xref: /openbmc/linux/arch/arm64/kernel/traps.c (revision 1fb7f897)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/traps.c
4  *
5  * Copyright (C) 1995-2009 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/context_tracking.h>
11 #include <linux/signal.h>
12 #include <linux/personality.h>
13 #include <linux/kallsyms.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kdebug.h>
19 #include <linux/module.h>
20 #include <linux/kexec.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/debug.h>
25 #include <linux/sched/task_stack.h>
26 #include <linux/sizes.h>
27 #include <linux/syscalls.h>
28 #include <linux/mm_types.h>
29 #include <linux/kasan.h>
30 
31 #include <asm/atomic.h>
32 #include <asm/bug.h>
33 #include <asm/cpufeature.h>
34 #include <asm/daifflags.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/esr.h>
37 #include <asm/exception.h>
38 #include <asm/extable.h>
39 #include <asm/insn.h>
40 #include <asm/kprobes.h>
41 #include <asm/traps.h>
42 #include <asm/smp.h>
43 #include <asm/stack_pointer.h>
44 #include <asm/stacktrace.h>
45 #include <asm/system_misc.h>
46 #include <asm/sysreg.h>
47 
48 static const char *handler[] = {
49 	"Synchronous Abort",
50 	"IRQ",
51 	"FIQ",
52 	"Error"
53 };
54 
55 int show_unhandled_signals = 0;
56 
57 static void dump_kernel_instr(const char *lvl, struct pt_regs *regs)
58 {
59 	unsigned long addr = instruction_pointer(regs);
60 	char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
61 	int i;
62 
63 	if (user_mode(regs))
64 		return;
65 
66 	for (i = -4; i < 1; i++) {
67 		unsigned int val, bad;
68 
69 		bad = aarch64_insn_read(&((u32 *)addr)[i], &val);
70 
71 		if (!bad)
72 			p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
73 		else {
74 			p += sprintf(p, "bad PC value");
75 			break;
76 		}
77 	}
78 
79 	printk("%sCode: %s\n", lvl, str);
80 }
81 
82 #ifdef CONFIG_PREEMPT
83 #define S_PREEMPT " PREEMPT"
84 #elif defined(CONFIG_PREEMPT_RT)
85 #define S_PREEMPT " PREEMPT_RT"
86 #else
87 #define S_PREEMPT ""
88 #endif
89 
90 #define S_SMP " SMP"
91 
92 static int __die(const char *str, int err, struct pt_regs *regs)
93 {
94 	static int die_counter;
95 	int ret;
96 
97 	pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
98 		 str, err, ++die_counter);
99 
100 	/* trap and error numbers are mostly meaningless on ARM */
101 	ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
102 	if (ret == NOTIFY_STOP)
103 		return ret;
104 
105 	print_modules();
106 	show_regs(regs);
107 
108 	dump_kernel_instr(KERN_EMERG, regs);
109 
110 	return ret;
111 }
112 
113 static DEFINE_RAW_SPINLOCK(die_lock);
114 
115 /*
116  * This function is protected against re-entrancy.
117  */
118 void die(const char *str, struct pt_regs *regs, int err)
119 {
120 	int ret;
121 	unsigned long flags;
122 
123 	raw_spin_lock_irqsave(&die_lock, flags);
124 
125 	oops_enter();
126 
127 	console_verbose();
128 	bust_spinlocks(1);
129 	ret = __die(str, err, regs);
130 
131 	if (regs && kexec_should_crash(current))
132 		crash_kexec(regs);
133 
134 	bust_spinlocks(0);
135 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
136 	oops_exit();
137 
138 	if (in_interrupt())
139 		panic("%s: Fatal exception in interrupt", str);
140 	if (panic_on_oops)
141 		panic("%s: Fatal exception", str);
142 
143 	raw_spin_unlock_irqrestore(&die_lock, flags);
144 
145 	if (ret != NOTIFY_STOP)
146 		do_exit(SIGSEGV);
147 }
148 
149 static void arm64_show_signal(int signo, const char *str)
