xref: /openbmc/linux/arch/arm64/kernel/traps.c (revision 25763b3c)
1 /*
2  * Based on arch/arm/kernel/traps.c
3  *
4  * Copyright (C) 1995-2009 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/bug.h>
21 #include <linux/signal.h>
22 #include <linux/personality.h>
23 #include <linux/kallsyms.h>
24 #include <linux/spinlock.h>
25 #include <linux/uaccess.h>
26 #include <linux/hardirq.h>
27 #include <linux/kdebug.h>
28 #include <linux/module.h>
29 #include <linux/kexec.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/debug.h>
34 #include <linux/sched/task_stack.h>
35 #include <linux/sizes.h>
36 #include <linux/syscalls.h>
37 #include <linux/mm_types.h>
38 #include <linux/kasan.h>
39 
40 #include <asm/atomic.h>
41 #include <asm/bug.h>
42 #include <asm/cpufeature.h>
43 #include <asm/daifflags.h>
44 #include <asm/debug-monitors.h>
45 #include <asm/esr.h>
46 #include <asm/insn.h>
47 #include <asm/traps.h>
48 #include <asm/smp.h>
49 #include <asm/stack_pointer.h>
50 #include <asm/stacktrace.h>
51 #include <asm/exception.h>
52 #include <asm/system_misc.h>
53 #include <asm/sysreg.h>
54 
55 static const char *handler[]= {
56 	"Synchronous Abort",
57 	"IRQ",
58 	"FIQ",
59 	"Error"
60 };
61 
62 int show_unhandled_signals = 0;
63 
64 static void dump_backtrace_entry(unsigned long where)
65 {
66 	printk(" %pS\n", (void *)where);
67 }
68 
69 static void __dump_instr(const char *lvl, struct pt_regs *regs)
70 {
71 	unsigned long addr = instruction_pointer(regs);
72 	char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
73 	int i;
74 
75 	for (i = -4; i < 1; i++) {
76 		unsigned int val, bad;
77 
78 		bad = get_user(val, &((u32 *)addr)[i]);
79 
80 		if (!bad)
81 			p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
82 		else {
83 			p += sprintf(p, "bad PC value");
84 			break;
85 		}
86 	}
87 	printk("%sCode: %s\n", lvl, str);
88 }
89 
90 static void dump_instr(const char *lvl, struct pt_regs *regs)
91 {
92 	if (!user_mode(regs)) {
93 		mm_segment_t fs = get_fs();
94 		set_fs(KERNEL_DS);
95 		__dump_instr(lvl, regs);
96 		set_fs(fs);
97 	} else {
98 		__dump_instr(lvl, regs);
99 	}
100 }
101 
102 void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk)
103 {
104 	struct stackframe frame;
105 	int skip = 0;
106 
107 	pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk);
108 
109 	if (regs) {
110 		if (user_mode(regs))
111 			return;
112 		skip = 1;
113 	}
114 
115 	if (!tsk)
116 		tsk = current;
117 
118 	if (!try_get_task_stack(tsk))
119 		return;
120 
121 	if (tsk == current) {
122 		frame.fp = (unsigned long)__builtin_frame_address(0);
123 		frame.pc = (unsigned long)dump_backtrace;
124 	} else {
125 		/*
126 		 * task blocked in __switch_to
127 		 */
128 		frame.fp = thread_saved_fp(tsk);
129 		frame.pc = thread_saved_pc(tsk);
130 	}
131 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
132 	frame.graph = 0;
133 #endif
134 
135 	printk("Call trace:\n");
136 	do {
137 		/* skip until specified stack frame */
138 		if (!skip) {
139 			dump_backtrace_entry(frame.pc);
140 		} else if (frame.fp == regs->regs[29]) {
141 			skip = 0;
142 			/*
143 			 * Mostly, this is the case where this function is
144 			 * called in panic/abort. As exception handler's
145 			 * stack frame does not contain the corresponding pc
146 			 * at which an exception has taken place, use regs->pc
147 			 * instead.
