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)", 757 [ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)", 758 [ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)", 759 [ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)", 760 [ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)", 761 [ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)", 762 [ESR_ELx_EC_BKPT32] = "BKPT (AArch32)", 763 [ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)", 764 [ESR_ELx_EC_BRK64] = "BRK (AArch64)", 765 }; 766 767 const char *esr_get_class_string(u32 esr) 768 { 769 return esr_class_str[ESR_ELx_EC(esr)]; 770 } 771 772 /* 773 * bad_mode handles the impossible case in the exception vector. This is always 774 * fatal. 775 */ 776 asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr) 777 { 778 console_verbose(); 779 780 pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n", 781 handler[reason], smp_processor_id(), esr, 782 esr_get_class_string(esr)); 783 784 local_daif_mask(); 785 panic("bad mode"); 786 } 787 788 /* 789 * bad_el0_sync handles unexpected, but potentially recoverable synchronous 790 * exceptions taken from EL0. Unlike bad_mode, this returns. 791 */ 792 asmlinkage void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr) 793 { 794 void __user *pc = (void __user *)instruction_pointer(regs); 795 796 current->thread.fault_address = 0; 797 current->thread.fault_code = esr; 798 799 arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc, 800 "Bad EL0 synchronous exception"); 801 } 802 803 #ifdef CONFIG_VMAP_STACK 804 805 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack) 806 __aligned(16); 807 808 asmlinkage void handle_bad_stack(struct pt_regs *regs) 809 { 810 unsigned long tsk_stk = (unsigned long)current->stack; 811 unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr); 812 unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack); 813 unsigned int esr = read_sysreg(esr_el1); 814 unsigned long far = read_sysreg(far_el1); 815 816 console_verbose(); 817 pr_emerg("Insufficient stack space to handle exception!"); 818 819 pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr)); 820 pr_emerg("FAR: 0x%016lx\n", far); 821 822 pr_emerg("Task stack: [0x%016lx..0x%016lx]\n", 823 tsk_stk, tsk_stk + THREAD_SIZE); 824 pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n", 825 irq_stk, irq_stk + THREAD_SIZE); 826 pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n", 827 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE); 828 829 __show_regs(regs); 830 831 /* 832 * We use nmi_panic to limit the potential for recusive overflows, and 833 * to get a better stack trace. 834 */ 835 nmi_panic(NULL, "kernel stack overflow"); 836 cpu_park_loop(); 837 } 838 #endif 839 840 void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr) 841 { 842 console_verbose(); 843 844 pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n", 845 smp_processor_id(), esr, esr_get_class_string(esr)); 846 if (regs) 847 __show_regs(regs); 848 849 nmi_panic(regs, "Asynchronous SError Interrupt"); 850 851 cpu_park_loop(); 852 unreachable(); 853 } 854 855 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr) 856 { 857 u32 aet = arm64_ras_serror_get_severity(esr); 858 859 switch (aet) { 860 case ESR_ELx_AET_CE: /* corrected error */ 861 case ESR_ELx_AET_UEO: /* restartable, not yet consumed */ 862 /* 863 * The CPU can make progress. We may take UEO again as 864 * a more severe error. 865 */ 866 return false; 867 868 case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */ 869 case ESR_ELx_AET_UER: /* Uncorrected Recoverable */ 870 /* 871 * The CPU can't make progress. The exception may have 872 * been imprecise. 873 * 874 * Neoverse-N1 #1349291 means a non-KVM SError reported as 875 * Unrecoverable should be treated as Uncontainable. We 876 * call arm64_serror_panic() in both cases. 