150 {
151 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
152 				      DEFAULT_RATELIMIT_BURST);
153 	struct task_struct *tsk = current;
154 	unsigned int esr = tsk->thread.fault_code;
155 	struct pt_regs *regs = task_pt_regs(tsk);
156 
157 	/* Leave if the signal won't be shown */
158 	if (!show_unhandled_signals ||
159 	    !unhandled_signal(tsk, signo) ||
160 	    !__ratelimit(&rs))
161 		return;
162 
163 	pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
164 	if (esr)
165 		pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
166 
167 	pr_cont("%s", str);
168 	print_vma_addr(KERN_CONT " in ", regs->pc);
169 	pr_cont("\n");
170 	__show_regs(regs);
171 }
172 
173 void arm64_force_sig_fault(int signo, int code, unsigned long far,
174 			   const char *str)
175 {
176 	arm64_show_signal(signo, str);
177 	if (signo == SIGKILL)
178 		force_sig(SIGKILL);
179 	else
180 		force_sig_fault(signo, code, (void __user *)far);
181 }
182 
183 void arm64_force_sig_mceerr(int code, unsigned long far, short lsb,
184 			    const char *str)
185 {
186 	arm64_show_signal(SIGBUS, str);
187 	force_sig_mceerr(code, (void __user *)far, lsb);
188 }
189 
190 void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
191 				       const char *str)
192 {
193 	arm64_show_signal(SIGTRAP, str);
194 	force_sig_ptrace_errno_trap(errno, (void __user *)far);
195 }
196 
197 void arm64_notify_die(const char *str, struct pt_regs *regs,
198 		      int signo, int sicode, unsigned long far,
199 		      int err)
200 {
201 	if (user_mode(regs)) {
202 		WARN_ON(regs != current_pt_regs());
203 		current->thread.fault_address = 0;
204 		current->thread.fault_code = err;
205 
206 		arm64_force_sig_fault(signo, sicode, far, str);
207 	} else {
208 		die(str, regs, err);
209 	}
210 }
211 
212 #ifdef CONFIG_COMPAT
213 #define PSTATE_IT_1_0_SHIFT	25
214 #define PSTATE_IT_1_0_MASK	(0x3 << PSTATE_IT_1_0_SHIFT)
215 #define PSTATE_IT_7_2_SHIFT	10
216 #define PSTATE_IT_7_2_MASK	(0x3f << PSTATE_IT_7_2_SHIFT)
217 
218 static u32 compat_get_it_state(struct pt_regs *regs)
219 {
220 	u32 it, pstate = regs->pstate;
221 
222 	it  = (pstate & PSTATE_IT_1_0_MASK) >> PSTATE_IT_1_0_SHIFT;
223 	it |= ((pstate & PSTATE_IT_7_2_MASK) >> PSTATE_IT_7_2_SHIFT) << 2;
224 
225 	return it;
226 }
227 
228 static void compat_set_it_state(struct pt_regs *regs, u32 it)
229 {
230 	u32 pstate_it;
231 
232 	pstate_it  = (it << PSTATE_IT_1_0_SHIFT) & PSTATE_IT_1_0_MASK;
233 	pstate_it |= ((it >> 2) << PSTATE_IT_7_2_SHIFT) & PSTATE_IT_7_2_MASK;
234 
235 	regs->pstate &= ~PSR_AA32_IT_MASK;
236 	regs->pstate |= pstate_it;
237 }
238 
239 static void advance_itstate(struct pt_regs *regs)
240 {
241 	u32 it;
242 
243 	/* ARM mode */
244 	if (!(regs->pstate & PSR_AA32_T_BIT) ||
245 	    !(regs->pstate & PSR_AA32_IT_MASK))
246 		return;
247 
248 	it  = compat_get_it_state(regs);
249 
250 	/*
251 	 * If this is the last instruction of the block, wipe the IT
252 	 * state. Otherwise advance it.
253 	 */
254 	if (!(it & 7))
255 		it = 0;
256 	else
257 		it = (it & 0xe0) | ((it << 1) & 0x1f);
258 
259 	compat_set_it_state(regs, it);
260 }
261 #else
262 static void advance_itstate(struct pt_regs *regs)
263 {
264 }
265 #endif
266 
267 void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size)
268 {
269 	regs->pc += size;
270 
271 	/*
272 	 * If we were single stepping, we want to get the step exception after
273 	 * we return from the trap.
