xref: /openbmc/linux/arch/arm64/kernel/topology.c (revision efe4a1ac)
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/cpu.h>
16 #include <linux/cpumask.h>
17 #include <linux/init.h>
18 #include <linux/percpu.h>
19 #include <linux/node.h>
20 #include <linux/nodemask.h>
21 #include <linux/of.h>
22 #include <linux/sched.h>
23 #include <linux/sched/topology.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/cpufreq.h>
27 
28 #include <asm/cpu.h>
29 #include <asm/cputype.h>
30 #include <asm/topology.h>
31 
32 static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
33 static DEFINE_MUTEX(cpu_scale_mutex);
34 
35 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
36 {
37 	return per_cpu(cpu_scale, cpu);
38 }
39 
40 static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
41 {
42 	per_cpu(cpu_scale, cpu) = capacity;
43 }
44 
45 static ssize_t cpu_capacity_show(struct device *dev,
46 				 struct device_attribute *attr,
47 				 char *buf)
48 {
49 	struct cpu *cpu = container_of(dev, struct cpu, dev);
50 
51 	return sprintf(buf, "%lu\n",
52 			arch_scale_cpu_capacity(NULL, cpu->dev.id));
53 }
54 
55 static ssize_t cpu_capacity_store(struct device *dev,
56 				  struct device_attribute *attr,
57 				  const char *buf,
58 				  size_t count)
59 {
60 	struct cpu *cpu = container_of(dev, struct cpu, dev);
61 	int this_cpu = cpu->dev.id, i;
62 	unsigned long new_capacity;
63 	ssize_t ret;
64 
65 	if (count) {
66 		ret = kstrtoul(buf, 0, &new_capacity);
67 		if (ret)
68 			return ret;
69 		if (new_capacity > SCHED_CAPACITY_SCALE)
70 			return -EINVAL;
71 
72 		mutex_lock(&cpu_scale_mutex);
73 		for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
74 			set_capacity_scale(i, new_capacity);
75 		mutex_unlock(&cpu_scale_mutex);
76 	}
77 
78 	return count;
79 }
80 
81 static DEVICE_ATTR_RW(cpu_capacity);
82 
83 static int register_cpu_capacity_sysctl(void)
84 {
85 	int i;
86 	struct device *cpu;
87 
88 	for_each_possible_cpu(i) {
89 		cpu = get_cpu_device(i);
90 		if (!cpu) {
91 			pr_err("%s: too early to get CPU%d device!\n",
92 			       __func__, i);
93 			continue;
94 		}
95 		device_create_file(cpu, &dev_attr_cpu_capacity);
96 	}
97 
98 	return 0;
99 }
100 subsys_initcall(register_cpu_capacity_sysctl);
101 
102 static u32 capacity_scale;
103 static u32 *raw_capacity;
104 static bool cap_parsing_failed;
105 
106 static void __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
107 {
108 	int ret;
109 	u32 cpu_capacity;
110 
111 	if (cap_parsing_failed)
112 		return;
113 
114 	ret = of_property_read_u32(cpu_node,
115 				   "capacity-dmips-mhz",
116 				   &cpu_capacity);
117 	if (!ret) {
118 		if (!raw_capacity) {
119 			raw_capacity = kcalloc(num_possible_cpus(),
120 					       sizeof(*raw_capacity),
121 					       GFP_KERNEL);
122 			if (!raw_capacity) {
123 				pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
124 				cap_parsing_failed = true;
125 				return;
126 			}
127 		}
128 		capacity_scale = max(cpu_capacity, capacity_scale);
129 		raw_capacity[cpu] = cpu_capacity;
130 		pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
131 			cpu_node->full_name, raw_capacity[cpu]);
132 	} else {
133 		if (raw_capacity) {
134 			pr_err("cpu_capacity: missing %s raw capacity\n",
135 				cpu_node->full_name);
136 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
137 		}
138 		cap_parsing_failed = true;
139 		kfree(raw_capacity);
140 	}
141 }
