xref: /openbmc/linux/arch/arm64/kernel/traps.c (revision 6486a57f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/traps.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/kallsyms.h>
13 #include <linux/kprobes.h>
14 #include <linux/spinlock.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kdebug.h>
18 #include <linux/module.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sizes.h>
26 #include <linux/syscalls.h>
27 #include <linux/mm_types.h>
28 #include <linux/kasan.h>
29 #include <linux/ubsan.h>
30 #include <linux/cfi.h>
31 
32 #include <asm/atomic.h>
33 #include <asm/bug.h>
34 #include <asm/cpufeature.h>
35 #include <asm/daifflags.h>
36 #include <asm/debug-monitors.h>
37 #include <asm/esr.h>
38 #include <asm/exception.h>
39 #include <asm/extable.h>
40 #include <asm/insn.h>
41 #include <asm/kprobes.h>
42 #include <asm/patching.h>
43 #include <asm/traps.h>
44 #include <asm/smp.h>
45 #include <asm/stack_pointer.h>
46 #include <asm/stacktrace.h>
47 #include <asm/system_misc.h>
48 #include <asm/sysreg.h>
49 
50 static bool __kprobes __check_eq(unsigned long pstate)
51 {
52 	return (pstate & PSR_Z_BIT) != 0;
53 }
54 
55 static bool __kprobes __check_ne(unsigned long pstate)
56 {
57 	return (pstate & PSR_Z_BIT) == 0;
58 }
59 
60 static bool __kprobes __check_cs(unsigned long pstate)
61 {
62 	return (pstate & PSR_C_BIT) != 0;
63 }
64 
65 static bool __kprobes __check_cc(unsigned long pstate)
66 {
67 	return (pstate & PSR_C_BIT) == 0;
68 }
69 
70 static bool __kprobes __check_mi(unsigned long pstate)
71 {
72 	return (pstate & PSR_N_BIT) != 0;
73 }
74 
75 static bool __kprobes __check_pl(unsigned long pstate)
76 {
77 	return (pstate & PSR_N_BIT) == 0;
78 }
79 
80 static bool __kprobes __check_vs(unsigned long pstate)
81 {
82 	return (pstate & PSR_V_BIT) != 0;
83 }
84 
85 static bool __kprobes __check_vc(unsigned long pstate)
86 {
87 	return (pstate & PSR_V_BIT) == 0;
88 }
89 
90 static bool __kprobes __check_hi(unsigned long pstate)
91 {
92 	pstate &= ~(pstate >> 1);	/* PSR_C_BIT &= ~PSR_Z_BIT */
93 	return (pstate & PSR_C_BIT) != 0;
94 }
95 
96 static bool __kprobes __check_ls(unsigned long pstate)
97 {
98 	pstate &= ~(pstate >> 1);	/* PSR_C_BIT &= ~PSR_Z_BIT */
99 	return (pstate & PSR_C_BIT) == 0;
100 }
101 
102 static bool __kprobes __check_ge(unsigned long pstate)
103 {
104 	pstate ^= (pstate << 3);	/* PSR_N_BIT ^= PSR_V_BIT */
105 	return (pstate & PSR_N_BIT) == 0;
106 }
107 
108 static bool __kprobes __check_lt(unsigned long pstate)
109 {
110 	pstate ^= (pstate << 3);	/* PSR_N_BIT ^= PSR_V_BIT */
111 	return (pstate & PSR_N_BIT) != 0;
112 }
113 
114 static bool __kprobes __check_gt(unsigned long pstate)
115 {
116 	/*PSR_N_BIT ^= PSR_V_BIT */
117 	unsigned long temp = pstate ^ (pstate << 3);
118 
119 	temp |= (pstate << 1);	/*PSR_N_BIT |= PSR_Z_BIT */
120 	return (temp & PSR_N_BIT) == 0;
121 }
122 
123 static bool __kprobes __check_le(unsigned long pstate)
124 {
125 	/*PSR_N_BIT ^= PSR_V_BIT */
126 	unsigned long temp = pstate ^ (pstate << 3);
127 
128 	temp |= (pstate << 1);	/*PSR_N_BIT |= PSR_Z_BIT */
129 	return (temp & PSR_N_BIT) != 0;
130 }
131 
132 static bool __kprobes __check_al(unsigned long pstate)
133 {
134 	return true;
135 }
136 
137 /*
138  * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that
139  * it behaves identically to 0b1110 ("al").
