xref: /openbmc/linux/arch/arm64/kernel/topology.c (revision abcda807)
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpufreq.h>
18 #include <linux/init.h>
19 #include <linux/percpu.h>
20 
21 #include <asm/cpu.h>
22 #include <asm/cputype.h>
23 #include <asm/topology.h>
24 
25 void store_cpu_topology(unsigned int cpuid)
26 {
27 	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
28 	u64 mpidr;
29 
30 	if (cpuid_topo->package_id != -1)
31 		goto topology_populated;
32 
33 	mpidr = read_cpuid_mpidr();
34 
35 	/* Uniprocessor systems can rely on default topology values */
36 	if (mpidr & MPIDR_UP_BITMASK)
37 		return;
38 
39 	/*
40 	 * This would be the place to create cpu topology based on MPIDR.
41 	 *
42 	 * However, it cannot be trusted to depict the actual topology; some
43 	 * pieces of the architecture enforce an artificial cap on Aff0 values
44 	 * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an
45 	 * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up
46 	 * having absolutely no relationship to the actual underlying system
47 	 * topology, and cannot be reasonably used as core / package ID.
48 	 *
49 	 * If the MT bit is set, Aff0 *could* be used to define a thread ID, but
50 	 * we still wouldn't be able to obtain a sane core ID. This means we
51 	 * need to entirely ignore MPIDR for any topology deduction.
52 	 */
53 	cpuid_topo->thread_id  = -1;
54 	cpuid_topo->core_id    = cpuid;
55 	cpuid_topo->package_id = cpu_to_node(cpuid);
56 
57 	pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
58 		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
59 		 cpuid_topo->thread_id, mpidr);
60 
61 topology_populated:
62 	update_siblings_masks(cpuid);
63 }
64 
65 #ifdef CONFIG_ACPI
66 static bool __init acpi_cpu_is_threaded(int cpu)
67 {
68 	int is_threaded = acpi_pptt_cpu_is_thread(cpu);
69 
70 	/*
71 	 * if the PPTT doesn't have thread information, assume a homogeneous
72 	 * machine and return the current CPU's thread state.
73 	 */
74 	if (is_threaded < 0)
75 		is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
76 
77 	return !!is_threaded;
78 }
79 
80 /*
81  * Propagate the topology information of the processor_topology_node tree to the
82  * cpu_topology array.
83  */
84 int __init parse_acpi_topology(void)
85 {
86 	int cpu, topology_id;
87 
88 	if (acpi_disabled)
89 		return 0;
90 
91 	for_each_possible_cpu(cpu) {
92 		int i, cache_id;
93 
94 		topology_id = find_acpi_cpu_topology(cpu, 0);
95 		if (topology_id < 0)
96 			return topology_id;
97 
98 		if (acpi_cpu_is_threaded(cpu)) {
99 			cpu_topology[cpu].thread_id = topology_id;
100 			topology_id = find_acpi_cpu_topology(cpu, 1);
101 			cpu_topology[cpu].core_id   = topology_id;
102 		} else {
103 			cpu_topology[cpu].thread_id  = -1;
104 			cpu_topology[cpu].core_id    = topology_id;
105 		}
106 		topology_id = find_acpi_cpu_topology_package(cpu);
107 		cpu_topology[cpu].package_id = topology_id;
108 
109 		i = acpi_find_last_cache_level(cpu);
110 
111 		if (i > 0) {
112 			/*
113 			 * this is the only part of cpu_topology that has
114 			 * a direct relationship with the cache topology
115 			 */
116 			cache_id = find_acpi_cpu_cache_topology(cpu, i);
117 			if (cache_id > 0)
118 				cpu_topology[cpu].llc_id = cache_id;
119 		}
120 	}
121 
122 	return 0;
123 }
124 #endif
125 
126 #ifdef CONFIG_ARM64_AMU_EXTN
127 
128 #undef pr_fmt
129 #define pr_fmt(fmt) "AMU: " fmt
130 
131 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
132 static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
133 static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
134 static cpumask_var_t amu_fie_cpus;
135 
136 /* Initialize counter reference per-cpu variables for the current CPU */
137 void init_cpu_freq_invariance_counters(void)
138 {
139 	this_cpu_write(arch_core_cycles_prev,
140 		       read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0));
141 	this_cpu_write(arch_const_cycles_prev,
142 		       read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0));
143 }
144 
145 static int validate_cpu_freq_invariance_counters(int cpu)
146 {
147 	u64 max_freq_hz, ratio;
148 
149 	if (!cpu_has_amu_feat(cpu)) {
150 		pr_debug("CPU%d: counters are not supported.\n", cpu);
151 		return -EINVAL;
152 	}
153 
154 	if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
155 		     !per_cpu(arch_core_cycles_prev, cpu))) {
156 		pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
157 		return -EINVAL;
158 	}
159 
160 	/* Convert maximum frequency from KHz to Hz and validate */
161 	max_freq_hz = cpufreq_get_hw_max_freq(cpu) * 1000;
162 	if (unlikely(!max_freq_hz)) {
163 		pr_debug("CPU%d: invalid maximum frequency.\n", cpu);
164 		return -EINVAL;
165 	}
166 
167 	/*
168 	 * Pre-compute the fixed ratio between the frequency of the constant
169 	 * counter and the maximum frequency of the CPU.
