1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/kernel/traps.c 4 * 5 * Copyright (C) 1995-2009 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/bug.h> 10 #include <linux/context_tracking.h> 11 #include <linux/signal.h> 12 #include <linux/personality.h> 13 #include <linux/kallsyms.h> 14 #include <linux/kprobes.h> 15 #include <linux/spinlock.h> 16 #include <linux/uaccess.h> 17 #include <linux/hardirq.h> 18 #include <linux/kdebug.h> 19 #include <linux/module.h> 20 #include <linux/kexec.h> 21 #include <linux/delay.h> 22 #include <linux/init.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/debug.h> 25 #include <linux/sched/task_stack.h> 26 #include <linux/sizes.h> 27 #include <linux/syscalls.h> 28 #include <linux/mm_types.h> 29 #include <linux/kasan.h> 30 31 #include <asm/atomic.h> 32 #include <asm/bug.h> 33 #include <asm/cpufeature.h> 34 #include <asm/daifflags.h> 35 #include <asm/debug-monitors.h> 36 #include <asm/esr.h> 37 #include <asm/exception.h> 38 #include <asm/extable.h> 39 #include <asm/insn.h> 40 #include <asm/kprobes.h> 41 #include <asm/traps.h> 42 #include <asm/smp.h> 43 #include <asm/stack_pointer.h> 44 #include <asm/stacktrace.h> 45 #include <asm/exception.h> 46 #include <asm/system_misc.h> 47 #include <asm/sysreg.h> 48 49 static const char *handler[]= { 50 "Synchronous Abort", 51 "IRQ", 52 "FIQ", 53 "Error" 54 }; 55 56 int show_unhandled_signals = 0; 57 58 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs) 59 { 60 unsigned long addr = instruction_pointer(regs); 61 char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str; 62 int i; 63 64 if (user_mode(regs)) 65 return; 66 67 for (i = -4; i < 1; i++) { 68 unsigned int val, bad; 69 70 bad = aarch64_insn_read(&((u32 *)addr)[i], &val); 71 72 if (!bad) 73 p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val); 74 else { 75 p += sprintf(p, "bad PC value"); 76 break; 77 } 78 } 79 80 printk("%sCode: %s\n", lvl, str); 81 } 82 83 #ifdef CONFIG_PREEMPT 84 #define S_PREEMPT " PREEMPT" 85 #elif defined(CONFIG_PREEMPT_RT) 86 #define S_PREEMPT " PREEMPT_RT" 87 #else 88 #define S_PREEMPT "" 89 #endif 90 91 #define S_SMP " SMP" 92 93 static int __die(const char *str, int err, struct pt_regs *regs) 94 { 95 static int die_counter; 96 int ret; 97 98 pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n", 99 str, err, ++die_counter); 100 101 /* trap and error numbers are mostly meaningless on ARM */ 102 ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV); 103 if (ret == NOTIFY_STOP) 104 return ret; 105 106 print_modules(); 107 show_regs(regs); 108 109 dump_kernel_instr(KERN_EMERG, regs); 110 111 return ret; 112 } 113 114 static DEFINE_RAW_SPINLOCK(die_lock); 115 116 /* 117 * This function is protected against re-entrancy. 118 */ 119 void die(const char *str, struct pt_regs *regs, int err) 120 { 121 int ret; 122 unsigned long flags; 123 124 raw_spin_lock_irqsave(&die_lock, flags); 125 126 oops_enter(); 127 128 console_verbose(); 129 bust_spinlocks(1); 130 ret = __die(str, err, regs); 131 132 if (regs && kexec_should_crash(current)) 133 crash_kexec(regs); 134 135 bust_spinlocks(0); 136 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 137 oops_exit(); 138 139 if (in_interrupt()) 140 panic("%s: Fatal exception in interrupt", str); 141 if (panic_on_oops) 142 panic("%s: Fatal exception", str); 143 144 raw_spin_unlock_irqrestore(&die_lock, flags); 145 146 if (ret != NOTIFY_STOP) 147 do_exit(SIGSEGV); 148 } 149 150 static void arm64_show_signal(int signo, const char *str) 151 { 152 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 153 DEFAULT_RATELIMIT_BURST); 154 struct task_struct *tsk = current; 155 unsigned int esr = tsk->thread.fault_code; 156 struct pt_regs *regs = task_pt_regs(tsk); 157 158 /* Leave if the signal won't be shown */ 159 if (!show_unhandled_signals || 160 !unhandled_signal(tsk, signo) || 161 !