140  */
141 pstate_check_t * const aarch32_opcode_cond_checks[16] = {
142 	__check_eq, __check_ne, __check_cs, __check_cc,
143 	__check_mi, __check_pl, __check_vs, __check_vc,
144 	__check_hi, __check_ls, __check_ge, __check_lt,
145 	__check_gt, __check_le, __check_al, __check_al
146 };
147 
148 int show_unhandled_signals = 0;
149 
150 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
151 {
152 	unsigned long addr = instruction_pointer(regs);
153 	char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
154 	int i;
155 
156 	if (user_mode(regs))
157 		return;
158 
159 	for (i = -4; i < 1; i++) {
160 		unsigned int val, bad;
161 
162 		bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
163 
164 		if (!bad)
165 			p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
166 		else
167 			p += sprintf(p, i == 0 ? "(????????) " : "???????? ");
168 	}
169 
170 	printk("%sCode: %s\n", lvl, str);
171 }
172 
173 #ifdef CONFIG_PREEMPT
174 #define S_PREEMPT " PREEMPT"
175 #elif defined(CONFIG_PREEMPT_RT)
176 #define S_PREEMPT " PREEMPT_RT"
177 #else
178 #define S_PREEMPT ""
179 #endif
180 
181 #define S_SMP " SMP"
182 
183 static int __die(const char *str, long err, struct pt_regs *regs)
184 {
185 	static int die_counter;
186 	int ret;
187 
188 	pr_emerg("Internal error: %s: %016lx [#%d]" S_PREEMPT S_SMP "\n",
189 		 str, err, ++die_counter);
190 
191 	/* trap and error numbers are mostly meaningless on ARM */
192 	ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
193 	if (ret == NOTIFY_STOP)
194 		return ret;
195 
196 	print_modules();
197 	show_regs(regs);
198 
199 	dump_kernel_instr(KERN_EMERG, regs);
200 
201 	return ret;
202 }
203 
204 static DEFINE_RAW_SPINLOCK(die_lock);
205 
206 /*
207  * This function is protected against re-entrancy.
208  */
209 void die(const char *str, struct pt_regs *regs, long err)
210 {
211 	int ret;
212 	unsigned long flags;
213 
214 	raw_spin_lock_irqsave(&die_lock, flags);
215 
216 	oops_enter();
217 
218 	console_verbose();
219 	bust_spinlocks(1);
220 	ret = __die(str, err, regs);
221 
222 	if (regs && kexec_should_crash(current))
223 		crash_kexec(regs);
224 
225 	bust_spinlocks(0);
226 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
227 	oops_exit();
228 
229 	if (in_interrupt())
230 		panic("%s: Fatal exception in interrupt", str);
231 	if (panic_on_oops)
232 		panic("%s: Fatal exception", str);
233 
234 	raw_spin_unlock_irqrestore(&die_lock, flags);
235 
236 	if (ret != NOTIFY_STOP)
237 		make_task_dead(SIGSEGV);
238 }
239 
240 static void arm64_show_signal(int signo, const char *str)
241 {
242 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
243 				      DEFAULT_RATELIMIT_BURST);
244 	struct task_struct *tsk = current;
245 	unsigned long esr = tsk->thread.fault_code;
246 	struct pt_regs *regs = task_pt_regs(tsk);
247 
248 	/* Leave if the signal won't be shown */
249 	if (!show_unhandled_signals ||
250 	    !unhandled_signal(tsk, signo) ||
251 	    !__ratelimit(&rs))
252 		return;
253 
254 	pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
255 	if (esr)
256 		pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
257 
258 	pr_cont("%s", str);
259 	print_vma_addr(KERN_CONT " in ", regs->pc);
260 	pr_cont("\n");
261 	__show_regs(regs);
262 }
263 
264 void arm64_force_sig_fault(int signo, int code, unsigned long far,
265 			   const char *str)
266 {
267 	arm64_show_signal(signo, str);
268 	if (signo == SIGKILL)
269 		force_sig(SIGKILL);
270 	else
271 		force_sig_fault(signo, code, (void __user *)far);
272 }
273 
274 void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
275 			    const char *str)
276 {
277 	arm64_show_signal(SIGBUS, str);
278 	force_sig_mceerr(code, (void __user *)far, lsb);
279 }
280 
281 void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
282 				       const char *str)
283 {
284 	arm64_show_signal(SIGTRAP, str);
285 	force_sig_ptrace_errno_trap(errno, (void __user *)far);
286 }
287 
288 void arm64_notify_die(const char *str, struct pt_regs *regs,
289 		      int signo, int sicode, unsigned long far,
290 		      unsigned long err)
291 {
292 	if (user_mode(regs)) {
293 		WARN_ON(regs != current_pt_regs());
294 		current->thread.fault_address = 0;
295 		current->thread.fault_code = err;
296 
297 		arm64_force_sig_fault(signo, sicode, far, str);
298 	} else {
299 		die(str, regs, err);
300 	}
301 }
302 
303 #ifdef CONFIG_COMPAT
304 #define PSTATE_IT_1_0_SHIFT	25
305 #define PSTATE_IT_1_0_MASK	(0x3 << PSTATE_IT_1_0_SHIFT)
306 #define PSTATE_IT_7_2_SHIFT	10
307 #define PSTATE_IT_7_2_MASK	(0x3f << PSTATE_IT_7_2_SHIFT)
308 
309 static u32 compat_get_it_state(struct pt_regs *regs)
310 {
311 	u32 it, pstate = regs->pstate;
312 
313 	it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
314 	it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
315 
316 	return it;
317 }
318 
319 static void compat_set_it_state(struct pt_regs *regs, u32 it)
320 {
321 	u32 pstate_it;
322 
323 	pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
324 	pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
325 
326 	regs->pstate &= ~PSR_AA32_IT_MASK;
327 	regs->pstate |= pstate_it;
328 }
329 
330 static void advance_itstate(struct pt_regs *regs)
331 {
332 	u32 it;
333 
334 	/* ARM mode */
335 	if (!(regs->pstate & PSR_AA32_T_BIT) ||
336 	    !(regs->pstate & PSR_AA32_IT_MASK))
337 		return;
338 
339 	it  = compat_get_it_state(regs);
340 
341 	/*
342 	 * If this is the last instruction of the block, wipe the IT
343 	 * state. Otherwise advance it.