148 			 */
149 			dump_backtrace_entry(regs->pc);
150 		}
151 	} while (!unwind_frame(tsk, &frame));
152 
153 	put_task_stack(tsk);
154 }
155 
156 void show_stack(struct task_struct *tsk, unsigned long *sp)
157 {
158 	dump_backtrace(NULL, tsk);
159 	barrier();
160 }
161 
162 #ifdef CONFIG_PREEMPT
163 #define S_PREEMPT " PREEMPT"
164 #else
165 #define S_PREEMPT ""
166 #endif
167 #define S_SMP " SMP"
168 
169 static int __die(const char *str, int err, struct pt_regs *regs)
170 {
171 	static int die_counter;
172 	int ret;
173 
174 	pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
175 		 str, err, ++die_counter);
176 
177 	/* trap and error numbers are mostly meaningless on ARM */
178 	ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
179 	if (ret == NOTIFY_STOP)
180 		return ret;
181 
182 	print_modules();
183 	show_regs(regs);
184 
185 	if (!user_mode(regs))
186 		dump_instr(KERN_EMERG, regs);
187 
188 	return ret;
189 }
190 
191 static DEFINE_RAW_SPINLOCK(die_lock);
192 
193 /*
194  * This function is protected against re-entrancy.
195  */
196 void die(const char *str, struct pt_regs *regs, int err)
197 {
198 	int ret;
199 	unsigned long flags;
200 
201 	raw_spin_lock_irqsave(&die_lock, flags);
202 
203 	oops_enter();
204 
205 	console_verbose();
206 	bust_spinlocks(1);
207 	ret = __die(str, err, regs);
208 
209 	if (regs && kexec_should_crash(current))
210 		crash_kexec(regs);
211 
212 	bust_spinlocks(0);
213 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
214 	oops_exit();
215 
216 	if (in_interrupt())
217 		panic("Fatal exception in interrupt");
218 	if (panic_on_oops)
219 		panic("Fatal exception");
220 
221 	raw_spin_unlock_irqrestore(&die_lock, flags);
222 
223 	if (ret != NOTIFY_STOP)
224 		do_exit(SIGSEGV);
225 }
226 
227 static void arm64_show_signal(int signo, const char *str)
228 {
229 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
230 				      DEFAULT_RATELIMIT_BURST);
231 	struct task_struct *tsk = current;
232 	unsigned int esr = tsk->thread.fault_code;
233 	struct pt_regs *regs = task_pt_regs(tsk);
234 
235 	/* Leave if the signal won't be shown */
236 	if (!show_unhandled_signals ||
237 	    !unhandled_signal(tsk, signo) ||
238 	    !__ratelimit(&rs))
239 		return;
240 
241 	pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
242 	if (esr)
243 		pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
244 
245 	pr_cont("%s", str);
246 	print_vma_addr(KERN_CONT " in ", regs->pc);
247 	pr_cont("\n");
248 	__show_regs(regs);
249 }
250 
251 void arm64_force_sig_fault(int signo, int code, void __user *addr,
252 			   const char *str)
253 {
254 	arm64_show_signal(signo, str);
255 	force_sig_fault(signo, code, addr, current);
256 }
257 
258 void arm64_force_sig_mceerr(int code, void __user *addr, short lsb,
259 			    const char *str)
260 {
261 	arm64_show_signal(SIGBUS, str);
262 	force_sig_mceerr(code, addr, lsb, current);
263 }
264 
265 void arm64_force_sig_ptrace_errno_trap(int errno, void __user *addr,
266 				       const char *str)
267 {
268 	arm64_show_signal(SIGTRAP, str);
269 	force_sig_ptrace_errno_trap(errno, addr);
270 }
271 
272 void arm64_notify_die(const char *str, struct pt_regs *regs,
273 		      int signo, int sicode, void __user *addr,
274 		      int err)
275 {
276 	if (user_mode(regs)) {
277 		WARN_ON(regs != current_pt_regs());
278 		current->thread.fault_address = 0;
279 		current->thread.fault_code = err;
280 
281 		arm64_force_sig_fault(signo, sicode, addr, str);
282 	} else {
283 		die(str, regs, err);
284 	}
285 }
286 
287 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
288 {
289 	regs->pc += size;
290 
291 	/*
292 	 * If we were single stepping, we want to get the step exception after
293 	 * we return from the trap.