__ratelimit(&rs)) 162 return; 163 164 pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk)); 165 if (esr) 166 pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr); 167 168 pr_cont("%s", str); 169 print_vma_addr(KERN_CONT " in ", regs->pc); 170 pr_cont("\n"); 171 __show_regs(regs); 172 } 173 174 void arm64_force_sig_fault(int signo, int code, void __user *addr, 175 const char *str) 176 { 177 arm64_show_signal(signo, str); 178 if (signo == SIGKILL) 179 force_sig(SIGKILL); 180 else 181 force_sig_fault(signo, code, addr); 182 } 183 184 void arm64_force_sig_mceerr(int code, void __user *addr, short lsb, 185 const char *str) 186 { 187 arm64_show_signal(SIGBUS, str); 188 force_sig_mceerr(code, addr, lsb); 189 } 190 191 void arm64_force_sig_ptrace_errno_trap(int errno, void __user *addr, 192 const char *str) 193 { 194 arm64_show_signal(SIGTRAP, str); 195 force_sig_ptrace_errno_trap(errno, addr); 196 } 197 198 void arm64_notify_die(const char *str, struct pt_regs *regs, 199 int signo, int sicode, void __user *addr, 200 int err) 201 { 202 if (user_mode(regs)) { 203 WARN_ON(regs != current_pt_regs()); 204 current->thread.fault_address = 0; 205 current->thread.fault_code = err; 206 207 arm64_force_sig_fault(signo, sicode, addr, str); 208 } else { 209 die(str, regs, err); 210 } 211 } 212 213 #ifdef CONFIG_COMPAT 214 #define PSTATE_IT_1_0_SHIFT 25 215 #define PSTATE_IT_1_0_MASK (0x3 << PSTATE_IT_1_0_SHIFT) 216 #define PSTATE_IT_7_2_SHIFT 10 217 #define PSTATE_IT_7_2_MASK (0x3f << PSTATE_IT_7_2_SHIFT) 218 219 static u32 compat_get_it_state(struct pt_regs *regs) 220 { 221 u32 it, pstate = regs->pstate; 222 223 it = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT; 224 it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2; 225 226 return it; 227 } 228 229 static void compat_set_it_state(struct pt_regs *regs, u32 it) 230 { 231 u32 pstate_it; 232 233 pstate_it = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK; 234 pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK; 235 236 regs->pstate &= ~PSR_AA32_IT_MASK; 237 regs->pstate |= pstate_it; 238 } 239 240 static void advance_itstate(struct pt_regs *regs) 241 { 242 u32 it; 243 244 /* ARM mode */ 245 if (!(regs->pstate & PSR_AA32_T_BIT) || 246 !(regs->pstate & PSR_AA32_IT_MASK)) 247 return; 248 249 it = compat_get_it_state(regs); 250 251 /* 252 * If this is the last instruction of the block, wipe the IT 253 * state. Otherwise advance it. 254 */ 255 if (!(it & 7)) 256 it = 0; 257 else 258 it = (it & 0xe0) | ((it << 1) & 0x1f); 259 260 compat_set_it_state(regs, it); 261 } 262 #else 263 static void advance_itstate(struct pt_regs *regs) 264 { 265 } 266 #endif 267 268 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size) 269 { 270 regs->pc += size; 271 272 /* 273 * If we were single stepping, we want to get the step exception after 274 * we return from the trap. 275 */ 276 if (user_mode(regs)) 277 user_fastforward_single_step(current); 278 279 if (compat_user_mode(regs)) 280 advance_itstate(regs); 281 else 282 regs->pstate &= ~PSR_BTYPE_MASK; 283 } 284 285 static LIST_HEAD(undef_hook); 286 static DEFINE_RAW_SPINLOCK(undef_lock); 287 288 void register_undef_hook(struct undef_hook *hook) 289 { 290 unsigned long flags; 291 292 raw_spin_lock_irqsave(&undef_lock, flags); 