274 	 */
275 	if (user_mode(regs))
276 		user_fastforward_single_step(current);
277 
278 	if (compat_user_mode(regs))
279 		advance_itstate(regs);
280 	else
281 		regs->pstate &= ~PSR_BTYPE_MASK;
282 }
283 
284 static LIST_HEAD(undef_hook);
285 static DEFINE_RAW_SPINLOCK(undef_lock);
286 
287 void register_undef_hook(struct undef_hook *hook)
288 {
289 	unsigned long flags;
290 
291 	raw_spin_lock_irqsave(&undef_lock, flags);
292 	list_add(&hook->node, &undef_hook);
293 	raw_spin_unlock_irqrestore(&undef_lock, flags);
294 }
295 
296 void unregister_undef_hook(struct undef_hook *hook)
297 {
298 	unsigned long flags;
299 
300 	raw_spin_lock_irqsave(&undef_lock, flags);
301 	list_del(&hook->node);
302 	raw_spin_unlock_irqrestore(&undef_lock, flags);
303 }
304 
305 static int call_undef_hook(struct pt_regs *regs)
306 {
307 	struct undef_hook *hook;
308 	unsigned long flags;
309 	u32 instr;
310 	int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
311 	void __user *pc = (void __user *)instruction_pointer(regs);
312 
313 	if (!user_mode(regs)) {
314 		__le32 instr_le;
315 		if (get_kernel_nofault(instr_le, (__force __le32 *)pc))
316 			goto exit;
317 		instr = le32_to_cpu(instr_le);
318 	} else if (compat_thumb_mode(regs)) {
319 		/* 16-bit Thumb instruction */
320 		__le16 instr_le;
321 		if (get_user(instr_le, (__le16 __user *)pc))
322 			goto exit;
323 		instr = le16_to_cpu(instr_le);
324 		if (aarch32_insn_is_wide(instr)) {
325 			u32 instr2;
326 
327 			if (get_user(instr_le, (__le16 __user *)(pc + 2)))
328 				goto exit;
329 			instr2 = le16_to_cpu(instr_le);
330 			instr = (instr << 16) | instr2;
331 		}
332 	} else {
333 		/* 32-bit ARM instruction */
334 		__le32 instr_le;
335 		if (get_user(instr_le, (__le32 __user *)pc))
336 			goto exit;
337 		instr = le32_to_cpu(instr_le);
338 	}
339 
340 	raw_spin_lock_irqsave(&undef_lock, flags);
341 	list_for_each_entry(hook, &undef_hook, node)
342 		if ((instr & hook->instr_mask) == hook->instr_val &&
343 			(regs->pstate & hook->pstate_mask) == hook->pstate_val)
344 			fn = hook->fn;
345 
346 	raw_spin_unlock_irqrestore(&undef_lock, flags);
347 exit:
348 	return fn ? fn(regs, instr) : 1;
349 }
350 
351 void force_signal_inject(int signal, int code, unsigned long address, unsigned int err)
352 {
353 	const char *desc;
354 	struct pt_regs *regs = current_pt_regs();
355 
356 	if (WARN_ON(!user_mode(regs)))
357 		return;
358 
359 	switch (signal) {
360 	case SIGILL:
361 		desc = "undefined instruction";
362 		break;
363 	case SIGSEGV:
364 		desc = "illegal memory access";
365 		break;
366 	default:
367 		desc = "unknown or unrecoverable error";
368 		break;
369 	}
370 
371 	/* Force signals we don't understand to SIGKILL */
372 	if (WARN_ON(signal != SIGKILL &&
373 		    siginfo_layout(signal, code) != SIL_FAULT)) {
374 		signal = SIGKILL;
375 	}
376 
377 	arm64_notify_die(desc, regs, signal, code, address, err);
378 }
379 
380 /*
381  * Set up process info to signal segmentation fault - called on access error.
382  */
383 void arm64_notify_segfault(unsigned long addr)
384 {
385 	int code;
386 
387 	mmap_read_lock(current->mm);
388 	if (find_vma(current->mm, untagged_addr(addr)) == NULL)
389 		code = SEGV_MAPERR;
390 	else
391 		code = SEGV_ACCERR;
392 	mmap_read_unlock(current->mm);
393 
394 	force_signal_inject(SIGSEGV, code, addr, 0);
395 }
396 
397 void do_undefinstr(struct pt_regs *regs)
398 {
399 	/* check for AArch32 breakpoint instructions */
400 	if (!aarch32_break_handler(regs))
401 		return;
402 
403 	if (call_undef_hook(regs) == 0)
404 		return;
405 
406 	BUG_ON(!user_mode(regs));
407 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
408 }
409 NOKPROBE_SYMBOL(do_undefinstr);
410 
411 void do_bti(struct pt_regs *regs)
412 {
413 	BUG_ON(!user_mode(regs));
414 	force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
415 }
416 NOKPROBE_SYMBOL(do_bti);
417 
418 void do_ptrauth_fault(struct pt_regs *regs, unsigned int esr)
419 {
420 	/*
421 	 * Unexpected FPAC exception or pointer authentication failure in
422 	 * the kernel: kill the task before it does any more harm.