294 	 */
295 	if (user_mode(regs))
296 		user_fastforward_single_step(current);
297 }
298 
299 static LIST_HEAD(undef_hook);
300 static DEFINE_RAW_SPINLOCK(undef_lock);
301 
302 void register_undef_hook(struct undef_hook *hook)
303 {
304 	unsigned long flags;
305 
306 	raw_spin_lock_irqsave(&undef_lock, flags);
307 	list_add(&hook->node, &undef_hook);
308 	raw_spin_unlock_irqrestore(&undef_lock, flags);
309 }
310 
311 void unregister_undef_hook(struct undef_hook *hook)
312 {
313 	unsigned long flags;
314 
315 	raw_spin_lock_irqsave(&undef_lock, flags);
316 	list_del(&hook->node);
317 	raw_spin_unlock_irqrestore(&undef_lock, flags);
318 }
319 
320 static int call_undef_hook(struct pt_regs *regs)
321 {
322 	struct undef_hook *hook;
323 	unsigned long flags;
324 	u32 instr;
325 	int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
326 	void __user *pc = (void __user *)instruction_pointer(regs);
327 
328 	if (!user_mode(regs)) {
329 		__le32 instr_le;
330 		if (probe_kernel_address((__force __le32 *)pc, instr_le))
331 			goto exit;
332 		instr = le32_to_cpu(instr_le);
333 	} else if (compat_thumb_mode(regs)) {
334 		/* 16-bit Thumb instruction */
335 		__le16 instr_le;
336 		if (get_user(instr_le, (__le16 __user *)pc))
337 			goto exit;
338 		instr = le16_to_cpu(instr_le);
339 		if (aarch32_insn_is_wide(instr)) {
340 			u32 instr2;
341 
342 			if (get_user(instr_le, (__le16 __user *)(pc + 2)))
343 				goto exit;
344 			instr2 = le16_to_cpu(instr_le);
345 			instr = (instr << 16) | instr2;
346 		}
347 	} else {
348 		/* 32-bit ARM instruction */
349 		__le32 instr_le;
350 		if (get_user(instr_le, (__le32 __user *)pc))
351 			goto exit;
352 		instr = le32_to_cpu(instr_le);
353 	}
354 
355 	raw_spin_lock_irqsave(&undef_lock, flags);
356 	list_for_each_entry(hook, &undef_hook, node)
357 		if ((instr & hook->instr_mask) == hook->instr_val &&
358 			(regs->pstate & hook->pstate_mask) == hook->pstate_val)
359 			fn = hook->fn;
360 
361 	raw_spin_unlock_irqrestore(&undef_lock, flags);
362 exit:
363 	return fn ? fn(regs, instr) : 1;
364 }
365 
366 void force_signal_inject(int signal, int code, unsigned long address)
367 {
368 	const char *desc;
369 	struct pt_regs *regs = current_pt_regs();
370 
371 	if (WARN_ON(!user_mode(regs)))
372 		return;
373 
374 	switch (signal) {
375 	case SIGILL:
376 		desc = "undefined instruction";
377 		break;
378 	case SIGSEGV:
379 		desc = "illegal memory access";
380 		break;
381 	default:
382 		desc = "unknown or unrecoverable error";
383 		break;
384 	}
385 
386 	/* Force signals we don't understand to SIGKILL */
387 	if (WARN_ON(signal != SIGKILL &&
388 		    siginfo_layout(signal, code) != SIL_FAULT)) {
389 		signal = SIGKILL;
390 	}
391 
392 	arm64_notify_die(desc, regs, signal, code, (void __user *)address, 0);
393 }
394 
395 /*
396  * Set up process info to signal segmentation fault - called on access error.