293 list_add(&hook->node, &undef_hook); 294 raw_spin_unlock_irqrestore(&undef_lock, flags); 295 } 296 297 void unregister_undef_hook(struct undef_hook *hook) 298 { 299 unsigned long flags; 300 301 raw_spin_lock_irqsave(&undef_lock, flags); 302 list_del(&hook->node); 303 raw_spin_unlock_irqrestore(&undef_lock, flags); 304 } 305 306 static int call_undef_hook(struct pt_regs *regs) 307 { 308 struct undef_hook *hook; 309 unsigned long flags; 310 u32 instr; 311 int (*fn)(struct pt_regs *regs, u32 instr) = NULL; 312 void __user *pc = (void __user *)instruction_pointer(regs); 313 314 if (!user_mode(regs)) { 315 __le32 instr_le; 316 if (get_kernel_nofault(instr_le, (__force __le32 *)pc)) 317 goto exit; 318 instr = le32_to_cpu(instr_le); 319 } else if (compat_thumb_mode(regs)) { 320 /* 16-bit Thumb instruction */ 321 __le16 instr_le; 322 if (get_user(instr_le, (__le16 __user *)pc)) 323 goto exit; 324 instr = le16_to_cpu(instr_le); 325 if (aarch32_insn_is_wide(instr)) { 326 u32 instr2; 327 328 if (get_user(instr_le, (__le16 __user *)(pc + 2))) 329 goto exit; 330 instr2 = le16_to_cpu(instr_le); 331 instr = (instr << 16) | instr2; 332 } 333 } else { 334 /* 32-bit ARM instruction */ 335 __le32 instr_le; 336 if (get_user(instr_le, (__le32 __user *)pc)) 337 goto exit; 338 instr = le32_to_cpu(instr_le); 339 } 340 341 raw_spin_lock_irqsave(&undef_lock, flags); 342 list_for_each_entry(hook, &undef_hook, node) 343 if ((instr & hook->instr_mask) == hook->instr_val && 344 (regs->pstate & hook->pstate_mask) == hook->pstate_val) 345 fn = hook->fn; 346 347 raw_spin_unlock_irqrestore(&undef_lock, flags); 348 exit: 349 return fn ? fn(regs, instr) : 1; 350 } 351 352 void force_signal_inject(int signal, int code, unsigned long address, unsigned int err) 353 { 354 const char *desc; 355 struct pt_regs *regs = current_pt_regs(); 356 357 if (WARN_ON(!user_mode(regs))) 358 return; 359 360 switch (signal) { 361 case SIGILL: 362 desc = "undefined instruction"; 363 break; 364 case SIGSEGV: 365 desc = "illegal memory access"; 366 break; 367 default: 368 desc = "unknown or unrecoverable error"; 369 break; 370 } 371 372 /* Force signals we don't understand to SIGKILL */ 373 if (WARN_ON(signal != SIGKILL && 374 siginfo_layout(signal, code) != SIL_FAULT)) { 375 signal = SIGKILL; 376 } 377 378 arm64_notify_die(desc, regs, signal, code, (void __user *)address, err); 379 } 380 381 /* 382 * Set up process info to signal segmentation fault - called on access error. 383 */ 384 void arm64_notify_segfault(unsigned long addr) 385 { 386 int code; 387 388 mmap_read_lock(current->mm); 389 if (find_vma(current->mm, addr) == NULL) 390 code = SEGV_MAPERR; 391 else 392 code = SEGV_ACCERR; 393 mmap_read_unlock(current->mm); 394 395 force_signal_inject(SIGSEGV, code, addr, 0); 396 } 397 398 void do_undefinstr(struct pt_regs *regs) 399 { 400 /* check for AArch32 breakpoint instructions */ 401 if (!aarch32_break_handler(regs)) 402 return; 403 404 if (call_undef_hook(regs) == 0) 405 return; 406 407 BUG_ON(!user_mode(regs)); 408 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 409 } 410 NOKPROBE_SYMBOL(do_undefinstr); 411 412 void do_bti(struct pt_regs *regs) 413 { 414 BUG_ON(!user_mode(regs)); 415 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 416 } 417 NOKPROBE_SYMBOL(do_bti); 418 419 void do_ptrauth_fault(struct pt_regs *regs, unsigned int esr) 420 { 421 /* 422 * Unexpected FPAC exception or pointer authentication failure in 423 * the kernel: kill the task before it does any more harm. 424 */ 425 BUG_ON(!user_mode(regs)); 426 