877 */ 878 return true; 879 880 case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */ 881 default: 882 /* Error has been silently propagated */ 883 arm64_serror_panic(regs, esr); 884 } 885 } 886 887 asmlinkage void do_serror(struct pt_regs *regs, unsigned int esr) 888 { 889 const bool was_in_nmi = in_nmi(); 890 891 if (!was_in_nmi) 892 nmi_enter(); 893 894 /* non-RAS errors are not containable */ 895 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr)) 896 arm64_serror_panic(regs, esr); 897 898 if (!was_in_nmi) 899 nmi_exit(); 900 } 901 902 void __pte_error(const char *file, int line, unsigned long val) 903 { 904 pr_err("%s:%d: bad pte %016lx.\n", file, line, val); 905 } 906 907 void __pmd_error(const char *file, int line, unsigned long val) 908 { 909 pr_err("%s:%d: bad pmd %016lx.\n", file, line, val); 910 } 911 912 void __pud_error(const char *file, int line, unsigned long val) 913 { 914 pr_err("%s:%d: bad pud %016lx.\n", file, line, val); 915 } 916 917 void __pgd_error(const char *file, int line, unsigned long val) 918 { 919 pr_err("%s:%d: bad pgd %016lx.\n", file, line, val); 920 } 921 922 /* GENERIC_BUG traps */ 923 924 int is_valid_bugaddr(unsigned long addr) 925 { 926 /* 927 * bug_handler() only called for BRK #BUG_BRK_IMM. 928 * So the answer is trivial -- any spurious instances with no 929 * bug table entry will be rejected by report_bug() and passed 930 * back to the debug-monitors code and handled as a fatal 931 * unexpected debug exception. 932 */ 933 return 1; 934 } 935 936 static int bug_handler(struct pt_regs *regs, unsigned int esr) 937 { 938 switch (report_bug(regs->pc, regs)) { 939 case BUG_TRAP_TYPE_BUG: 940 die("Oops - BUG", regs, 0); 941 break; 942 943 case BUG_TRAP_TYPE_WARN: 944 break; 945 946 default: 947 /* unknown/unrecognised bug trap type */ 948 return DBG_HOOK_ERROR; 949 } 950 951 /* If thread survives, skip over the BUG instruction and continue: */ 952 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 953 return DBG_HOOK_HANDLED; 954 } 955 956 static struct break_hook bug_break_hook = { 957 .fn = bug_handler, 958 .imm = BUG_BRK_IMM, 959 }; 960 961 #ifdef CONFIG_KASAN_SW_TAGS 962 963 #define KASAN_ESR_RECOVER 0x20 964 #define KASAN_ESR_WRITE 0x10 965 #define KASAN_ESR_SIZE_MASK 0x0f 966 #define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK)) 967 968 static int kasan_handler(struct pt_regs *regs, unsigned int esr) 969 { 970 bool recover = esr & KASAN_ESR_RECOVER; 971 bool write = esr & KASAN_ESR_WRITE; 972 size_t size = KASAN_ESR_SIZE(esr); 973 u64 addr = regs->regs[0]; 974 u64 pc = regs->pc; 975 976 kasan_report(addr, size, write, pc); 977 978 /* 979 * The instrumentation allows to control whether we can proceed after 980 * a crash was detected. This is done by passing the -recover flag to 981 * the compiler. Disabling recovery allows to generate more compact 982 * code. 983 * 984 * Unfortunately disabling recovery doesn't work for the kernel right 985 * now. KASAN reporting is disabled in some contexts (for example when 986 * the allocator accesses slab object metadata; this is controlled by 987 * current->kasan_depth). All these accesses are detected by the tool, 988 * even though the reports for them are not printed. 989 * 990 * This is something that might be fixed at some point in the future. 991 */ 992 if (!recover) 993 die("Oops - KASAN", regs, 0); 994 995 /* If thread survives, skip over the brk instruction and continue: */ 996 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 997 return DBG_HOOK_HANDLED; 998 } 999 1000 static struct break_hook kasan_break_hook = { 1001 .fn = kasan_handler, 1002 .imm = KASAN_BRK_IMM, 1003 .mask = KASAN_BRK_MASK, 1004 }; 1005 #endif 1006 1007 /* 1008 * Initial handler for AArch64 BRK exceptions 1009 * This handler only used until debug_traps_init(). 1010 */ 1011 int __init early_brk64(unsigned long addr, unsigned int esr, 1012 struct pt_regs *regs) 1013 { 1014 #ifdef CONFIG_KASAN_SW_TAGS 1015 unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK; 1016 1017 if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM) 1018 return kasan_handler(regs, esr) != DBG_HOOK_HANDLED; 1019 #endif 1020 return bug_handler(regs, esr) != DBG_HOOK_HANDLED; 1021 } 1022 1023 /* This registration must happen early, before debug_traps_init(). */ 1024 void __init trap_init(void) 1025 { 1026 register_kernel_break_hook(&bug_break_hook); 1027 #ifdef CONFIG_KASAN_SW_TAGS 1028 register_kernel_break_hook(&kasan_break_hook); 1029 #endif 1030 } 1031