397  */
398 void arm64_notify_segfault(unsigned long addr)
399 {
400 	int code;
401 
402 	down_read(&current->mm->mmap_sem);
403 	if (find_vma(current->mm, addr) == NULL)
404 		code = SEGV_MAPERR;
405 	else
406 		code = SEGV_ACCERR;
407 	up_read(&current->mm->mmap_sem);
408 
409 	force_signal_inject(SIGSEGV, code, addr);
410 }
411 
412 asmlinkage void __exception do_undefinstr(struct pt_regs *regs)
413 {
414 	/* check for AArch32 breakpoint instructions */
415 	if (!aarch32_break_handler(regs))
416 		return;
417 
418 	if (call_undef_hook(regs) == 0)
419 		return;
420 
421 	BUG_ON(!user_mode(regs));
422 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
423 }
424 
425 #define __user_cache_maint(insn, address, res)			\
426 	if (address >= user_addr_max()) {			\
427 		res = -EFAULT;					\
428 	} else {						\
429 		uaccess_ttbr0_enable();				\
430 		asm volatile (					\
431 			"1:	" insn ", %1\n"			\
432 			"	mov	%w0, #0\n"		\
433 			"2:\n"					\
434 			"	.pushsection .fixup,\"ax\"\n"	\
435 			"	.align	2\n"			\
436 			"3:	mov	%w0, %w2\n"		\
437 			"	b	2b\n"			\
438 			"	.popsection\n"			\
439 			_ASM_EXTABLE(1b, 3b)			\
440 			: "=r" (res)				\
441 			: "r" (address), "i" (-EFAULT));	\
442 		uaccess_ttbr0_disable();			\
443 	}
444 
445 static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
446 {
447 	unsigned long address;
448 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
449 	int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
450 	int ret = 0;
451 
452 	address = untagged_addr(pt_regs_read_reg(regs, rt));
453 
454 	switch (crm) {
455 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:	/* DC CVAU, gets promoted */
456 		__user_cache_maint("dc civac", address, ret);
457 		break;
458 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:	/* DC CVAC, gets promoted */
459 		__user_cache_maint("dc civac", address, ret);
460 		break;
461 	case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:	/* DC CVADP */
462 		__user_cache_maint("sys 3, c7, c13, 1", address, ret);
463 		break;
464 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:	/* DC CVAP */
465 		__user_cache_maint("sys 3, c7, c12, 1", address, ret);
466 		break;
467 	case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:	/* DC CIVAC */
468 		__user_cache_maint("dc civac", address, ret);
469 		break;
470 	case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:	/* IC IVAU */
471 		__user_cache_maint("ic ivau", address, ret);
472 		break;
473 	default:
474 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
475 		return;
476 	}
477 
478 	if (ret)
479 		arm64_notify_segfault(address);
480 	else
481 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
482 }
483 
484 static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
485 {
486 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
487 	unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
488 
489 	pt_regs_write_reg(regs, rt, val);
490 
491 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
492 }
493 
494 static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
495 {
496 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
497 
498 	pt_regs_write_reg(regs, rt, arch_timer_read_counter());
499 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
500 }
501 
502 static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
503 {
504 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
505 
506 	pt_regs_write_reg(regs, rt, arch_timer_get_rate());
507 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
508 }
509 
510 static void mrs_handler(unsigned int esr, struct pt_regs *regs)
511 {
512 	u32 sysreg, rt;
513 
514 	rt = ESR_ELx_SYS64_ISS_RT(esr);
515 	sysreg = esr_sys64_to_sysreg(esr);
516 
517 	if (do_emulate_mrs(regs, sysreg, rt) != 0)
518 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
519 }
520 
521 static void wfi_handler(unsigned int esr, struct pt_regs *regs)
522 {
523 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
524 }
525 
526 struct sys64_hook {
527 	unsigned int esr_mask;
528 	unsigned int esr_val;
529 	void (*handler)(unsigned int esr, struct pt_regs *regs);
530 };
531 
532 static struct sys64_hook sys64_hooks[] = {
533 	{
534 		.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
535 		.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
536 		.handler = user_cache_maint_handler,
537 	},
538 	{
539 		/* Trap read access to CTR_EL0 */
540 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
541 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
542 		.handler = ctr_read_handler,
543 	},
544 	{
545 		/* Trap read access to CNTVCT_EL0 */
546 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
547 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
548 		.handler = cntvct_read_handler,