force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr); 427 } 428 NOKPROBE_SYMBOL(do_ptrauth_fault); 429 430 #define __user_cache_maint(insn, address, res) \ 431 if (address >= user_addr_max()) { \ 432 res = -EFAULT; \ 433 } else { \ 434 uaccess_ttbr0_enable(); \ 435 asm volatile ( \ 436 "1: " insn ", %1\n" \ 437 " mov %w0, #0\n" \ 438 "2:\n" \ 439 " .pushsection .fixup,\"ax\"\n" \ 440 " .align 2\n" \ 441 "3: mov %w0, %w2\n" \ 442 " b 2b\n" \ 443 " .popsection\n" \ 444 _ASM_EXTABLE(1b, 3b) \ 445 : "=r" (res) \ 446 : "r" (address), "i" (-EFAULT)); \ 447 uaccess_ttbr0_disable(); \ 448 } 449 450 static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs) 451 { 452 unsigned long address; 453 int rt = ESR_ELx_SYS64_ISS_RT(esr); 454 int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT; 455 int ret = 0; 456 457 address = untagged_addr(pt_regs_read_reg(regs, rt)); 458 459 switch (crm) { 460 case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */ 461 __user_cache_maint("dc civac", address, ret); 462 break; 463 case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */ 464 __user_cache_maint("dc civac", address, ret); 465 break; 466 case ESR_ELx_SYS64_ISS_CRM_DC_CVADP: /* DC CVADP */ 467 __user_cache_maint("sys 3, c7, c13, 1", address, ret); 468 break; 469 case ESR_ELx_SYS64_ISS_CRM_DC_CVAP: /* DC CVAP */ 470 __user_cache_maint("sys 3, c7, c12, 1", address, ret); 471 break; 472 case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */ 473 __user_cache_maint("dc civac", address, ret); 474 break; 475 case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */ 476 __user_cache_maint("ic ivau", address, ret); 477 break; 478 default: 479 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 480 return; 481 } 482 483 if (ret) 484 arm64_notify_segfault(address); 485 else 486 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 487 } 488 489 static void ctr_read_handler(unsigned int esr, struct pt_regs *regs) 490 { 491 int rt = ESR_ELx_SYS64_ISS_RT(esr); 492 unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0); 493 494 if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) { 495 /* Hide DIC so that we can trap the unnecessary maintenance...*/ 496 val &= ~BIT(CTR_DIC_SHIFT); 497 498 /* ... and fake IminLine to reduce the number of traps. */ 499 val &= ~CTR_IMINLINE_MASK; 500 val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK; 501 } 502 503 pt_regs_write_reg(regs, rt, val); 504 505 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 506 } 507 508 static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs) 509 { 510 int rt = ESR_ELx_SYS64_ISS_RT(esr); 511 512 pt_regs_write_reg(regs, rt, arch_timer_read_counter()); 513 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 514 } 515 516 static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs) 517 { 518 int rt = ESR_ELx_SYS64_ISS_RT(esr); 519 520 pt_regs_write_reg(regs, rt, arch_timer_get_rate()); 521 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 522 } 523 524 static void mrs_handler(unsigned int esr, struct pt_regs *regs) 525 { 526 u32 sysreg, rt; 527 528 rt = ESR_ELx_SYS64_ISS_RT(esr); 529 sysreg = esr_sys64_to_sysreg(esr); 530 531 if (do_emulate_mrs(regs, sysreg, rt) != 0) 532 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0); 533 } 534 535 static void wfi_handler(unsigned int esr, struct pt_regs *regs) 536 { 537 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 538 } 539 540 struct sys64_hook { 541 unsigned int esr_mask; 542 unsigned int esr_val; 543 void (*handler)(unsigned int esr, struct pt_regs *regs); 544 }; 545 546 static