142 
143 static void normalize_cpu_capacity(void)
144 {
145 	u64 capacity;
146 	int cpu;
147 
148 	if (!raw_capacity || cap_parsing_failed)
149 		return;
150 
151 	pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
152 	mutex_lock(&cpu_scale_mutex);
153 	for_each_possible_cpu(cpu) {
154 		pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
155 			 cpu, raw_capacity[cpu]);
156 		capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
157 			/ capacity_scale;
158 		set_capacity_scale(cpu, capacity);
159 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
160 			cpu, arch_scale_cpu_capacity(NULL, cpu));
161 	}
162 	mutex_unlock(&cpu_scale_mutex);
163 }
164 
165 #ifdef CONFIG_CPU_FREQ
166 static cpumask_var_t cpus_to_visit;
167 static bool cap_parsing_done;
168 static void parsing_done_workfn(struct work_struct *work);
169 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
170 
171 static int
172 init_cpu_capacity_callback(struct notifier_block *nb,
173 			   unsigned long val,
174 			   void *data)
175 {
176 	struct cpufreq_policy *policy = data;
177 	int cpu;
178 
179 	if (cap_parsing_failed || cap_parsing_done)
180 		return 0;
181 
182 	switch (val) {
183 	case CPUFREQ_NOTIFY:
184 		pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
185 				cpumask_pr_args(policy->related_cpus),
186 				cpumask_pr_args(cpus_to_visit));
187 		cpumask_andnot(cpus_to_visit,
188 			       cpus_to_visit,
189 			       policy->related_cpus);
190 		for_each_cpu(cpu, policy->related_cpus) {
191 			raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
192 					    policy->cpuinfo.max_freq / 1000UL;
193 			capacity_scale = max(raw_capacity[cpu], capacity_scale);
194 		}
195 		if (cpumask_empty(cpus_to_visit)) {
196 			normalize_cpu_capacity();
197 			kfree(raw_capacity);
198 			pr_debug("cpu_capacity: parsing done\n");
199 			cap_parsing_done = true;
200 			schedule_work(&parsing_done_work);
201 		}
202 	}
203 	return 0;
204 }
205 
206 static struct notifier_block init_cpu_capacity_notifier = {
207 	.notifier_call = init_cpu_capacity_callback,
208 };
209 
210 static int __init register_cpufreq_notifier(void)
211 {
212 	/*
213 	 * on ACPI-based systems we need to use the default cpu capacity
214 	 * until we have the necessary code to parse the cpu capacity, so
215 	 * skip registering cpufreq notifier.
216 	 */
217 	if (!acpi_disabled || cap_parsing_failed)
218 		return -EINVAL;
219 
220 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
221 		pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
222 		return -ENOMEM;
223 	}
224 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
225 
226 	return cpufreq_register_notifier(&init_cpu_capacity_notifier,
227 					 CPUFREQ_POLICY_NOTIFIER);
228 }
229 core_initcall(register_cpufreq_notifier);
230 
231 static void parsing_done_workfn(struct work_struct *work)
232 {
233 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
234 					 CPUFREQ_POLICY_NOTIFIER);
235 }
236 
237 #else
238 static int __init free_raw_capacity(void)
239 {
240 	kfree(raw_capacity);
241 
242 	return 0;
243 }
244 core_initcall(free_raw_capacity);
245 #endif
246 
247 static int __init get_cpu_for_node(struct device_node *node)
248 {
249 	struct device_node *cpu_node;
250 	int cpu;
251 
252 	cpu_node = of_parse_phandle(node, "cpu", 0);
253 	if (!cpu_node)
254 		return -1;
255 
256 	for_each_possible_cpu(cpu) {
257 		if (of_get_cpu_node(cpu, NULL) == cpu_node) {