423 	 */
424 	BUG_ON(!user_mode(regs));
425 	force_signal_inject(SIGILL, ILL_ILLOPN, regs->pc, esr);
426 }
427 NOKPROBE_SYMBOL(do_ptrauth_fault);
428 
429 #define __user_cache_maint(insn, address, res)			\
430 	if (address >= user_addr_max()) {			\
431 		res = -EFAULT;					\
432 	} else {						\
433 		uaccess_ttbr0_enable();				\
434 		asm volatile (					\
435 			"1:	" insn ", %1\n"			\
436 			"	mov	%w0, #0\n"		\
437 			"2:\n"					\
438 			"	.pushsection .fixup,\"ax\"\n"	\
439 			"	.align	2\n"			\
440 			"3:	mov	%w0, %w2\n"		\
441 			"	b	2b\n"			\
442 			"	.popsection\n"			\
443 			_ASM_EXTABLE(1b, 3b)			\
444 			: "=r" (res)				\
445 			: "r" (address), "i" (-EFAULT));	\
446 		uaccess_ttbr0_disable();			\
447 	}
448 
449 static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
450 {
451 	unsigned long tagged_address, address;
452 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
453 	int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
454 	int ret = 0;
455 
456 	tagged_address = pt_regs_read_reg(regs, rt);
457 	address = untagged_addr(tagged_address);
458 
459 	switch (crm) {
460 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAU:	/* DC CVAU, gets promoted */
461 		__user_cache_maint("dc civac", address, ret);
462 		break;
463 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAC:	/* DC CVAC, gets promoted */
464 		__user_cache_maint("dc civac", address, ret);
465 		break;
466 	case ESR_ELx_SYS64_ISS_CRM_DC_CVADP:	/* DC CVADP */
467 		__user_cache_maint("sys 3, c7, c13, 1", address, ret);
468 		break;
469 	case ESR_ELx_SYS64_ISS_CRM_DC_CVAP:	/* DC CVAP */
470 		__user_cache_maint("sys 3, c7, c12, 1", address, ret);
471 		break;
472 	case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC:	/* DC CIVAC */
473 		__user_cache_maint("dc civac", address, ret);
474 		break;
475 	case ESR_ELx_SYS64_ISS_CRM_IC_IVAU:	/* IC IVAU */
476 		__user_cache_maint("ic ivau", address, ret);
477 		break;
478 	default:
479 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
480 		return;
481 	}
482 
483 	if (ret)
484 		arm64_notify_segfault(tagged_address);
485 	else
486 		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
487 }
488 
489 static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
490 {
491 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
492 	unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
493 
494 	if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
495 		/* Hide DIC so that we can trap the unnecessary maintenance...*/
496 		val &= ~BIT(CTR_DIC_SHIFT);
497 
498 		/* ... and fake IminLine to reduce the number of traps. */
499 		val &= ~CTR_IMINLINE_MASK;
500 		val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK;
501 	}
502 
503 	pt_regs_write_reg(regs, rt, val);
504 
505 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
506 }
507 
508 static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
509 {
510 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
511 
512 	pt_regs_write_reg(regs, rt, arch_timer_read_counter());
513 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
514 }
515 
516 static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
517 {
518 	int rt = ESR_ELx_SYS64_ISS_RT(esr);
519 
520 	pt_regs_write_reg(regs, rt, arch_timer_get_rate());
521 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
522 }
523 
524 static void mrs_handler(unsigned int esr, struct pt_regs *regs)
525 {
526 	u32 sysreg, rt;
527 
528 	rt = ESR_ELx_SYS64_ISS_RT(esr);
529 	sysreg = esr_sys64_to_sysreg(esr);
530 
531 	if (do_emulate_mrs(regs, sysreg, rt) != 0)
532 		force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
533 }
534 
535 static void wfi_handler(unsigned int esr, struct pt_regs *regs)
536 {
537 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
538 }
539 
540 struct sys64_hook {
541 	unsigned int esr_mask;
542 	unsigned int esr_val;
543 	void (*handler)(unsigned int esr, struct pt_regs *regs);
544 };
545 
546 static const struct sys64_hook sys64_hooks[] = {
547 	{
548 		.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
549 		.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
550 		.handler = user_cache_maint_handler,
