xref: /openbmc/linux/arch/arm64/kernel/topology.c (revision d2168146)
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/init.h>
17 #include <linux/percpu.h>
18 #include <linux/node.h>
19 #include <linux/nodemask.h>
20 #include <linux/of.h>
21 #include <linux/sched.h>
22 
23 #include <asm/topology.h>
24 
25 static int __init get_cpu_for_node(struct device_node *node)
26 {
27 	struct device_node *cpu_node;
28 	int cpu;
29 
30 	cpu_node = of_parse_phandle(node, "cpu", 0);
31 	if (!cpu_node)
32 		return -1;
33 
34 	for_each_possible_cpu(cpu) {
35 		if (of_get_cpu_node(cpu, NULL) == cpu_node) {
36 			of_node_put(cpu_node);
37 			return cpu;
38 		}
39 	}
40 
41 	pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
42 
43 	of_node_put(cpu_node);
44 	return -1;
45 }
46 
47 static int __init parse_core(struct device_node *core, int cluster_id,
48 			     int core_id)
49 {
50 	char name[10];
51 	bool leaf = true;
52 	int i = 0;
53 	int cpu;
54 	struct device_node *t;
55 
56 	do {
57 		snprintf(name, sizeof(name), "thread%d", i);
58 		t = of_get_child_by_name(core, name);
59 		if (t) {
60 			leaf = false;
61 			cpu = get_cpu_for_node(t);
62 			if (cpu >= 0) {
63 				cpu_topology[cpu].cluster_id = cluster_id;
64 				cpu_topology[cpu].core_id = core_id;
65 				cpu_topology[cpu].thread_id = i;
66 			} else {
67 				pr_err("%s: Can't get CPU for thread\n",
68 				       t->full_name);
69 				of_node_put(t);
70 				return -EINVAL;
71 			}
72 			of_node_put(t);
73 		}
74 		i++;
75 	} while (t);
76 
77 	cpu = get_cpu_for_node(core);
78 	if (cpu >= 0) {
79 		if (!leaf) {
80 			pr_err("%s: Core has both threads and CPU\n",
81 			       core->full_name);
82 			return -EINVAL;
83 		}
84 
85 		cpu_topology[cpu].cluster_id = cluster_id;
86 		cpu_topology[cpu].core_id = core_id;
87 	} else if (leaf) {
88 		pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
89 		return -EINVAL;
90 	}
91 
92 	return 0;
93 }
94 
95 static int __init parse_cluster(struct device_node *cluster, int depth)
96 {
97 	char name[10];
98 	bool leaf = true;
99 	bool has_cores = false;
100 	struct device_node *c;
101 	static int cluster_id __initdata;
102 	int core_id = 0;
103 	int i, ret;
104 
105 	/*
106 	 * First check for child clusters; we currently ignore any
107 	 * information about the nesting of clusters and present the
108 	 * scheduler with a flat list of them.
109 	 */
110 	i = 0;
111 	do {
112 		snprintf(name, sizeof(name), "cluster%d", i);
113 		c = of_get_child_by_name(cluster, name);
114 		if (c) {
115 			leaf = false;
116 			ret = parse_cluster(c, depth + 1);
117 			of_node_put(c);
118 			if (ret != 0)
119 				return ret;
120 		}
121 		i++;
122 	} while (c);
123 
124 	/* Now check for cores */
125 	i = 0;
126 	do {
127 		snprintf(name, sizeof(name), "core%d", i);
128 		c = of_get_child_by_name(cluster, name);
129 		if (c) {
130 			has_cores = true;
131 
132 			if (depth == 0) {
133 				pr_err("%s: cpu-map children should be clusters\n",
134 				       c->full_name);
135 				of_node_put(c);
136 				return -EINVAL;
137 			}
138 
139 			if (leaf) {
140 				ret = parse_core(c, cluster_id, core_id++);
141 			} else {
142 				pr_err("%s: Non-leaf cluster with core %s\n",
143 				       cluster->full_name, name);
144 				ret = -EINVAL;
145 			}
146 
147 			of_node_put(c);
148 			if (ret != 0)
149 				return ret;
150 		}
151 		i++;
152 	} while (c);
153 
154 	if (leaf && !has_cores)
155 		pr_warn("%s: empty cluster\n", cluster->full_name);
156 
157 	if (leaf)
158 		cluster_id++;
159 
160 	return 0;
161 }
162 
163 static int __init parse_dt_topology(void)
164 {
165 	struct device_node *cn, *map;
166 	int ret = 0;
167 	int cpu;
168 
169 	cn = of_find_node_by_path("/cpus");
170 	if (!cn) {
171 		pr_err("No CPU information found in DT\n");
172 		return 0;
173 	}
174 
175 	/*
176 	 * When topology is provided cpu-map is essentially a root
177 	 * cluster with restricted subnodes.