258 			parse_cpu_capacity(cpu_node, cpu);
259 			of_node_put(cpu_node);
260 			return cpu;
261 		}
262 	}
263 
264 	pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
265 
266 	of_node_put(cpu_node);
267 	return -1;
268 }
269 
270 static int __init parse_core(struct device_node *core, int cluster_id,
271 			     int core_id)
272 {
273 	char name[10];
274 	bool leaf = true;
275 	int i = 0;
276 	int cpu;
277 	struct device_node *t;
278 
279 	do {
280 		snprintf(name, sizeof(name), "thread%d", i);
281 		t = of_get_child_by_name(core, name);
282 		if (t) {
283 			leaf = false;
284 			cpu = get_cpu_for_node(t);
285 			if (cpu >= 0) {
286 				cpu_topology[cpu].cluster_id = cluster_id;
287 				cpu_topology[cpu].core_id = core_id;
288 				cpu_topology[cpu].thread_id = i;
289 			} else {
290 				pr_err("%s: Can't get CPU for thread\n",
291 				       t->full_name);
292 				of_node_put(t);
293 				return -EINVAL;
294 			}
295 			of_node_put(t);
296 		}
297 		i++;
298 	} while (t);
299 
300 	cpu = get_cpu_for_node(core);
301 	if (cpu >= 0) {
302 		if (!leaf) {
303 			pr_err("%s: Core has both threads and CPU\n",
304 			       core->full_name);
305 			return -EINVAL;
306 		}
307 
308 		cpu_topology[cpu].cluster_id = cluster_id;
309 		cpu_topology[cpu].core_id = core_id;
310 	} else if (leaf) {
311 		pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
312 		return -EINVAL;
313 	}
314 
315 	return 0;
316 }
317 
318 static int __init parse_cluster(struct device_node *cluster, int depth)
319 {
320 	char name[10];
321 	bool leaf = true;
322 	bool has_cores = false;
323 	struct device_node *c;
324 	static int cluster_id __initdata;
325 	int core_id = 0;
326 	int i, ret;
327 
328 	/*
329 	 * First check for child clusters; we currently ignore any
330 	 * information about the nesting of clusters and present the
331 	 * scheduler with a flat list of them.
332 	 */
333 	i = 0;
334 	do {
335 		snprintf(name, sizeof(name), "cluster%d", i);
336 		c = of_get_child_by_name(cluster, name);
337 		if (c) {
338 			leaf = false;
339 			ret = parse_cluster(c, depth + 1);
340 			of_node_put(c);
341 			if (ret != 0)
342 				return ret;
343 		}
344 		i++;
345 	} while (c);
346 
347 	/* Now check for cores */
348 	i = 0;
349 	do {
350 		snprintf(name, sizeof(name), "core%d", i);
351 		c = of_get_child_by_name(cluster, name);
352 		if (c) {
353 			has_cores = true;
354 
355 			if (depth == 0) {
356 				pr_err("%s: cpu-map children should be clusters\n",
357 				       c->full_name);
358 				of_node_put(c);
359 				return -EINVAL;
360 			}
361 
362 			if (leaf) {
363 				ret = parse_core(c, cluster_id, core_id++);
364 			} else {
365 				pr_err("%s: Non-leaf cluster with core %s\n",
366 				       cluster->full_name, name);
367 				ret = -EINVAL;
368 			}
369 
370 			of_node_put(c);
371 			if (ret != 0)
372 				return ret;
373 		}
374 		i++;
375 	} while (c);
376 
377 	if (leaf && !has_cores)
378 		pr_warn("%s: empty cluster\n", cluster->full_name);
379 
380 	if (leaf)
381 		cluster_id++;
382 
383 	return 0;
384 }
385 
386 static int __init parse_dt_topology(void)
387 {
388 	struct device_node *cn, *map;
389 	int ret = 0;
390 	int cpu;
391 
392 	cn = of_find_node_by_path("/cpus");
393 	if (!cn) {
394 		pr_err("No CPU information found in DT\n");
395 		return 0;
396 	}
397 
398 	/*
399 	 * When topology is provided cpu-map is essentially a root
400 	 * cluster with restricted subnodes.