549 	},
550 	{
551 		/* Trap read access to CNTFRQ_EL0 */
552 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
553 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
554 		.handler = cntfrq_read_handler,
555 	},
556 	{
557 		/* Trap read access to CPUID registers */
558 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
559 		.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
560 		.handler = mrs_handler,
561 	},
562 	{
563 		/* Trap WFI instructions executed in userspace */
564 		.esr_mask = ESR_ELx_WFx_MASK,
565 		.esr_val = ESR_ELx_WFx_WFI_VAL,
566 		.handler = wfi_handler,
567 	},
568 	{},
569 };
570 
571 
572 #ifdef CONFIG_COMPAT
573 #define PSTATE_IT_1_0_SHIFT	25
574 #define PSTATE_IT_1_0_MASK	(0x3 << PSTATE_IT_1_0_SHIFT)
575 #define PSTATE_IT_7_2_SHIFT	10
576 #define PSTATE_IT_7_2_MASK	(0x3f << PSTATE_IT_7_2_SHIFT)
577 
578 static u32 compat_get_it_state(struct pt_regs *regs)
579 {
580 	u32 it, pstate = regs->pstate;
581 
582 	it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
583 	it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
584 
585 	return it;
586 }
587 
588 static void compat_set_it_state(struct pt_regs *regs, u32 it)
589 {
590 	u32 pstate_it;
591 
592 	pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
593 	pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
594 
595 	regs->pstate &= ~PSR_AA32_IT_MASK;
596 	regs->pstate |= pstate_it;
597 }
598 
599 static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
600 {
601 	int cond;
602 
603 	/* Only a T32 instruction can trap without CV being set */
604 	if (!(esr & ESR_ELx_CV)) {
605 		u32 it;
606 
607 		it = compat_get_it_state(regs);
608 		if (!it)
609 			return true;
610 
611 		cond = it >> 4;
612 	} else {
613 		cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
614 	}
615 
616 	return aarch32_opcode_cond_checks[cond](regs->pstate);
617 }
618 
619 static void advance_itstate(struct pt_regs *regs)
620 {
621 	u32 it;
622 
623 	/* ARM mode */
624 	if (!(regs->pstate & PSR_AA32_T_BIT) ||
625 	    !(regs->pstate & PSR_AA32_IT_MASK))
626 		return;
627 
628 	it  = compat_get_it_state(regs);
629 
630 	/*
631 	 * If this is the last instruction of the block, wipe the IT
632 	 * state. Otherwise advance it.
633 	 */
634 	if (!(it & 7))
635 		it = 0;
636 	else
637 		it = (it & 0xe0) | ((it << 1) & 0x1f);
638 
639 	compat_set_it_state(regs, it);
640 }
641 
642 static void arm64_compat_skip_faulting_instruction(struct pt_regs *regs,
643 						   unsigned int sz)
644 {
645 	advance_itstate(regs);
646 	arm64_skip_faulting_instruction(regs, sz);
647 }
648 
649 static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
650 {
651 	int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
652 
653 	pt_regs_write_reg(regs, reg, arch_timer_get_rate());
654 	arm64_compat_skip_faulting_instruction(regs, 4);
655 }
656 
657 static struct sys64_hook cp15_32_hooks[] = {
658 	{
659 		.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
660 		.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
661 		.handler = compat_cntfrq_read_handler,
662 	},
663 	{},
664 };
665 
666 static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
667 {
668 	int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
669 	int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
670 	u64 val = arch_timer_read_counter();
671 
672 	pt_regs_write_reg(regs, rt, lower_32_bits(val));
673 	pt_regs_write_reg(regs, rt2, upper_32_bits(val));
674 	arm64_compat_skip_faulting_instruction(regs, 4);
675 }
676 
677 static struct sys64_hook cp15_64_hooks[] = {
678 	{
679 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
680 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
681 		.handler = compat_cntvct_read_handler,
682 	},
683 	{},
684 };
685 
686 asmlinkage void __exception do_cp15instr(unsigned int esr, struct pt_regs *regs)
687 {
688 	struct sys64_hook *hook, *hook_base;
689 
690 	if (!cp15_cond_valid(esr, regs)) {
691 		/*
692 		 * There is no T16 variant of a CP access, so we
693 		 * always advance PC by 4 bytes.
694 		 */
695 		arm64_compat_skip_faulting_instruction(regs, 4);
696 		return;
697 	}
698 
699 	switch (ESR_ELx_EC(esr)) {
700 	case ESR_ELx_EC_CP15_32:
701 		hook_base = cp15_32_hooks;
702 		break;
703 	case ESR_ELx_EC_CP15_64:
704 		hook_base = cp15_64_hooks;
705 		break;
706 	default:
707 		do_undefinstr(regs);
708 		return;
709 	}
710 
711 	for (hook = hook_base; hook->handler; hook++)
712 		if ((hook->esr_mask & esr) == hook->esr_val) {
713 			hook->handler(esr, regs);
714 			return;
715 		}
716 
717 	/*
718 	 * New cp15 instructions may previously have been undefined at
719 	 * EL0. Fall back to our usual undefined instruction handler
720 	 * so that we handle these consistently.