551 	},
552 	{
553 		/* Trap read access to CTR_EL0 */
554 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
555 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
556 		.handler = ctr_read_handler,
557 	},
558 	{
559 		/* Trap read access to CNTVCT_EL0 */
560 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
561 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTVCT,
562 		.handler = cntvct_read_handler,
563 	},
564 	{
565 		/* Trap read access to CNTFRQ_EL0 */
566 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
567 		.esr_val = ESR_ELx_SYS64_ISS_SYS_CNTFRQ,
568 		.handler = cntfrq_read_handler,
569 	},
570 	{
571 		/* Trap read access to CPUID registers */
572 		.esr_mask = ESR_ELx_SYS64_ISS_SYS_MRS_OP_MASK,
573 		.esr_val = ESR_ELx_SYS64_ISS_SYS_MRS_OP_VAL,
574 		.handler = mrs_handler,
575 	},
576 	{
577 		/* Trap WFI instructions executed in userspace */
578 		.esr_mask = ESR_ELx_WFx_MASK,
579 		.esr_val = ESR_ELx_WFx_WFI_VAL,
580 		.handler = wfi_handler,
581 	},
582 	{},
583 };
584 
585 #ifdef CONFIG_COMPAT
586 static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
587 {
588 	int cond;
589 
590 	/* Only a T32 instruction can trap without CV being set */
591 	if (!(esr & ESR_ELx_CV)) {
592 		u32 it;
593 
594 		it = compat_get_it_state(regs);
595 		if (!it)
596 			return true;
597 
598 		cond = it >> 4;
599 	} else {
600 		cond = (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
601 	}
602 
603 	return aarch32_opcode_cond_checks[cond](regs->pstate);
604 }
605 
606 static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
607 {
608 	int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
609 
610 	pt_regs_write_reg(regs, reg, arch_timer_get_rate());
611 	arm64_skip_faulting_instruction(regs, 4);
612 }
613 
614 static const struct sys64_hook cp15_32_hooks[] = {
615 	{
616 		.esr_mask = ESR_ELx_CP15_32_ISS_SYS_MASK,
617 		.esr_val = ESR_ELx_CP15_32_ISS_SYS_CNTFRQ,
618 		.handler = compat_cntfrq_read_handler,
619 	},
620 	{},
621 };
622 
623 static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
624 {
625 	int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
626 	int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
627 	u64 val = arch_timer_read_counter();
628 
629 	pt_regs_write_reg(regs, rt, lower_32_bits(val));
630 	pt_regs_write_reg(regs, rt2, upper_32_bits(val));
631 	arm64_skip_faulting_instruction(regs, 4);
632 }
633 
634 static const struct sys64_hook cp15_64_hooks[] = {
635 	{
636 		.esr_mask = ESR_ELx_CP15_64_ISS_SYS_MASK,
637 		.esr_val = ESR_ELx_CP15_64_ISS_SYS_CNTVCT,
638 		.handler = compat_cntvct_read_handler,
639 	},
640 	{},
641 };
642 
643 void do_cp15instr(unsigned int esr, struct pt_regs *regs)
644 {
645 	const struct sys64_hook *hook, *hook_base;
646 
647 	if (!cp15_cond_valid(esr, regs)) {
648 		/*
649 		 * There is no T16 variant of a CP access, so we
650 		 * always advance PC by 4 bytes.
651 		 */
652 		arm64_skip_faulting_instruction(regs, 4);
653 		return;
654 	}
655 
656 	switch (ESR_ELx_EC(esr)) {
657 	case ESR_ELx_EC_CP15_32:
658 		hook_base = cp15_32_hooks;
659 		break;
660 	case ESR_ELx_EC_CP15_64:
661 		hook_base = cp15_64_hooks;
662 		break;
663 	default:
664 		do_undefinstr(regs);
665 		return;
666 	}
667 
668 	for (hook = hook_base; hook->handler; hook++)
669 		if ((hook->esr_mask & esr) == hook->esr_val) {
670 			hook->handler(esr, regs);
671 			return;
672 		}
673 
674 	/*
675 	 * New cp15 instructions may previously have been undefined at
676 	 * EL0. Fall back to our usual undefined instruction handler
677 	 * so that we handle these consistently.
678 	 */
679 	do_undefinstr(regs);
680 }
681 NOKPROBE_SYMBOL(do_cp15instr);
682 #endif
683 
684 void do_sysinstr(unsigned int esr, struct pt_regs *regs)
685 {
686 	const struct sys64_hook *hook;
687 
688 	for (hook = sys64_hooks; hook->handler; hook++)
689 		if ((hook->esr_mask & esr) == hook->esr_val) {
690 			hook->handler(esr, regs);
691 			return;
692 		}
693 
694 	/*
695 	 * New SYS instructions may previously have been undefined at EL0. Fall
696 	 * back to our usual undefined instruction handler so that we handle
697 	 * these consistently.