344 	 */
345 	if (!(it & 7))
346 		it = 0;
347 	else
348 		it = (it & 0xe0) | ((it << 1) & 0x1f);
349 
350 	compat_set_it_state(regs, it);
351 }
352 #else
353 static void advance_itstate(struct pt_regs *regs)
354 {
355 }
356 #endif
357 
358 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
359 {
360 	regs->pc += size;
361 
362 	/*
363 	 * If we were single stepping, we want to get the step exception after
364 	 * we return from the trap.
365 	 */
366 	if (user_mode(regs))
367 		user_fastforward_single_step(current);
368 
369 	if (compat_user_mode(regs))
370 		advance_itstate(regs);
371 	else
372 		regs->pstate &= ~PSR_BTYPE_MASK;
373 }
374 
375 static int user_insn_read(struct pt_regs *regs, u32 *insnp)
376 {
377 	u32 instr;
378 	unsigned long pc = instruction_pointer(regs);
379 
380 	if (compat_thumb_mode(regs)) {
381 		/* 16-bit Thumb instruction */
382 		__le16 instr_le;
383 		if (get_user(instr_le, (__le16 __user *)pc))
384 			return -EFAULT;
385 		instr = le16_to_cpu(instr_le);
386 		if (aarch32_insn_is_wide(instr)) {
387 			u32 instr2;
388 
389 			if (get_user(instr_le, (__le16 __user *)(pc + 2)))
390 				return -EFAULT;
391 			instr2 = le16_to_cpu(instr_le);
392 			instr = (instr << 16) | instr2;
393 		}
394 	} else {
395 		/* 32-bit ARM instruction */
396 		__le32 instr_le;
397 		if (get_user(instr_le, (__le32 __user *)pc))
398 			return -EFAULT;
399 		instr = le32_to_cpu(instr_le);
400 	}
401 
402 	*insnp = instr;
403 	return 0;
404 }
405 
406 void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
407 {
408 	const char *desc;
409 	struct pt_regs *regs = current_pt_regs();
410 
411 	if (WARN_ON(!user_mode(regs)))
412 		return;
413 
414 	switch (signal) {
415 	case SIGILL:
416 		desc = "undefined instruction";
417 		break;
418 	case SIGSEGV:
419 		desc = "illegal memory access";
420 		break;
421 	default:
422 		desc = "unknown or unrecoverable error";
423 		break;
424 	}
425 
426 	/* Force signals we don't understand to SIGKILL */
427 	if (WARN_ON(signal != SIGKILL &&
428 		    siginfo_layout(signal, code) != SIL_FAULT)) {
429 		signal = SIGKILL;
430 	}
431 
432 	arm64_notify_die(desc, regs, signal, code, address, err);
433 }
434 
435 /*
436  * Set up process info to signal segmentation fault - called on access error.