178 	 */
179 	map = of_get_child_by_name(cn, "cpu-map");
180 	if (!map)
181 		goto out;
182 
183 	ret = parse_cluster(map, 0);
184 	if (ret != 0)
185 		goto out_map;
186 
187 	/*
188 	 * Check that all cores are in the topology; the SMP code will
189 	 * only mark cores described in the DT as possible.
190 	 */
191 	for_each_possible_cpu(cpu) {
192 		if (cpu_topology[cpu].cluster_id == -1) {
193 			pr_err("CPU%d: No topology information specified\n",
194 			       cpu);
195 			ret = -EINVAL;
196 		}
197 	}
198 
199 out_map:
200 	of_node_put(map);
201 out:
202 	of_node_put(cn);
203 	return ret;
204 }
205 
206 /*
207  * cpu topology table
208  */
209 struct cpu_topology cpu_topology[NR_CPUS];
210 EXPORT_SYMBOL_GPL(cpu_topology);
211 
212 const struct cpumask *cpu_coregroup_mask(int cpu)
213 {
214 	return &cpu_topology[cpu].core_sibling;
215 }
216 
217 static void update_siblings_masks(unsigned int cpuid)
218 {
219 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
220 	int cpu;
221 
222 	if (cpuid_topo->cluster_id == -1) {
223 		/*
224 		 * DT does not contain topology information for this cpu.
225 		 */
226 		pr_debug("CPU%u: No topology information configured\n", cpuid);
227 		return;
228 	}
229 
230 	/* update core and thread sibling masks */
231 	for_each_possible_cpu(cpu) {
232 		cpu_topo = &cpu_topology[cpu];
233 
234 		if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
235 			continue;
236 
237 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
238 		if (cpu != cpuid)
239 			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
240 
241 		if (cpuid_topo->core_id != cpu_topo->core_id)
242 			continue;
243 
244 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
245 		if (cpu != cpuid)
246 			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
247 	}
248 }
249 
250 void store_cpu_topology(unsigned int cpuid)
251 {
252 	update_siblings_masks(cpuid);
253 }
254 
255 static void __init reset_cpu_topology(void)
256 {
257 	unsigned int cpu;
258 
259 	for_each_possible_cpu(cpu) {
260 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
261 
262 		cpu_topo->thread_id = -1;
263 		cpu_topo->core_id = 0;
264 		cpu_topo->cluster_id = -1;
265 
266 		cpumask_clear(&cpu_topo->core_sibling);
267 		cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
268 		cpumask_clear(&cpu_topo->thread_sibling);
269 		cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
270 	}
271 }
272 
273 void __init init_cpu_topology(void)
274 {
275 	reset_cpu_topology();
276 
277 	/*
278 	 * Discard anything that was parsed if we hit an error so we
279 	 * don't use partial information.
280 	 */
281 	if (parse_dt_topology())
282 		reset_cpu_topology();
283 }
284