721 	 */
722 	do_undefinstr(regs);
723 }
724 #endif
725 
726 asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs)
727 {
728 	struct sys64_hook *hook;
729 
730 	for (hook = sys64_hooks; hook->handler; hook++)
731 		if ((hook->esr_mask & esr) == hook->esr_val) {
732 			hook->handler(esr, regs);
733 			return;
734 		}
735 
736 	/*
737 	 * New SYS instructions may previously have been undefined at EL0. Fall
738 	 * back to our usual undefined instruction handler so that we handle
739 	 * these consistently.
740 	 */
741 	do_undefinstr(regs);
742 }
743 
744 static const char *esr_class_str[] = {
745 	[0 ... ESR_ELx_EC_MAX]		= "UNRECOGNIZED EC",
746 	[ESR_ELx_EC_UNKNOWN]		= "Unknown/Uncategorized",
747 	[ESR_ELx_EC_WFx]		= "WFI/WFE",
748 	[ESR_ELx_EC_CP15_32]		= "CP15 MCR/MRC",
749 	[ESR_ELx_EC_CP15_64]		= "CP15 MCRR/MRRC",
750 	[ESR_ELx_EC_CP14_MR]		= "CP14 MCR/MRC",
751 	[ESR_ELx_EC_CP14_LS]		= "CP14 LDC/STC",
752 	[ESR_ELx_EC_FP_ASIMD]		= "ASIMD",
753 	[ESR_ELx_EC_CP10_ID]		= "CP10 MRC/VMRS",
754 	[ESR_ELx_EC_CP14_64]		= "CP14 MCRR/MRRC",
755 	[ESR_ELx_EC_ILL]		= "PSTATE.IL",
756 	[ESR_ELx_EC_SVC32]		= "SVC (AArch32)",
757 	[ESR_ELx_EC_HVC32]		= "HVC (AArch32)",
758 	[ESR_ELx_EC_SMC32]		= "SMC (AArch32)",
759 	[ESR_ELx_EC_SVC64]		= "SVC (AArch64)",
760 	[ESR_ELx_EC_HVC64]		= "HVC (AArch64)",
761 	[ESR_ELx_EC_SMC64]		= "SMC (AArch64)",
762 	[ESR_ELx_EC_SYS64]		= "MSR/MRS (AArch64)",
763 	[ESR_ELx_EC_SVE]		= "SVE",
764 	[ESR_ELx_EC_IMP_DEF]		= "EL3 IMP DEF",
765 	[ESR_ELx_EC_IABT_LOW]		= "IABT (lower EL)",
766 	[ESR_ELx_EC_IABT_CUR]		= "IABT (current EL)",
767 	[ESR_ELx_EC_PC_ALIGN]		= "PC Alignment",
768 	[ESR_ELx_EC_DABT_LOW]		= "DABT (lower EL)",
769 	[ESR_ELx_EC_DABT_CUR]		= "DABT (current EL)",
770 	[ESR_ELx_EC_SP_ALIGN]		= "SP Alignment",
771 	[ESR_ELx_EC_FP_EXC32]		= "FP (AArch32)",
772 	[ESR_ELx_EC_FP_EXC64]		= "FP (AArch64)",
773 	[ESR_ELx_EC_SERROR]		= "SError",
774 	[ESR_ELx_EC_BREAKPT_LOW]	= "Breakpoint (lower EL)",
775 	[ESR_ELx_EC_BREAKPT_CUR]	= "Breakpoint (current EL)",
776 	[ESR_ELx_EC_SOFTSTP_LOW]	= "Software Step (lower EL)",
777 	[ESR_ELx_EC_SOFTSTP_CUR]	= "Software Step (current EL)",
778 	[ESR_ELx_EC_WATCHPT_LOW]	= "Watchpoint (lower EL)",
779 	[ESR_ELx_EC_WATCHPT_CUR]	= "Watchpoint (current EL)",
780 	[ESR_ELx_EC_BKPT32]		= "BKPT (AArch32)",
781 	[ESR_ELx_EC_VECTOR32]		= "Vector catch (AArch32)",
782 	[ESR_ELx_EC_BRK64]		= "BRK (AArch64)",
783 };
784 
785 const char *esr_get_class_string(u32 esr)
786 {
787 	return esr_class_str[ESR_ELx_EC(esr)];
788 }
789 
790 /*
791  * bad_mode handles the impossible case in the exception vector. This is always
792  * fatal.