698 	 */
699 	do_undefinstr(regs);
700 }
701 NOKPROBE_SYMBOL(do_sysinstr);
702 
703 static const char *esr_class_str[] = {
704 	[0 ... ESR_ELx_EC_MAX]		= "UNRECOGNIZED EC",
705 	[ESR_ELx_EC_UNKNOWN]		= "Unknown/Uncategorized",
706 	[ESR_ELx_EC_WFx]		= "WFI/WFE",
707 	[ESR_ELx_EC_CP15_32]		= "CP15 MCR/MRC",
708 	[ESR_ELx_EC_CP15_64]		= "CP15 MCRR/MRRC",
709 	[ESR_ELx_EC_CP14_MR]		= "CP14 MCR/MRC",
710 	[ESR_ELx_EC_CP14_LS]		= "CP14 LDC/STC",
711 	[ESR_ELx_EC_FP_ASIMD]		= "ASIMD",
712 	[ESR_ELx_EC_CP10_ID]		= "CP10 MRC/VMRS",
713 	[ESR_ELx_EC_PAC]		= "PAC",
714 	[ESR_ELx_EC_CP14_64]		= "CP14 MCRR/MRRC",
715 	[ESR_ELx_EC_BTI]		= "BTI",
716 	[ESR_ELx_EC_ILL]		= "PSTATE.IL",
717 	[ESR_ELx_EC_SVC32]		= "SVC (AArch32)",
718 	[ESR_ELx_EC_HVC32]		= "HVC (AArch32)",
719 	[ESR_ELx_EC_SMC32]		= "SMC (AArch32)",
720 	[ESR_ELx_EC_SVC64]		= "SVC (AArch64)",
721 	[ESR_ELx_EC_HVC64]		= "HVC (AArch64)",
722 	[ESR_ELx_EC_SMC64]		= "SMC (AArch64)",
723 	[ESR_ELx_EC_SYS64]		= "MSR/MRS (AArch64)",
724 	[ESR_ELx_EC_SVE]		= "SVE",
725 	[ESR_ELx_EC_ERET]		= "ERET/ERETAA/ERETAB",
726 	[ESR_ELx_EC_FPAC]		= "FPAC",
727 	[ESR_ELx_EC_IMP_DEF]		= "EL3 IMP DEF",
728 	[ESR_ELx_EC_IABT_LOW]		= "IABT (lower EL)",
729 	[ESR_ELx_EC_IABT_CUR]		= "IABT (current EL)",
730 	[ESR_ELx_EC_PC_ALIGN]		= "PC Alignment",
731 	[ESR_ELx_EC_DABT_LOW]		= "DABT (lower EL)",
732 	[ESR_ELx_EC_DABT_CUR]		= "DABT (current EL)",
733 	[ESR_ELx_EC_SP_ALIGN]		= "SP Alignment",
734 	[ESR_ELx_EC_FP_EXC32]		= "FP (AArch32)",
735 	[ESR_ELx_EC_FP_EXC64]		= "FP (AArch64)",
736 	[ESR_ELx_EC_SERROR]		= "SError",
737 	[ESR_ELx_EC_BREAKPT_LOW]	= "Breakpoint (lower EL)",
738 	[ESR_ELx_EC_BREAKPT_CUR]	= "Breakpoint (current EL)",
739 	[ESR_ELx_EC_SOFTSTP_LOW]	= "Software Step (lower EL)",
740 	[ESR_ELx_EC_SOFTSTP_CUR]	= "Software Step (current EL)",
741 	[ESR_ELx_EC_WATCHPT_LOW]	= "Watchpoint (lower EL)",
742 	[ESR_ELx_EC_WATCHPT_CUR]	= "Watchpoint (current EL)",
743 	[ESR_ELx_EC_BKPT32]		= "BKPT (AArch32)",
744 	[ESR_ELx_EC_VECTOR32]		= "Vector catch (AArch32)",
745 	[ESR_ELx_EC_BRK64]		= "BRK (AArch64)",
746 };
747 
748 const char *esr_get_class_string(u32 esr)
749 {
750 	return esr_class_str[ESR_ELx_EC(esr)];
751 }
752 
753 /*
754  * bad_mode handles the impossible case in the exception vector. This is always
755  * fatal.
