xref: /openbmc/linux/arch/arm64/kernel/topology.c (revision f79e4d5f)
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/node.h>
22 #include <linux/nodemask.h>
23 #include <linux/of.h>
24 #include <linux/sched.h>
25 #include <linux/sched/topology.h>
26 #include <linux/slab.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 
30 #include <asm/cpu.h>
31 #include <asm/cputype.h>
32 #include <asm/topology.h>
33 
34 static int __init get_cpu_for_node(struct device_node *node)
35 {
36 	struct device_node *cpu_node;
37 	int cpu;
38 
39 	cpu_node = of_parse_phandle(node, "cpu", 0);
40 	if (!cpu_node)
41 		return -1;
42 
43 	cpu = of_cpu_node_to_id(cpu_node);
44 	if (cpu >= 0)
45 		topology_parse_cpu_capacity(cpu_node, cpu);
46 	else
47 		pr_crit("Unable to find CPU node for %pOF\n", cpu_node);
48 
49 	of_node_put(cpu_node);
50 	return cpu;
51 }
52 
53 static int __init parse_core(struct device_node *core, int package_id,
54 			     int core_id)
55 {
56 	char name[10];
57 	bool leaf = true;
58 	int i = 0;
59 	int cpu;
60 	struct device_node *t;
61 
62 	do {
63 		snprintf(name, sizeof(name), "thread%d", i);
64 		t = of_get_child_by_name(core, name);
65 		if (t) {
66 			leaf = false;
67 			cpu = get_cpu_for_node(t);
68 			if (cpu >= 0) {
69 				cpu_topology[cpu].package_id = package_id;
70 				cpu_topology[cpu].core_id = core_id;
71 				cpu_topology[cpu].thread_id = i;
72 			} else {
73 				pr_err("%pOF: Can't get CPU for thread\n",
74 				       t);
75 				of_node_put(t);
76 				return -EINVAL;
77 			}
78 			of_node_put(t);
79 		}
80 		i++;
81 	} while (t);
82 
83 	cpu = get_cpu_for_node(core);
84 	if (cpu >= 0) {
85 		if (!leaf) {
86 			pr_err("%pOF: Core has both threads and CPU\n",
87 			       core);
88 			return -EINVAL;
89 		}
90 
91 		cpu_topology[cpu].package_id = package_id;
92 		cpu_topology[cpu].core_id = core_id;
93 	} else if (leaf) {
94 		pr_err("%pOF: Can't get CPU for leaf core\n", core);
95 		return -EINVAL;
96 	}
97 
98 	return 0;
99 }
100 
101 static int __init parse_cluster(struct device_node *cluster, int depth)
102 {
103 	char name[10];
104 	bool leaf = true;
105 	bool has_cores = false;
106 	struct device_node *c;
107 	static int package_id __initdata;
108 	int core_id = 0;
109 	int i, ret;
110 
111 	/*
112 	 * First check for child clusters; we currently ignore any
113 	 * information about the nesting of clusters and present the
114 	 * scheduler with a flat list of them.
115 	 */
116 	i = 0;
117 	do {
118 		snprintf(name, sizeof(name), "cluster%d", i);
119 		c = of_get_child_by_name(cluster, name);
120 		if (c) {
121 			leaf = false;
122 			ret = parse_cluster(c, depth + 1);
123 			of_node_put(c);
124 			if (ret != 0)
125 				return ret;
126 		}
127 		i++;
128 	} while (c);
129 
130 	/* Now check for cores */
131 	i = 0;
132 	do {
133 		snprintf(name, sizeof(name), "core%d", i);
134 		c = of_get_child_by_name(cluster, name);
135 		if (c) {
136 			has_cores = true;
137 
138 			if (depth == 0) {
139 				pr_err("%pOF: cpu-map children should be clusters\n",
140 				       c);
141 				of_node_put(c);
142 				return -EINVAL;
143 			}
144 
145 			if (leaf) {
146 				ret = parse_core(c, package_id, core_id++);
147 			} else {
148 				pr_err("%pOF: Non-leaf cluster with core %s\n",
149 				       cluster, name);
150 				ret = -EINVAL;
151 			}
152 
153 			of_node_put(c);
154 			if (ret != 0)
155 				return ret;
156 		}
157 		i++;
158 	} while (c);
159 
160 	if (leaf && !has_cores)
161 		pr_warn("%pOF: empty cluster\n", cluster);
162 
163 	if (leaf)
164 		package_id++;
165 
166 	return 0;
167 }
168 
169 static int __init parse_dt_topology(void)
170 {
171 	struct device_node *cn, *map;
172 	int ret = 0;
173 	int cpu;
174 
175 	cn = of_find_node_by_path("/cpus");
176 	if (!cn) {
177 		pr_err("No CPU information found in DT\n");
178 		return 0;
179 	}
180 
181 	/*
182 	 * When topology is provided cpu-map is essentially a root
183 	 * cluster with restricted subnodes.
184 	 */
185 	map = of_get_child_by_name(cn, "cpu-map");
186 	if (!map)
187 		goto out;
188 
189 	ret = parse_cluster(map, 0);
190 	if (ret != 0)
191 		goto out_map;
192 
193 	topology_normalize_cpu_scale();
194 
195 	/*
196 	 * Check that all cores are in the topology; the SMP code will
197 	 * only mark cores described in the DT as possible.