401 	 */
402 	map = of_get_child_by_name(cn, "cpu-map");
403 	if (!map) {
404 		cap_parsing_failed = true;
405 		goto out;
406 	}
407 
408 	ret = parse_cluster(map, 0);
409 	if (ret != 0)
410 		goto out_map;
411 
412 	normalize_cpu_capacity();
413 
414 	/*
415 	 * Check that all cores are in the topology; the SMP code will
416 	 * only mark cores described in the DT as possible.
417 	 */
418 	for_each_possible_cpu(cpu)
419 		if (cpu_topology[cpu].cluster_id == -1)
420 			ret = -EINVAL;
421 
422 out_map:
423 	of_node_put(map);
424 out:
425 	of_node_put(cn);
426 	return ret;
427 }
428 
429 /*
430  * cpu topology table
431  */
432 struct cpu_topology cpu_topology[NR_CPUS];
433 EXPORT_SYMBOL_GPL(cpu_topology);
434 
435 const struct cpumask *cpu_coregroup_mask(int cpu)
436 {
437 	return &cpu_topology[cpu].core_sibling;
438 }
439 
440 static void update_siblings_masks(unsigned int cpuid)
441 {
442 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
443 	int cpu;
444 
445 	/* update core and thread sibling masks */
446 	for_each_possible_cpu(cpu) {
447 		cpu_topo = &cpu_topology[cpu];
448 
449 		if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
450 			continue;
451 
452 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
453 		if (cpu != cpuid)
454 			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
455 
456 		if (cpuid_topo->core_id != cpu_topo->core_id)
457 			continue;
458 
459 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
460 		if (cpu != cpuid)
461 			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
462 	}
463 }
464 
465 void store_cpu_topology(unsigned int cpuid)
466 {
467 	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
468 	u64 mpidr;
469 
470 	if (cpuid_topo->cluster_id != -1)
471 		goto topology_populated;
472 
473 	mpidr = read_cpuid_mpidr();
474 
475 	/* Uniprocessor systems can rely on default topology values */
476 	if (mpidr & MPIDR_UP_BITMASK)
477 		return;
478 
479 	/* Create cpu topology mapping based on MPIDR. */
480 	if (mpidr & MPIDR_MT_BITMASK) {
481 		/* Multiprocessor system : Multi-threads per core */
482 		cpuid_topo->thread_id  = MPIDR_AFFINITY_LEVEL(mpidr, 0);
483 		cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 1);
484 		cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
485 					 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
486 	} else {
487 		/* Multiprocessor system : Single-thread per core */
488 		cpuid_topo->thread_id  = -1;
489 		cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 0);
490 		cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
491 					 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
492 					 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
493 	}
494 
495 	pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
496 		 cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id,
497 		 cpuid_topo->thread_id, mpidr);
498 
499 topology_populated:
500 	update_siblings_masks(cpuid);
501 }
502 
503 static void __init reset_cpu_topology(void)
504 {
505 	unsigned int cpu;
506 
507 	for_each_possible_cpu(cpu) {
508 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
509 
510 		cpu_topo->thread_id = -1;
511 		cpu_topo->core_id = 0;
512 		cpu_topo->cluster_id = -1;
513 
514 		cpumask_clear(&cpu_topo->core_sibling);
515 		cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
516 		cpumask_clear(&cpu_topo->thread_sibling);
517 		cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
518 	}
519 }
520 
521 void __init init_cpu_topology(void)
522 {
523 	reset_cpu_topology();
524 
525 	/*
526 	 * Discard anything that was parsed if we hit an error so we
527 	 * don't use partial information.
528 	 */
529 	if (of_have_populated_dt() && parse_dt_topology())
530 		reset_cpu_topology();
531 }
532