170 	 *
171 	 *			      const_freq
172 	 * arch_max_freq_scale =   ---------------- * SCHED_CAPACITY_SCALE²
173 	 *			   cpuinfo_max_freq
174 	 *
175 	 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
176 	 * in order to ensure a good resolution for arch_max_freq_scale for
177 	 * very low arch timer frequencies (down to the KHz range which should
178 	 * be unlikely).
179 	 */
180 	ratio = (u64)arch_timer_get_rate() << (2 * SCHED_CAPACITY_SHIFT);
181 	ratio = div64_u64(ratio, max_freq_hz);
182 	if (!ratio) {
183 		WARN_ONCE(1, "System timer frequency too low.\n");
184 		return -EINVAL;
185 	}
186 
187 	per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
188 
189 	return 0;
190 }
191 
192 static inline bool
193 enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
196 
197 	if (!policy) {
198 		pr_debug("CPU%d: No cpufreq policy found.\n", cpu);
199 		return false;
200 	}
201 
202 	if (cpumask_subset(policy->related_cpus, valid_cpus))
203 		cpumask_or(amu_fie_cpus, policy->related_cpus,
204 			   amu_fie_cpus);
205 
206 	cpufreq_cpu_put(policy);
207 
208 	return true;
209 }
210 
211 static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
212 #define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)
213 
214 static int __init init_amu_fie(void)
215 {
216 	cpumask_var_t valid_cpus;
217 	bool have_policy = false;
218 	int ret = 0;
219 	int cpu;
220 
221 	if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL))
222 		return -ENOMEM;
223 
224 	if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
225 		ret = -ENOMEM;
226 		goto free_valid_mask;
227 	}
228 
229 	for_each_present_cpu(cpu) {
230 		if (validate_cpu_freq_invariance_counters(cpu))
231 			continue;
232 		cpumask_set_cpu(cpu, valid_cpus);
233 		have_policy |= enable_policy_freq_counters(cpu, valid_cpus);
234 	}
235 
236 	/*
237 	 * If we are not restricted by cpufreq policies, we only enable
238 	 * the use of the AMU feature for FIE if all CPUs support AMU.
239 	 * Otherwise, enable_policy_freq_counters has already enabled
240 	 * policy cpus.
241 	 */
242 	if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask))
243 		cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus);
244 
245 	if (!cpumask_empty(amu_fie_cpus)) {
246 		pr_info("CPUs[%*pbl]: counters will be used for FIE.",
247 			cpumask_pr_args(amu_fie_cpus));
248 		static_branch_enable(&amu_fie_key);
249 	}
250 
251 	/*
252 	 * If the system is not fully invariant after AMU init, disable
253 	 * partial use of counters for frequency invariance.
254 	 */
255 	if (!topology_scale_freq_invariant())
256 		static_branch_disable(&amu_fie_key);
257 
258 free_valid_mask:
259 	free_cpumask_var(valid_cpus);
260 
261 	return ret;
262 }
263 late_initcall_sync(init_amu_fie);
264 
265 bool arch_freq_counters_available(const struct cpumask *cpus)
266 {
267 	return amu_freq_invariant() &&
268 	       cpumask_subset(cpus, amu_fie_cpus);
269 }
270 
271 void topology_scale_freq_tick(void)
272 {
273 	u64 prev_core_cnt, prev_const_cnt;
274 	u64 core_cnt, const_cnt, scale;
275 	int cpu = smp_processor_id();
276 
277 	if (!amu_freq_invariant())
278 		return;
279 
280 	if (!cpumask_test_cpu(cpu, amu_fie_cpus))
281 		return;
282 
283 	const_cnt = read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0);
284 	core_cnt = read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0);
285 	prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
286 	prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
287 
288 	if (unlikely(core_cnt <= prev_core_cnt ||
289 		     const_cnt <= prev_const_cnt))
290 		goto store_and_exit;
291 
292 	/*
293 	 *	    /\core    arch_max_freq_scale
294 	 * scale =  ------- * --------------------
295 	 *	    /\const   SCHED_CAPACITY_SCALE
296 	 *
297 	 * See validate_cpu_freq_invariance_counters() for details on
298 	 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
299 	 */
300 	scale = core_cnt - prev_core_cnt;
301 	scale *= this_cpu_read(arch_max_freq_scale);
302 	scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
303 			  const_cnt - prev_const_cnt);
304 
305 	scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
306 	this_cpu_write(freq_scale, (unsigned long)scale);
307 
308 store_and_exit:
309 	this_cpu_write(arch_core_cycles_prev, core_cnt);
310 	this_cpu_write(arch_const_cycles_prev, const_cnt);
311 }
312 #endif /* CONFIG_ARM64_AMU_EXTN */
313