const struct sys64_hook sys64_hooks[] = { 547 { 548 .esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK, 549 .esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL, 550 .handler = user_cache_maint_handler, 551 }, 552 { 553 /* Trap read access to CTR_EL0 */ 554 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, 555 .esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ, 556 .handler = ctr_read_handler, 557 }, 558 { 559 /* Trap read access to CNTVCT_EL0 */ 560 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, 561 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT, 562 .handler = cntvct_read_handler, 563 }, 564 { 565 /* Trap read access to CNTFRQ_EL0 */ 566 .esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK, 567 .esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ, 568 .handler = cntfrq_read_handler, 569 }, 570 { 571 /* Trap read access to CPUID registers */ 572 .esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK, 573 .esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL, 574 .handler = mrs_handler, 575 }, 576 { 577 /* Trap WFI instructions executed in userspace */ 578 .esr_mask = ESR_ELx_WFx_MASK, 579 .esr_val = ESR_ELx_WFx_WFI_VAL, 580 .handler = wfi_handler, 581 }, 582 {}, 583 }; 584 585 #ifdef CONFIG_COMPAT 586 static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs) 587 { 588 int cond; 589 590 /* Only a T32 instruction can trap without CV being set */ 591 if (!(esr & ESR_ELx_CV)) { 592 u32 it; 593 594 it = compat_get_it_state(regs); 595 if (!it) 596 return true; 597 598 cond = it >> 4; 599 } else { 600 cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT; 601 } 602 603 return aarch32_opcode_cond_checks[cond](regs->pstate); 604 } 605 606 static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs) 607 { 608 int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT; 609 610 pt_regs_write_reg(regs, reg, arch_timer_get_rate()); 611 arm64_skip_faulting_instruction(regs, 4); 612 } 613 614 static const struct sys64_hook cp15_32_hooks[] = { 615 { 616 .esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK, 617 .esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ, 618 .handler = compat_cntfrq_read_handler, 619 }, 620 {}, 621 }; 622 623 static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs) 624 { 625 int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT; 626 int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT; 627 u64 val = arch_timer_read_counter(); 628 629 pt_regs_write_reg(regs, rt, lower_32_bits(val)); 630 pt_regs_write_reg(regs, rt2, upper_32_bits(val)); 631 arm64_skip_faulting_instruction(regs, 4); 632 } 633 634 static const struct sys64_hook cp15_64_hooks[] = { 635 { 636 .esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK, 637 .esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT, 638 .handler = compat_cntvct_read_handler, 639 }, 640 {}, 641 }; 642 643 void do_cp15instr(unsigned int esr, struct pt_regs *regs) 644 { 645 const struct sys64_hook *hook, *hook_base; 646 647 if (!cp15_cond_valid(esr, regs)) { 648 /* 649 * There is no T16 variant of a CP access, so we 650 * always advance PC by 4 bytes. 651 */ 652 arm64_skip_faulting_instruction(regs, 4); 653 return; 654 } 655 656 switch (ESR_ELx_EC(esr)) { 657 case ESR_ELx_EC_CP15_32: 658 hook_base = cp15_32_hooks; 659 break; 660 case ESR_ELx_EC_CP15_64: 661 hook_base = cp15_64_hooks; 662 break; 663 default: 664 do_undefinstr(regs); 665 return; 666 } 667 668 for (hook = hook_base; hook->handler; hook++) 669 if ((hook->esr_mask & esr) == hook->esr_val) { 670 hook->handler(esr, regs); 671 return; 672 } 673 674 /* 675 * New cp15 instructions may previously have been undefined at 676 * EL0. Fall back to our usual undefined instruction handler 677 * so that we handle these consistently. 