793  */
794 asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
795 {
796 	console_verbose();
797 
798 	pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
799 		handler[reason], smp_processor_id(), esr,
800 		esr_get_class_string(esr));
801 
802 	local_daif_mask();
803 	panic("bad mode");
804 }
805 
806 /*
807  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
808  * exceptions taken from EL0. Unlike bad_mode, this returns.
809  */
810 asmlinkage void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
811 {
812 	void __user *pc = (void __user *)instruction_pointer(regs);
813 
814 	current->thread.fault_address = 0;
815 	current->thread.fault_code = esr;
816 
817 	arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
818 			      "Bad EL0 synchronous exception");
819 }
820 
821 #ifdef CONFIG_VMAP_STACK
822 
823 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
824 	__aligned(16);
825 
826 asmlinkage void handle_bad_stack(struct pt_regs *regs)
827 {
828 	unsigned long tsk_stk = (unsigned long)current->stack;
829 	unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
830 	unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
831 	unsigned int esr = read_sysreg(esr_el1);
832 	unsigned long far = read_sysreg(far_el1);
833 
834 	console_verbose();
835 	pr_emerg("Insufficient stack space to handle exception!");
836 
837 	pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
838 	pr_emerg("FAR: 0x%016lx\n", far);
839 
840 	pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
841 		 tsk_stk, tsk_stk + THREAD_SIZE);
842 	pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
843 		 irq_stk, irq_stk + THREAD_SIZE);
844 	pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
845 		 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
846 
847 	__show_regs(regs);
848 
849 	/*
850 	 * We use nmi_panic to limit the potential for recusive overflows, and
851 	 * to get a better stack trace.
852 	 */
853 	nmi_panic(NULL, "kernel stack overflow");
854 	cpu_park_loop();
855 }
856 #endif
857 
858 void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
859 {
860 	console_verbose();
861 
862 	pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
863 		smp_processor_id(), esr, esr_get_class_string(esr));
864 	if (regs)
865 		__show_regs(regs);
866 
867 	nmi_panic(regs, "Asynchronous SError Interrupt");
868 
869 	cpu_park_loop();
870 	unreachable();
871 }
872 
873 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
874 {
875 	u32 aet = arm64_ras_serror_get_severity(esr);
876 
877 	switch (aet) {
878 	case ESR_ELx_AET_CE:	/* corrected error */
879 	case ESR_ELx_AET_UEO:	/* restartable, not yet consumed */
880 		/*
881 		 * The CPU can make progress. We may take UEO again as
882 		 * a more severe error.
883 		 */
884 		return false;
885 
886 	case ESR_ELx_AET_UEU:	/* Uncorrected Unrecoverable */
887 	case ESR_ELx_AET_UER:	/* Uncorrected Recoverable */
888 		/*
889 		 * The CPU can't make progress. The exception may have
890 		 * been imprecise.
891 		 */
892 		return true;
893 
894 	case ESR_ELx_AET_UC:	/* Uncontainable or Uncategorized error */
895 	default:
896 		/* Error has been silently propagated */
897 		arm64_serror_panic(regs, esr);
898 	}
899 }
900 
901 asmlinkage void do_serror(struct pt_regs *regs, unsigned int esr)
902 {
903 	const bool was_in_nmi = in_nmi();
904 
905 	if (!was_in_nmi)
906 		nmi_enter();
907 
908 	/* non-RAS errors are not containable */
909 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
910 		arm64_serror_panic(regs, esr);
911 
912 	if (!was_in_nmi)
913 		nmi_exit();
914 }
915 
916 void __pte_error(const char *file, int line, unsigned long val)
917 {
918 	pr_err("%s:%d: bad pte %016lx.\n", file, line, val);
919 }
920 
921 void __pmd_error(const char *file, int line, unsigned long val)
922 {
923 	pr_err("%s:%d: bad pmd %016lx.\n", file, line, val);
924 }
925 
926 void __pud_error(const char *file, int line, unsigned long val)
927 {
928 	pr_err("%s:%d: bad pud %016lx.\n", file, line, val);
929 }
930 
931 void __pgd_error(const char *file, int line, unsigned long val)
932 {
933 	pr_err("%s:%d: bad pgd %016lx.\n", file, line, val);
934 }
935 
936 /* GENERIC_BUG traps */
937 
938 int is_valid_bugaddr(unsigned long addr)
939 {
940 	/*
941 	 * bug_handler() only called for BRK #BUG_BRK_IMM.