437  */
438 void arm64_notify_segfault(unsigned long addr)
439 {
440 	int code;
441 
442 	mmap_read_lock(current->mm);
443 	if (find_vma(current->mm, untagged_addr(addr)) == NULL)
444 		code = SEGV_MAPERR;
445 	else
446 		code = SEGV_ACCERR;
447 	mmap_read_unlock(current->mm);
448 
449 	force_signal_inject(SIGSEGV, code, addr, 0);
450 }
451 
452 void do_el0_undef(struct pt_regs *regs, unsigned long esr)
453 {
454 	u32 insn;
455 
456 	/* check for AArch32 breakpoint instructions */
457 	if (!aarch32_break_handler(regs))
458 		return;
459 
460 	if (user_insn_read(regs, &insn))
461 		goto out_err;
462 
463 	if (try_emulate_mrs(regs, insn))
464 		return;
465 
466 	if (try_emulate_armv8_deprecated(regs, insn))
467 		return;
468 
469 out_err:
470 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
471 }
472 
473 void do_el1_undef(struct pt_regs *regs, unsigned long esr)
474 {
475 	u32 insn;
476 
477 	if (aarch64_insn_read((void *)regs->pc, &insn))
478 		goto out_err;
479 
480 	if (try_emulate_el1_ssbs(regs, insn))
481 		return;
482 
483 out_err:
484 	die("Oops - Undefined instruction", regs, esr);
485 }
486 
487 void do_el0_bti(struct pt_regs *regs)
488 {
489 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
490 }
491 
492 void do_el1_bti(struct pt_regs *regs, unsigned long esr)
493 {
494 	die("Oops - BTI", regs, esr);
495 }
496 
497 void do_el0_fpac(struct pt_regs *regs, unsigned long esr)
498 {
499 	force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
500 }
501 
502 void do_el1_fpac(struct pt_regs *regs, unsigned long esr)
503 {
504 	/*
505 	 * Unexpected FPAC exception in the kernel: kill the task before it
506 	 * does any more harm.
507 	 */
508 	die("Oops - FPAC", regs, esr);
509 }
510 
511 #define __user_cache_maint(insn, address, res)			\
512 	if (address >= TASK_SIZE_MAX) {				\
513 		res = -EFAULT;					\
514 	} else {						\
515 		uaccess_ttbr0_enable();				\
516 		asm volatile (					\
517 			"1:	" insn ", %1\n"			\
518 			"	mov	%w0, #0\n"		\
519 			"2:\n"					\
520 			_ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w0)	\
521 			: "=r" (res)				\
522 			: "r" (address));			\
523 		uaccess_ttbr0_disable();			\
524 	}
525 
526 static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
527 {
528 	unsigned long tagged_address, address;
529 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
530 	int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
531 	int ret = 0;
532 
533 	tagged_address = pt_regs_read_reg(regs, rt);
534 	address = untagged_addr(tagged_address);
535 
536 	switch (crm) {
537 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:	/* DC CVAU, gets promoted */
538 		__user_cache_maint("dc civac", address, ret);
539 		break;
540 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:	/* DC CVAC, gets promoted */
541 		__user_cache_maint("dc civac", address, ret);
542 		break;
543 	case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:	/* DC CVADP */
544 		__user_cache_maint("sys 3, c7, c13, 1", address, ret);
545 		break;
546 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:	/* DC CVAP */
547 		__user_cache_maint("sys 3, c7, c12, 1", address, ret);
548 		break;
549 	case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:	/* DC CIVAC */
550 		__user_cache_maint("dc civac", address, ret);
551 		break;
552 	case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:	/* IC IVAU */
553 		__user_cache_maint("ic ivau", address, ret);
554 		break;
555 	default:
556 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
557 		return;
558 	}
559 
560 	if (ret)
561 		arm64_notify_segfault(tagged_address);
562 	else
563 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
564 }
565 
566 static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
567 {
568 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
569 	unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
570 
571 	if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
572 		/* Hide DIC so that we can trap the unnecessary maintenance...*/
573 		val &= ~BIT(CTR_EL0_DIC_SHIFT);
574 
575 		/* ... and fake IminLine to reduce the number of traps. */
576 		val &= ~CTR_EL0_IminLine_MASK;
577 		val |= (PAGE_SHIFT - 2) & CTR_EL0_IminLine_MASK;
578 	}
579 
580 	pt_regs_write_reg(regs, rt, val);
581 
582 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
583 }
584 
585 static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
586 {
587 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
588 
589 	pt_regs_write_reg(regs, rt, arch_timer_read_counter());
590 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
591 }
592 
593 static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
594 {
595 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
596 
597 	pt_regs_write_reg(regs, rt, arch_timer_get_rate());
598 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
599 }
600 
601 static void mrs_handler(unsigned long esr, struct pt_regs *regs)
602 {
603 	u32 sysreg, rt;
604 
605 	rt = ESR_ELx_SYS64_ISS_RT(esr);
606 	sysreg = esr_sys64_to_sysreg(esr);
607 
608 	if (do_emulate_mrs(regs, sysreg, rt) != 0)
609 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