678 */ 679 do_undefinstr(regs); 680 } 681 NOKPROBE_SYMBOL(do_cp15instr); 682 #endif 683 684 void do_sysinstr(unsigned int esr, struct pt_regs *regs) 685 { 686 const struct sys64_hook *hook; 687 688 for (hook = sys64_hooks; hook->handler; hook++) 689 if ((hook->esr_mask & esr) == hook->esr_val) { 690 hook->handler(esr, regs); 691 return; 692 } 693 694 /* 695 * New SYS instructions may previously have been undefined at EL0. Fall 696 * back to our usual undefined instruction handler so that we handle 697 * these consistently. 698 */ 699 do_undefinstr(regs); 700 } 701 NOKPROBE_SYMBOL(do_sysinstr); 702 703 static const char *esr_class_str[] = { 704 [0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC", 705 [ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized", 706 [ESR_ELx_EC_WFx] = "WFI/WFE", 707 [ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC", 708 [ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC", 709 [ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC", 710 [ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC", 711 [ESR_ELx_EC_FP_ASIMD] = "ASIMD", 712 [ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS", 713 [ESR_ELx_EC_PAC] = "PAC", 714 [ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC", 715 [ESR_ELx_EC_BTI] = "BTI", 716 [ESR_ELx_EC_ILL] = "PSTATE.IL", 717 [ESR_ELx_EC_SVC32] = "SVC (AArch32)", 718 [ESR_ELx_EC_HVC32] = "HVC (AArch32)", 719 [ESR_ELx_EC_SMC32] = "SMC (AArch32)", 720 [ESR_ELx_EC_SVC64] = "SVC (AArch64)", 721 [ESR_ELx_EC_HVC64] = "HVC (AArch64)", 722 [ESR_ELx_EC_SMC64] = "SMC (AArch64)", 723 [ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)", 724 [ESR_ELx_EC_SVE] = "SVE", 725 [ESR_ELx_EC_ERET] = "ERET/ERETAA/ERETAB", 726 [ESR_ELx_EC_FPAC] = "FPAC", 727 [ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF", 728 [ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)", 729 [ESR_ELx_EC_IABT_CUR] = "IABT (current EL)", 730 [ESR_ELx_EC_PC_ALIGN] = "PC Alignment", 731 [ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)", 732 [ESR_ELx_EC_DABT_CUR] = "DABT (current EL)", 733 [ESR_ELx_EC_SP_ALIGN] = "SP Alignment", 734 [ESR_ELx_EC_FP_EXC32] = "FP (AArch32)", 735 [ESR_ELx_EC_FP_EXC64] = "FP (AArch64)", 736 [ESR_ELx_EC_SERROR] = "SError", 737 [ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)", 738 [ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)", 739 [ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)", 740 [ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)", 741 [ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)", 742 [ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)", 743 [ESR_ELx_EC_BKPT32] = "BKPT (AArch32)", 744 [ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)", 745 [ESR_ELx_EC_BRK64] = "BRK (AArch64)", 746 }; 747 748 const char *esr_get_class_string(u32 esr) 749 { 750 return esr_class_str[ESR_ELx_EC(esr)]; 751 } 752 753 /* 754 * bad_mode handles the impossible case in the exception vector. This is always 755 * fatal. 756 */ 757 asmlinkage void notrace bad_mode(struct pt_regs *regs, int reason, unsigned int esr) 758 { 759 arm64_enter_nmi(regs); 760 761 console_verbose(); 762 763 pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n", 764 handler[reason], smp_processor_id(), esr, 765 esr_get_class_string(esr)); 766 767 __show_regs(regs); 768 local_daif_mask(); 769 panic("bad mode"); 770 } 771 772 /* 773 * bad_el0_sync handles unexpected, but potentially recoverable synchronous 774 * exceptions taken from EL0. Unlike bad_mode, this returns. 