942 	 * So the answer is trivial -- any spurious instances with no
943 	 * bug table entry will be rejected by report_bug() and passed
944 	 * back to the debug-monitors code and handled as a fatal
945 	 * unexpected debug exception.
946 	 */
947 	return 1;
948 }
949 
950 static int bug_handler(struct pt_regs *regs, unsigned int esr)
951 {
952 	switch (report_bug(regs->pc, regs)) {
953 	case BUG_TRAP_TYPE_BUG:
954 		die("Oops - BUG", regs, 0);
955 		break;
956 
957 	case BUG_TRAP_TYPE_WARN:
958 		break;
959 
960 	default:
961 		/* unknown/unrecognised bug trap type */
962 		return DBG_HOOK_ERROR;
963 	}
964 
965 	/* If thread survives, skip over the BUG instruction and continue: */
966 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
967 	return DBG_HOOK_HANDLED;
968 }
969 
970 static struct break_hook bug_break_hook = {
971 	.fn = bug_handler,
972 	.imm = BUG_BRK_IMM,
973 };
974 
975 #ifdef CONFIG_KASAN_SW_TAGS
976 
977 #define KASAN_ESR_RECOVER	0x20
978 #define KASAN_ESR_WRITE	0x10
979 #define KASAN_ESR_SIZE_MASK	0x0f
980 #define KASAN_ESR_SIZE(esr)	(1 << ((esr) & KASAN_ESR_SIZE_MASK))
981 
982 static int kasan_handler(struct pt_regs *regs, unsigned int esr)
983 {
984 	bool recover = esr & KASAN_ESR_RECOVER;
985 	bool write = esr & KASAN_ESR_WRITE;
986 	size_t size = KASAN_ESR_SIZE(esr);
987 	u64 addr = regs->regs[0];
988 	u64 pc = regs->pc;
989 
990 	kasan_report(addr, size, write, pc);
991 
992 	/*
993 	 * The instrumentation allows to control whether we can proceed after
994 	 * a crash was detected. This is done by passing the -recover flag to
995 	 * the compiler. Disabling recovery allows to generate more compact
996 	 * code.
997 	 *
998 	 * Unfortunately disabling recovery doesn't work for the kernel right
999 	 * now. KASAN reporting is disabled in some contexts (for example when
1000 	 * the allocator accesses slab object metadata; this is controlled by
1001 	 * current->kasan_depth). All these accesses are detected by the tool,
1002 	 * even though the reports for them are not printed.
1003 	 *
1004 	 * This is something that might be fixed at some point in the future.
1005 	 */
1006 	if (!recover)
1007 		die("Oops - KASAN", regs, 0);
1008 
1009 	/* If thread survives, skip over the brk instruction and continue: */
1010 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1011 	return DBG_HOOK_HANDLED;
1012 }
1013 
1014 static struct break_hook kasan_break_hook = {
1015 	.fn	= kasan_handler,
1016 	.imm	= KASAN_BRK_IMM,
1017 	.mask	= KASAN_BRK_MASK,
1018 };
1019 #endif
1020 
1021 /*
1022  * Initial handler for AArch64 BRK exceptions
1023  * This handler only used until debug_traps_init().
1024  */
1025 int __init early_brk64(unsigned long addr, unsigned int esr,
1026 		struct pt_regs *regs)
1027 {
1028 #ifdef CONFIG_KASAN_SW_TAGS
1029 	unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
1030 
1031 	if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
1032 		return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
1033 #endif
1034 	return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
1035 }
1036 
1037 /* This registration must happen early, before debug_traps_init(). */
1038 void __init trap_init(void)
1039 {
1040 	register_kernel_break_hook(&bug_break_hook);
1041 #ifdef CONFIG_KASAN_SW_TAGS
1042 	register_kernel_break_hook(&kasan_break_hook);
1043 #endif
1044 }
1045