756  */
757 asmlinkage void notrace bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
758 {
759 	arm64_enter_nmi(regs);
760 
761 	console_verbose();
762 
763 	pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
764 		handler[reason], smp_processor_id(), esr,
765 		esr_get_class_string(esr));
766 
767 	__show_regs(regs);
768 	local_daif_mask();
769 	panic("bad mode");
770 }
771 
772 /*
773  * bad_el0_sync handles unexpected, but potentially recoverable synchronous
774  * exceptions taken from EL0. Unlike bad_mode, this returns.
775  */
776 void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
777 {
778 	unsigned long pc = instruction_pointer(regs);
779 
780 	current->thread.fault_address = 0;
781 	current->thread.fault_code = esr;
782 
783 	arm64_force_sig_fault(SIGILL, ILL_ILLOPC, pc,
784 			      "Bad EL0 synchronous exception");
785 }
786 
787 #ifdef CONFIG_VMAP_STACK
788 
789 DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
790 	__aligned(16);
791 
792 asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs)
793 {
794 	unsigned long tsk_stk = (unsigned long)current->stack;
795 	unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
796 	unsigned long ovf_stk = (unsigned long)this_cpu_ptr(overflow_stack);
797 	unsigned int esr = read_sysreg(esr_el1);
798 	unsigned long far = read_sysreg(far_el1);
799 
800 	arm64_enter_nmi(regs);
801 
802 	console_verbose();
803 	pr_emerg("Insufficient stack space to handle exception!");
804 
805 	pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
806 	pr_emerg("FAR: 0x%016lx\n", far);
807 
808 	pr_emerg("Task stack:     [0x%016lx..0x%016lx]\n",
809 		 tsk_stk, tsk_stk + THREAD_SIZE);
810 	pr_emerg("IRQ stack:      [0x%016lx..0x%016lx]\n",
811 		 irq_stk, irq_stk + IRQ_STACK_SIZE);
812 	pr_emerg("Overflow stack: [0x%016lx..0x%016lx]\n",
813 		 ovf_stk, ovf_stk + OVERFLOW_STACK_SIZE);
814 
815 	__show_regs(regs);
816 
817 	/*
818 	 * We use nmi_panic to limit the potential for recusive overflows, and
819 	 * to get a better stack trace.
820 	 */
821 	nmi_panic(NULL, "kernel stack overflow");
822 	cpu_park_loop();
823 }
824 #endif
825 
826 void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
827 {
828 	console_verbose();
829 
830 	pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
831 		smp_processor_id(), esr, esr_get_class_string(esr));
832 	if (regs)
833 		__show_regs(regs);
834 
835 	nmi_panic(regs, "Asynchronous SError Interrupt");
836 
837 	cpu_park_loop();
838 	unreachable();
839 }
840 
841 bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
842 {
843 	u32 aet = arm64_ras_serror_get_severity(esr);
844 
845 	switch (aet) {
846 	case ESR_ELx_AET_CE:	/* corrected error */
847 	case ESR_ELx_AET_UEO:	/* restartable, not yet consumed */
848 		/*
849 		 * The CPU can make progress. We may take UEO again as
850 		 * a more severe error.
851 		 */
852 		return false;
853 
854 	case ESR_ELx_AET_UEU:	/* Uncorrected Unrecoverable */
855 	case ESR_ELx_AET_UER:	/* Uncorrected Recoverable */
856 		/*
857 		 * The CPU can't make progress. The exception may have
858 		 * been imprecise.
859 		 *
860 		 * Neoverse-N1 #1349291 means a non-KVM SError reported as
861 		 * Unrecoverable should be treated as Uncontainable. We
862 		 * call arm64_serror_panic() in both cases.
863 		 */
864 		return true;
865 
866 	case ESR_ELx_AET_UC:	/* Uncontainable or Uncategorized error */
867 	default:
868 		/* Error has been silently propagated */
869 		arm64_serror_panic(regs, esr);
870 	}
871 }
872 
873 asmlinkage void noinstr do_serror(struct pt_regs *regs, unsigned int esr)
874 {
875 	arm64_enter_nmi(regs);
876 
877 	/* non-RAS errors are not containable */
878 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
879 		arm64_serror_panic(regs, esr);
880 
881 	arm64_exit_nmi(regs);
882 }
883 
884 /* GENERIC_BUG traps */
885 
886 int is_valid_bugaddr(unsigned long addr)
887 {
888 	/*
889 	 * bug_handler() only called for BRK #BUG_BRK_IMM.