610 }
611 
612 static void wfi_handler(unsigned long esr, struct pt_regs *regs)
613 {
614 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
615 }
616 
617 struct sys64_hook {
618 	unsigned long esr_mask;
619 	unsigned long esr_val;
620 	void (*handler)(unsigned long esr, struct pt_regs *regs);
621 };
622 
623 static const struct sys64_hook sys64_hooks[] = {
624 	{
625 		.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
626 		.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
627 		.handler = user_cache_maint_handler,
628 	},
629 	{
630 		/* Trap read access to CTR_EL0 */
631 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
632 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
633 		.handler = ctr_read_handler,
634 	},
635 	{
636 		/* Trap read access to CNTVCT_EL0 */
637 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
638 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
639 		.handler = cntvct_read_handler,
640 	},
641 	{
642 		/* Trap read access to CNTVCTSS_EL0 */
643 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
644 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCTSS,
645 		.handler = cntvct_read_handler,
646 	},
647 	{
648 		/* Trap read access to CNTFRQ_EL0 */
649 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
650 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
651 		.handler = cntfrq_read_handler,
652 	},
653 	{
654 		/* Trap read access to CPUID registers */
655 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
656 		.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
657 		.handler = mrs_handler,
658 	},
659 	{
660 		/* Trap WFI instructions executed in userspace */
661 		.esr_mask = ESR_ELx_WFx_MASK,
662 		.esr_val = ESR_ELx_WFx_WFI_VAL,
663 		.handler = wfi_handler,
664 	},
665 	{},
666 };
667 
668 #ifdef CONFIG_COMPAT
669 static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
670 {
671 	int cond;
672 
673 	/* Only a T32 instruction can trap without CV being set */
674 	if (!(esr & ESR_ELx_CV)) {
675 		u32 it;
676 
677 		it = compat_get_it_state(regs);
678 		if (!it)
679 			return true;
680 
681 		cond = it >> 4;
682 	} else {
683 		cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
684 	}
685 
686 	return aarch32_opcode_cond_checks[cond](regs->pstate);
687 }
688 
689 static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
690 {
691 	int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
692 
693 	pt_regs_write_reg(regs, reg, arch_timer_get_rate());
694 	arm64_skip_faulting_instruction(regs, 4);
695 }
696 
697 static const struct sys64_hook cp15_32_hooks[] = {
698 	{
699 		.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
700 		.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
701 		.handler = compat_cntfrq_read_handler,
702 	},
703 	{},
704 };
705 
706 static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
707 {
708 	int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
709 	int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
710 	u64 val = arch_timer_read_counter();
711 
712 	pt_regs_write_reg(regs, rt, lower_32_bits(val));
713 	pt_regs_write_reg(regs, rt2, upper_32_bits(val));
714 	arm64_skip_faulting_instruction(regs, 4);
715 }
716 
717 static const struct sys64_hook cp15_64_hooks[] = {
718 	{
719 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
720 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
721 		.handler = compat_cntvct_read_handler,
722 	},
723 	{
724 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
725 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCTSS,
726 		.handler = compat_cntvct_read_handler,
727 	},
728 	{},
729 };
730 
731 void do_el0_cp15(unsigned long esr, struct pt_regs *regs)
732 {
733 	const struct sys64_hook *hook, *hook_base;
734 
735 	if (!cp15_cond_valid(esr, regs)) {
736 		/*
737 		 * There is no T16 variant of a CP access, so we
738 		 * always advance PC by 4 bytes.
739 		 */
740 		arm64_skip_faulting_instruction(regs, 4);
741 		return;
742 	}
743 
744 	switch (ESR_ELx_EC(esr)) {
745 	case ESR_ELx_EC_CP15_32:
746 		hook_base = cp15_32_hooks;
747 		break;
748 	case ESR_ELx_EC_CP15_64:
749 		hook_base = cp15_64_hooks;
750 		break;
751 	default:
752 		do_el0_undef(regs, esr);
753 		return;
754 	}
755 
756 	for (hook = hook_base; hook->handler; hook++)
757 		if ((hook->esr_mask & esr) == hook->esr_val) {
758 			hook->handler(esr, regs);
759 			return;
760 		}
761 
762 	/*
763 	 * New cp15 instructions may previously have been undefined at
764 	 * EL0. Fall back to our usual undefined instruction handler
765 	 * so that we handle these consistently.
766 	 */
767 	do_el0_undef(regs, esr);
768 }
769 #endif
770 
771 void do_el0_sys(unsigned long esr, struct pt_regs *regs)
772 {
773 	const struct sys64_hook *hook;
774 
775 	for (hook = sys64_hooks; hook->handler; hook++)
776 		if ((hook->esr_mask & esr) == hook->esr_val) {
777 			hook->handler(esr, regs);
778 			return;
779 		}
780 
781 	/*
782 	 * New SYS instructions may previously have been undefined at EL0. Fall
783 	 * back to our usual undefined instruction handler so that we handle
784 	 * these consistently.