775 */ 776 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr) 777 { 778 void __user *pc = (void __user *)instruction_pointer(regs); 779 780 current->thread.fault_address = 0; 781 current->thread.fault_code = esr; 782 783 arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc, 784 "Bad EL0 synchronous exception"); 785 } 786 787 #ifdef CONFIG_VMAP_STACK 788 789 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack) 790 __aligned(16); 791 792 asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs) 793 { 794 unsigned long tsk_stk = (unsigned long)current->stack; 795 unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr); 796 unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack); 797 unsigned int esr = read_sysreg(esr_el1); 798 unsigned long far = read_sysreg(far_el1); 799 800 arm64_enter_nmi(regs); 801 802 console_verbose(); 803 pr_emerg("Insufficient stack space to handle exception!"); 804 805 pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr)); 806 pr_emerg("FAR: 0x%016lx\n", far); 807 808 pr_emerg("Task stack: [0x%016lx..0x%016lx]\n", 809 tsk_stk, tsk_stk + THREAD_SIZE); 810 pr_emerg("IRQ stack: [0x%016lx..0x%016lx]\n", 811 irq_stk, irq_stk + IRQ_STACK_SIZE); 812 pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n", 813 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE); 814 815 __show_regs(regs); 816 817 /* 818 * We use nmi_panic to limit the potential for recusive overflows, and 819 * to get a better stack trace. 820 */ 821 nmi_panic(NULL, "kernel stack overflow"); 822 cpu_park_loop(); 823 } 824 #endif 825 826 void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr) 827 { 828 console_verbose(); 829 830 pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n", 831 smp_processor_id(), esr, esr_get_class_string(esr)); 832 if (regs) 833 __show_regs(regs); 834 835 nmi_panic(regs, "Asynchronous SError Interrupt"); 836 837 cpu_park_loop(); 838 unreachable(); 839 } 840 841 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr) 842 { 843 u32 aet = arm64_ras_serror_get_severity(esr); 844 845 switch (aet) { 846 case ESR_ELx_AET_CE: /* corrected error */ 847 case ESR_ELx_AET_UEO: /* restartable, not yet consumed */ 848 /* 849 * The CPU can make progress. We may take UEO again as 850 * a more severe error. 851 */ 852 return false; 853 854 case ESR_ELx_AET_UEU: /* Uncorrected Unrecoverable */ 855 case ESR_ELx_AET_UER: /* Uncorrected Recoverable */ 856 /* 857 * The CPU can't make progress. The exception may have 858 * been imprecise. 859 * 860 * Neoverse-N1 #1349291 means a non-KVM SError reported as 861 * Unrecoverable should be treated as Uncontainable. We 862 * call arm64_serror_panic() in both cases. 863 */ 864 return true; 865 866 case ESR_ELx_AET_UC: /* Uncontainable or Uncategorized error */ 867 default: 868 /* Error has been silently propagated */ 869 arm64_serror_panic(regs, esr); 870 } 871 } 872 873 asmlinkage void noinstr do_serror(struct pt_regs *regs, unsigned int esr) 874 { 875 arm64_enter_nmi(regs); 876 877 /* non-RAS errors are not containable */ 878 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr)) 879 arm64_serror_panic(regs, esr); 880 881 arm64_exit_nmi(regs); 882 } 883 884 /* GENERIC_BUG traps */ 885 886 int is_valid_bugaddr(unsigned long addr) 887 { 888 /* 889 * bug_handler() only called for BRK #BUG_BRK_IMM. 890 * So the answer is trivial -- any spurious instances with no 891 * bug table entry will be rejected by report_bug() and passed 892 * back to the debug-monitors code and handled as a fatal 893 * unexpected debug exception. 