198 	 */
199 	for_each_possible_cpu(cpu)
200 		if (cpu_topology[cpu].package_id == -1)
201 			ret = -EINVAL;
202 
203 out_map:
204 	of_node_put(map);
205 out:
206 	of_node_put(cn);
207 	return ret;
208 }
209 
210 /*
211  * cpu topology table
212  */
213 struct cpu_topology cpu_topology[NR_CPUS];
214 EXPORT_SYMBOL_GPL(cpu_topology);
215 
216 const struct cpumask *cpu_coregroup_mask(int cpu)
217 {
218 	const cpumask_t *core_mask = &cpu_topology[cpu].core_sibling;
219 
220 	if (cpu_topology[cpu].llc_id != -1) {
221 		if (cpumask_subset(&cpu_topology[cpu].llc_siblings, core_mask))
222 			core_mask = &cpu_topology[cpu].llc_siblings;
223 	}
224 
225 	return core_mask;
226 }
227 
228 static void update_siblings_masks(unsigned int cpuid)
229 {
230 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
231 	int cpu;
232 
233 	/* update core and thread sibling masks */
234 	for_each_possible_cpu(cpu) {
235 		cpu_topo = &cpu_topology[cpu];
236 
237 		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
238 			cpumask_set_cpu(cpu, &cpuid_topo->llc_siblings);
239 			cpumask_set_cpu(cpuid, &cpu_topo->llc_siblings);
240 		}
241 
242 		if (cpuid_topo->package_id != cpu_topo->package_id)
243 			continue;
244 
245 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
246 		if (cpu != cpuid)
247 			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
248 
249 		if (cpuid_topo->core_id != cpu_topo->core_id)
250 			continue;
251 
252 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
253 		if (cpu != cpuid)
254 			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
255 	}
256 }
257 
258 void store_cpu_topology(unsigned int cpuid)
259 {
260 	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
261 	u64 mpidr;
262 
263 	if (cpuid_topo->package_id != -1)
264 		goto topology_populated;
265 
266 	mpidr = read_cpuid_mpidr();
267 
268 	/* Uniprocessor systems can rely on default topology values */
269 	if (mpidr & MPIDR_UP_BITMASK)
270 		return;
271 
272 	/* Create cpu topology mapping based on MPIDR. */
273 	if (mpidr & MPIDR_MT_BITMASK) {
274 		/* Multiprocessor system : Multi-threads per core */
275 		cpuid_topo->thread_id  = MPIDR_AFFINITY_LEVEL(mpidr, 0);
276 		cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 1);
277 		cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
278 					 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
279 	} else {
280 		/* Multiprocessor system : Single-thread per core */
281 		cpuid_topo->thread_id  = -1;
282 		cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 0);
283 		cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
284 					 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
285 					 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
286 	}
287 
288 	pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
289 		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
290 		 cpuid_topo->thread_id, mpidr);
291 
292 topology_populated:
293 	update_siblings_masks(cpuid);
294 }
295 
296 static void __init reset_cpu_topology(void)
297 {
298 	unsigned int cpu;
299 
300 	for_each_possible_cpu(cpu) {
301 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
302 
303 		cpu_topo->thread_id = -1;
304 		cpu_topo->core_id = 0;
305 		cpu_topo->package_id = -1;
306 
307 		cpu_topo->llc_id = -1;
308 		cpumask_clear(&cpu_topo->llc_siblings);
309 		cpumask_set_cpu(cpu, &cpu_topo->llc_siblings);
310 
311 		cpumask_clear(&cpu_topo->core_sibling);
312 		cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
313 		cpumask_clear(&cpu_topo->thread_sibling);
314 		cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
315 	}
316 }
317 
318 #ifdef CONFIG_ACPI
319 /*
320  * Propagate the topology information of the processor_topology_node tree to the
321  * cpu_topology array.
322  */
323 static int __init parse_acpi_topology(void)
324 {
325 	bool is_threaded;
326 	int cpu, topology_id;
327 
328 	is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
329 
330 	for_each_possible_cpu(cpu) {
331 		int i, cache_id;
332 
333 		topology_id = find_acpi_cpu_topology(cpu, 0);
334 		if (topology_id < 0)
335 			return topology_id;
336 
337 		if (is_threaded) {
338 			cpu_topology[cpu].thread_id = topology_id;
339 			topology_id = find_acpi_cpu_topology(cpu, 1);
340 			cpu_topology[cpu].core_id   = topology_id;
341 		} else {
342 			cpu_topology[cpu].thread_id  = -1;
343 			cpu_topology[cpu].core_id    = topology_id;
344 		}
345 		topology_id = find_acpi_cpu_topology_package(cpu);
346 		cpu_topology[cpu].package_id = topology_id;
347 
348 		i = acpi_find_last_cache_level(cpu);
349 
350 		if (i > 0) {
351 			/*
352 			 * this is the only part of cpu_topology that has
353 			 * a direct relationship with the cache topology
354 			 */
355 			cache_id = find_acpi_cpu_cache_topology(cpu, i);
356 			if (cache_id > 0)
357 				cpu_topology[cpu].llc_id = cache_id;
358 		}
359 	}
360 
361 	return 0;
362 }
363 
364 #else
365 static inline int __init parse_acpi_topology(void)
366 {
367 	return -EINVAL;
368 }
369 #endif
370 
371 void __init init_cpu_topology(void)
372 {
373 	reset_cpu_topology();
374 
375 	/*
376 	 * Discard anything that was parsed if we hit an error so we
377 	 * don't use partial information.
378 	 */
379 	if (!acpi_disabled && parse_acpi_topology())
380 		reset_cpu_topology();
381 	else if (of_have_populated_dt() && parse_dt_topology())
382 		reset_cpu_topology();
383 }
384