785 	 */
786 	do_el0_undef(regs, esr);
787 }
788 
789 static const char *esr_class_str[] = {
790 	[0 ... ESR_ELx_EC_MAX]		= "UNRECOGNIZED EC",
791 	[ESR_ELx_EC_UNKNOWN]		= "Unknown/Uncategorized",
792 	[ESR_ELx_EC_WFx]		= "WFI/WFE",
793 	[ESR_ELx_EC_CP15_32]		= "CP15 MCR/MRC",
794 	[ESR_ELx_EC_CP15_64]		= "CP15 MCRR/MRRC",
795 	[ESR_ELx_EC_CP14_MR]		= "CP14 MCR/MRC",
796 	[ESR_ELx_EC_CP14_LS]		= "CP14 LDC/STC",
797 	[ESR_ELx_EC_FP_ASIMD]		= "ASIMD",
798 	[ESR_ELx_EC_CP10_ID]		= "CP10 MRC/VMRS",
799 	[ESR_ELx_EC_PAC]		= "PAC",
800 	[ESR_ELx_EC_CP14_64]		= "CP14 MCRR/MRRC",
801 	[ESR_ELx_EC_BTI]		= "BTI",
802 	[ESR_ELx_EC_ILL]		= "PSTATE.IL",
803 	[ESR_ELx_EC_SVC32]		= "SVC (AArch32)",
804 	[ESR_ELx_EC_HVC32]		= "HVC (AArch32)",
805 	[ESR_ELx_EC_SMC32]		= "SMC (AArch32)",
806 	[ESR_ELx_EC_SVC64]		= "SVC (AArch64)",
807 	[ESR_ELx_EC_HVC64]		= "HVC (AArch64)",
808 	[ESR_ELx_EC_SMC64]		= "SMC (AArch64)",
809 	[ESR_ELx_EC_SYS64]		= "MSR/MRS (AArch64)",
810 	[ESR_ELx_EC_SVE]		= "SVE",
811 	[ESR_ELx_EC_ERET]		= "ERET/ERETAA/ERETAB",
812 	[ESR_ELx_EC_FPAC]		= "FPAC",
813 	[ESR_ELx_EC_SME]		= "SME",
814 	[ESR_ELx_EC_IMP_DEF]		= "EL3 IMP DEF",
815 	[ESR_ELx_EC_IABT_LOW]		= "IABT (lower EL)",
816 	[ESR_ELx_EC_IABT_CUR]		= "IABT (current EL)",
817 	[ESR_ELx_EC_PC_ALIGN]		= "PC Alignment",
818 	[ESR_ELx_EC_DABT_LOW]		= "DABT (lower EL)",
819 	[ESR_ELx_EC_DABT_CUR]		= "DABT (current EL)",
820 	[ESR_ELx_EC_SP_ALIGN]		= "SP Alignment",
821 	[ESR_ELx_EC_FP_EXC32]		= "FP (AArch32)",
822 	[ESR_ELx_EC_FP_EXC64]		= "FP (AArch64)",
823 	[ESR_ELx_EC_SERROR]		= "SError",
824 	[ESR_ELx_EC_BREAKPT_LOW]	= "Breakpoint (lower EL)",
825 	[ESR_ELx_EC_BREAKPT_CUR]	= "Breakpoint (current EL)",
826 	[ESR_ELx_EC_SOFTSTP_LOW]	= "Software Step (lower EL)",
827 	[ESR_ELx_EC_SOFTSTP_CUR]	= "Software Step (current EL)",
828 	[ESR_ELx_EC_WATCHPT_LOW]	= "Watchpoint (lower EL)",
829 	[ESR_ELx_EC_WATCHPT_CUR]	= "Watchpoint (current EL)",
830 	[ESR_ELx_EC_BKPT32]		= "BKPT (AArch32)",
831 	[ESR_ELx_EC_VECTOR32]		= "Vector catch (AArch32)",
832 	[ESR_ELx_EC_BRK64]		= "BRK (AArch64)",
833 };
834 
835 const char *esr_get_class_string(unsigned long esr)
836 {
837 	return esr_class_str[ESR_ELx_EC(esr)];
838 }
839 
840 /*
841  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
842  * exceptions taken from EL0.
843  */
844 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
845 {
846 	unsigned long pc = instruction_pointer(regs);
847 
848 	current->thread.fault_address = 0;
849 	current->thread.fault_code = esr;
850 
851 	arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
852 			      "Bad EL0 synchronous exception");
853 }
854 
855 #ifdef CONFIG_VMAP_STACK
856 
857 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
858 	__aligned(16);
859 
860 void panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
861 {
862 	unsigned long tsk_stk = (unsigned long)current->stack;
863 	unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
864 	unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
865 
866 	console_verbose();
867 	pr_emerg("Insufficient stack space to handle exception!");
868 
869 	pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
870 	pr_emerg("FAR: 0x%016lx\n", far);
871 
872 	pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
873 		 tsk_stk, tsk_stk + THREAD_SIZE);
874 	pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
875 		 irq_stk, irq_stk + IRQ_STACK_SIZE);
876 	pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
877 		 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
878 
879 	__show_regs(regs);
880 
881 	/*
882 	 * We use nmi_panic to limit the potential for recusive overflows, and
883 	 * to get a better stack trace.