894 */ 895 return 1; 896 } 897 898 static int bug_handler(struct pt_regs *regs, unsigned int esr) 899 { 900 switch (report_bug(regs->pc, regs)) { 901 case BUG_TRAP_TYPE_BUG: 902 die("Oops - BUG", regs, 0); 903 break; 904 905 case BUG_TRAP_TYPE_WARN: 906 break; 907 908 default: 909 /* unknown/unrecognised bug trap type */ 910 return DBG_HOOK_ERROR; 911 } 912 913 /* If thread survives, skip over the BUG instruction and continue: */ 914 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 915 return DBG_HOOK_HANDLED; 916 } 917 918 static struct break_hook bug_break_hook = { 919 .fn = bug_handler, 920 .imm = BUG_BRK_IMM, 921 }; 922 923 static int reserved_fault_handler(struct pt_regs *regs, unsigned int esr) 924 { 925 pr_err("%s generated an invalid instruction at %pS!\n", 926 in_bpf_jit(regs) ? "BPF JIT" : "Kernel text patching", 927 (void *)instruction_pointer(regs)); 928 929 /* We cannot handle this */ 930 return DBG_HOOK_ERROR; 931 } 932 933 static struct break_hook fault_break_hook = { 934 .fn = reserved_fault_handler, 935 .imm = FAULT_BRK_IMM, 936 }; 937 938 #ifdef CONFIG_KASAN_SW_TAGS 939 940 #define KASAN_ESR_RECOVER 0x20 941 #define KASAN_ESR_WRITE 0x10 942 #define KASAN_ESR_SIZE_MASK 0x0f 943 #define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK)) 944 945 static int kasan_handler(struct pt_regs *regs, unsigned int esr) 946 { 947 bool recover = esr & KASAN_ESR_RECOVER; 948 bool write = esr & KASAN_ESR_WRITE; 949 size_t size = KASAN_ESR_SIZE(esr); 950 u64 addr = regs->regs[0]; 951 u64 pc = regs->pc; 952 953 kasan_report(addr, size, write, pc); 954 955 /* 956 * The instrumentation allows to control whether we can proceed after 957 * a crash was detected. This is done by passing the -recover flag to 958 * the compiler. Disabling recovery allows to generate more compact 959 * code. 960 * 961 * Unfortunately disabling recovery doesn't work for the kernel right 962 * now. KASAN reporting is disabled in some contexts (for example when 963 * the allocator accesses slab object metadata; this is controlled by 964 * current->kasan_depth). All these accesses are detected by the tool, 965 * even though the reports for them are not printed. 966 * 967 * This is something that might be fixed at some point in the future. 968 */ 969 if (!recover) 970 die("Oops - KASAN", regs, 0); 971 972 /* If thread survives, skip over the brk instruction and continue: */ 973 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); 974 return DBG_HOOK_HANDLED; 975 } 976 977 static struct break_hook kasan_break_hook = { 978 .fn = kasan_handler, 979 .imm = KASAN_BRK_IMM, 980 .mask = KASAN_BRK_MASK, 981 }; 982 #endif 983 984 /* 985 * Initial handler for AArch64 BRK exceptions 986 * This handler only used until debug_traps_init(). 987 */ 988 int __init early_brk64(unsigned long addr, unsigned int esr, 989 struct pt_regs *regs) 990 { 991 #ifdef CONFIG_KASAN_SW_TAGS 992 unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK; 993 994 if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM) 995 return kasan_handler(regs, esr) != DBG_HOOK_HANDLED; 996 #endif 997 return bug_handler(regs, esr) != DBG_HOOK_HANDLED; 998 } 999 1000 void __init trap_init(void) 1001 { 1002 register_kernel_break_hook(&bug_break_hook); 1003 register_kernel_break_hook(&fault_break_hook); 1004 #ifdef CONFIG_KASAN_SW_TAGS 1005 register_kernel_break_hook(&kasan_break_hook); 1006 #endif 1007 debug_traps_init(); 1008 } 1009