890 	 * So the answer is trivial -- any spurious instances with no
891 	 * bug table entry will be rejected by report_bug() and passed
892 	 * back to the debug-monitors code and handled as a fatal
893 	 * unexpected debug exception.
894 	 */
895 	return 1;
896 }
897 
898 static int bug_handler(struct pt_regs *regs, unsigned int esr)
899 {
900 	switch (report_bug(regs->pc, regs)) {
901 	case BUG_TRAP_TYPE_BUG:
902 		die("Oops - BUG", regs, 0);
903 		break;
904 
905 	case BUG_TRAP_TYPE_WARN:
906 		break;
907 
908 	default:
909 		/* unknown/unrecognised bug trap type */
910 		return DBG_HOOK_ERROR;
911 	}
912 
913 	/* If thread survives, skip over the BUG instruction and continue: */
914 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
915 	return DBG_HOOK_HANDLED;
916 }
917 
918 static struct break_hook bug_break_hook = {
919 	.fn = bug_handler,
920 	.imm = BUG_BRK_IMM,
921 };
922 
923 static int reserved_fault_handler(struct pt_regs *regs, unsigned int esr)
924 {
925 	pr_err("%s generated an invalid instruction at %pS!\n",
926 		in_bpf_jit(regs) ? "BPF JIT" : "Kernel text patching",
927 		(void *)instruction_pointer(regs));
928 
929 	/* We cannot handle this */
930 	return DBG_HOOK_ERROR;
931 }
932 
933 static struct break_hook fault_break_hook = {
934 	.fn = reserved_fault_handler,
935 	.imm = FAULT_BRK_IMM,
936 };
937 
938 #ifdef CONFIG_KASAN_SW_TAGS
939 
940 #define KASAN_ESR_RECOVER	0x20
941 #define KASAN_ESR_WRITE	0x10
942 #define KASAN_ESR_SIZE_MASK	0x0f
943 #define KASAN_ESR_SIZE(esr)	(1 << ((esr) & KASAN_ESR_SIZE_MASK))
944 
945 static int kasan_handler(struct pt_regs *regs, unsigned int esr)
946 {
947 	bool recover = esr & KASAN_ESR_RECOVER;
948 	bool write = esr & KASAN_ESR_WRITE;
949 	size_t size = KASAN_ESR_SIZE(esr);
950 	u64 addr = regs->regs[0];
951 	u64 pc = regs->pc;
952 
953 	kasan_report(addr, size, write, pc);
954 
955 	/*
956 	 * The instrumentation allows to control whether we can proceed after
957 	 * a crash was detected. This is done by passing the -recover flag to
958 	 * the compiler. Disabling recovery allows to generate more compact
959 	 * code.
960 	 *
961 	 * Unfortunately disabling recovery doesn't work for the kernel right
962 	 * now. KASAN reporting is disabled in some contexts (for example when
963 	 * the allocator accesses slab object metadata; this is controlled by
964 	 * current->kasan_depth). All these accesses are detected by the tool,
965 	 * even though the reports for them are not printed.
966 	 *
967 	 * This is something that might be fixed at some point in the future.
968 	 */
969 	if (!recover)
970 		die("Oops - KASAN", regs, 0);
971 
972 	/* If thread survives, skip over the brk instruction and continue: */
973 	arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
974 	return DBG_HOOK_HANDLED;
975 }
976 
977 static struct break_hook kasan_break_hook = {
978 	.fn	= kasan_handler,
979 	.imm	= KASAN_BRK_IMM,
980 	.mask	= KASAN_BRK_MASK,
981 };
982 #endif
983 
984 /*
985  * Initial handler for AArch64 BRK exceptions
986  * This handler only used until debug_traps_init().
987  */
988 int __init early_brk64(unsigned long addr, unsigned int esr,
989 		struct pt_regs *regs)
990 {
991 #ifdef CONFIG_KASAN_SW_TAGS
992 	unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
993 
994 	if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
995 		return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
996 #endif
997 	return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
998 }
999 
1000 void __init trap_init(void)
1001 {
1002 	register_kernel_break_hook(&bug_break_hook);
1003 	register_kernel_break_hook(&fault_break_hook);
1004 #ifdef CONFIG_KASAN_SW_TAGS
1005 	register_kernel_break_hook(&kasan_break_hook);
1006 #endif
1007 	debug_traps_init();
1008 }
1009