884 	 */
885 	nmi_panic(NULL, "kernel stack overflow");
886 	cpu_park_loop();
887 }
888 #endif
889 
890 void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
891 {
892 	console_verbose();
893 
894 	pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
895 		smp_processor_id(), esr, esr_get_class_string(esr));
896 	if (regs)
897 		__show_regs(regs);
898 
899 	nmi_panic(regs, "Asynchronous SError Interrupt");
900 
901 	cpu_park_loop();
902 	unreachable();
903 }
904 
905 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
906 {
907 	unsigned long aet = arm64_ras_serror_get_severity(esr);
908 
909 	switch (aet) {
910 	case ESR_ELx_AET_CE:	/* corrected error */
911 	case ESR_ELx_AET_UEO:	/* restartable, not yet consumed */
912 		/*
913 		 * The CPU can make progress. We may take UEO again as
914 		 * a more severe error.
915 		 */
916 		return false;
917 
918 	case ESR_ELx_AET_UEU:	/* Uncorrected Unrecoverable */
919 	case ESR_ELx_AET_UER:	/* Uncorrected Recoverable */
920 		/*
921 		 * The CPU can't make progress. The exception may have
922 		 * been imprecise.
923 		 *
924 		 * Neoverse-N1 #1349291 means a non-KVM SError reported as
925 		 * Unrecoverable should be treated as Uncontainable. We
926 		 * call arm64_serror_panic() in both cases.
927 		 */
928 		return true;
929 
930 	case ESR_ELx_AET_UC:	/* Uncontainable or Uncategorized error */
931 	default:
932 		/* Error has been silently propagated */
933 		arm64_serror_panic(regs, esr);
934 	}
935 }
936 
937 void do_serror(struct pt_regs *regs, unsigned long esr)
938 {
939 	/* non-RAS errors are not containable */
940 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
941 		arm64_serror_panic(regs, esr);
942 }
943 
944 /* GENERIC_BUG traps */
945 
946 int is_valid_bugaddr(unsigned long addr)
947 {
948 	/*
949 	 * bug_handler() only called for BRK #BUG_BRK_IMM.
950 	 * So the answer is trivial -- any spurious instances with no
951 	 * bug table entry will be rejected by report_bug() and passed
952 	 * back to the debug-monitors code and handled as a fatal
953 	 * unexpected debug exception.
954 	 */
955 	return 1;
956 }
957 
958 static int bug_handler(struct pt_regs *regs, unsigned long esr)
959 {
960 	switch (report_bug(regs->pc, regs)) {
961 	case BUG_TRAP_TYPE_BUG:
962 		die("Oops - BUG", regs, esr);
963 		break;
964 
965 	case BUG_TRAP_TYPE_WARN:
966 		break;
967 
968 	default:
969 		/* unknown/unrecognised bug trap type */
970 		return DBG_HOOK_ERROR;
971 	}
972 
973 	/* If thread survives, skip over the BUG instruction and continue: */
974 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
975 	return DBG_HOOK_HANDLED;
976 }
977 
978 static struct break_hook bug_break_hook = {
979 	.fn = bug_handler,
980 	.imm = BUG_BRK_IMM,
981 };
982 
983 #ifdef CONFIG_CFI_CLANG
984 static int cfi_handler(struct pt_regs *regs, unsigned long esr)
985 {
986 	unsigned long target;
987 	u32 type;
988 
989 	target = pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TARGET, esr));
990 	type = (u32)pt_regs_read_reg(regs, FIELD_GET(CFI_BRK_IMM_TYPE, esr));
991 
992 	switch (report_cfi_failure(regs, regs->pc, &target, type)) {
993 	case BUG_TRAP_TYPE_BUG:
994 		die("Oops - CFI", regs, 0);
995 		break;
996 
997 	case BUG_TRAP_TYPE_WARN:
998 		break;
999 
1000 	default:
1001 		return DBG_HOOK_ERROR;
1002 	}
1003 
1004 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1005 	return DBG_HOOK_HANDLED;
1006 }
1007 
1008 static struct break_hook cfi_break_hook = {
1009 	.fn = cfi_handler,
1010 	.imm = CFI_BRK_IMM_BASE,
1011 	.mask = CFI_BRK_IMM_MASK,
1012 };
1013 #endif /* CONFIG_CFI_CLANG */
1014 
1015 static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
1016 {
1017 	pr_err("%s generated an invalid instruction at %pS!\n",
1018 		"Kernel text patching",
1019 		(void *)instruction_pointer(regs));
1020 
1021 	/* We cannot handle this */
1022 	return DBG_HOOK_ERROR;
1023 }
1024 
1025 static struct break_hook fault_break_hook = {
1026 	.fn = reserved_fault_handler,
1027 	.imm = FAULT_BRK_IMM,
1028 };
1029 
1030 #ifdef CONFIG_KASAN_SW_TAGS
1031 
1032 #define KASAN_ESR_RECOVER	0x20
1033 #define KASAN_ESR_WRITE	0x10
1034 #define KASAN_ESR_SIZE_MASK	0x0f
1035 #define KASAN_ESR_SIZE(esr)	(1 << ((esr) & KASAN_ESR_SIZE_MASK))
1036 
1037 static int kasan_handler(struct pt_regs *regs, unsigned long esr)
1038 {
1039 	bool recover = esr & KASAN_ESR_RECOVER;
1040 	bool write = esr & KASAN_ESR_WRITE;
1041 	size_t size = KASAN_ESR_SIZE(esr);
1042 	u64 addr = regs->regs[0];
1043 	u64 pc = regs->pc;
1044 
1045 	kasan_report(addr, size, write, pc);
1046 
1047 	/*
1048 	 * The instrumentation allows to control whether we can proceed after
1049 	 * a crash was detected. This is done by passing the -recover flag to
1050 	 * the compiler. Disabling recovery allows to generate more compact
1051 	 * code.
1052 	 *
1053 	 * Unfortunately disabling recovery doesn't work for the kernel right
1054 	 * now. KASAN reporting is disabled in some contexts (for example when
1055 	 * the allocator accesses slab object metadata; this is controlled by
1056 	 * current->kasan_depth). All these accesses are detected by the tool,
1057 	 * even though the reports for them are not printed.
1058 	 *
1059 	 * This is something that might be fixed at some point in the future.
1060 	 */
1061 	if (!recover)
1062 		die("Oops - KASAN", regs, esr);
1063 
1064 	/* If thread survives, skip over the brk instruction and continue: */
1065 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1066 	return DBG_HOOK_HANDLED;
1067 }
1068 
1069 static struct break_hook kasan_break_hook = {
1070 	.fn	= kasan_handler,
1071 	.imm	= KASAN_BRK_IMM,
1072 	.mask	= KASAN_BRK_MASK,
1073 };
1074 #endif
1075 
1076 #ifdef CONFIG_UBSAN_TRAP
1077 static int ubsan_handler(struct pt_regs *regs, unsigned long esr)
1078 {
1079 	die(report_ubsan_failure(regs, esr & UBSAN_BRK_MASK), regs, esr);
1080 	return DBG_HOOK_HANDLED;
1081 }
1082 
1083 static struct break_hook ubsan_break_hook = {
1084 	.fn	= ubsan_handler,
1085 	.imm	= UBSAN_BRK_IMM,
1086 	.mask	= UBSAN_BRK_MASK,
1087 };
1088 #endif
1089 
1090 #define esr_comment(esr) ((esr) & ESR_ELx_BRK64_ISS_COMMENT_MASK)
1091 
1092 /*
1093  * Initial handler for AArch64 BRK exceptions
1094  * This handler only used until debug_traps_init().
1095  */
1096 int __init early_brk64(unsigned long addr, unsigned long esr,
1097 		struct pt_regs *regs)
1098 {
1099 #ifdef CONFIG_CFI_CLANG
1100 	if ((esr_comment(esr) & ~CFI_BRK_IMM_MASK) == CFI_BRK_IMM_BASE)
1101 		return cfi_handler(regs, esr) != DBG_HOOK_HANDLED;
1102 #endif
1103 #ifdef CONFIG_KASAN_SW_TAGS
1104 	if ((esr_comment(esr) & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1105 		return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1106 #endif
1107 #ifdef CONFIG_UBSAN_TRAP
1108 	if ((esr_comment(esr) & ~UBSAN_BRK_MASK) == UBSAN_BRK_IMM)
1109 		return ubsan_handler(regs, esr) != DBG_HOOK_HANDLED;
1110 #endif
1111 	return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1112 }
1113 
1114 void __init trap_init(void)
1115 {
1116 	register_kernel_break_hook(&bug_break_hook);
1117 #ifdef CONFIG_CFI_CLANG
1118 	register_kernel_break_hook(&cfi_break_hook);
1119 #endif
1120 	register_kernel_break_hook(&fault_break_hook);
1121 #ifdef CONFIG_KASAN_SW_TAGS
1122 	register_kernel_break_hook(&kasan_break_hook);
1123 #endif
1124 #ifdef CONFIG_UBSAN_TRAP
1125 	register_kernel_break_hook(&ubsan_break_hook);
1126 #endif
1127 	debug_traps_init();
1128 }
1129