xref: /openbmc/linux/arch/arm64/kernel/topology.c (revision 2154aca21408752eaa3eeaf2ba6e942724ff2a4d)
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpufreq.h>
18 #include <linux/init.h>
19 #include <linux/percpu.h>
20 
21 #include <asm/cpu.h>
22 #include <asm/cputype.h>
23 #include <asm/topology.h>
24 
25 void store_cpu_topology(unsigned int cpuid)
26 {
27 	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
28 	u64 mpidr;
29 
30 	if (cpuid_topo->package_id != -1)
31 		goto topology_populated;
32 
33 	mpidr = read_cpuid_mpidr();
34 
35 	/* Uniprocessor systems can rely on default topology values */
36 	if (mpidr & MPIDR_UP_BITMASK)
37 		return;
38 
39 	/*
40 	 * This would be the place to create cpu topology based on MPIDR.
41 	 *
42 	 * However, it cannot be trusted to depict the actual topology; some
43 	 * pieces of the architecture enforce an artificial cap on Aff0 values
44 	 * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an
45 	 * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up
46 	 * having absolutely no relationship to the actual underlying system
47 	 * topology, and cannot be reasonably used as core / package ID.
48 	 *
49 	 * If the MT bit is set, Aff0 *could* be used to define a thread ID, but
50 	 * we still wouldn't be able to obtain a sane core ID. This means we
51 	 * need to entirely ignore MPIDR for any topology deduction.
52 	 */
53 	cpuid_topo->thread_id  = -1;
54 	cpuid_topo->core_id    = cpuid;
55 	cpuid_topo->package_id = cpu_to_node(cpuid);
56 
57 	pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
58 		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
59 		 cpuid_topo->thread_id, mpidr);
60 
61 topology_populated:
62 	update_siblings_masks(cpuid);
63 }
64 
65 #ifdef CONFIG_ACPI
66 static bool __init acpi_cpu_is_threaded(int cpu)
67 {
68 	int is_threaded = acpi_pptt_cpu_is_thread(cpu);
69 
70 	/*
71 	 * if the PPTT doesn't have thread information, assume a homogeneous
72 	 * machine and return the current CPU's thread state.
73 	 */
74 	if (is_threaded < 0)
75 		is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
76 
77 	return !!is_threaded;
78 }
79 
80 /*
81  * Propagate the topology information of the processor_topology_node tree to the
82  * cpu_topology array.
83  */
84 int __init parse_acpi_topology(void)
85 {
86 	int cpu, topology_id;
87 
88 	if (acpi_disabled)
89 		return 0;
90 
91 	for_each_possible_cpu(cpu) {
92 		topology_id = find_acpi_cpu_topology(cpu, 0);
93 		if (topology_id < 0)
94 			return topology_id;
95 
96 		if (acpi_cpu_is_threaded(cpu)) {
97 			cpu_topology[cpu].thread_id = topology_id;
98 			topology_id = find_acpi_cpu_topology(cpu, 1);
99 			cpu_topology[cpu].core_id   = topology_id;
100 		} else {
101 			cpu_topology[cpu].thread_id  = -1;
102 			cpu_topology[cpu].core_id    = topology_id;
103 		}
104 		topology_id = find_acpi_cpu_topology_cluster(cpu);
105 		cpu_topology[cpu].cluster_id = topology_id;
106 		topology_id = find_acpi_cpu_topology_package(cpu);
107 		cpu_topology[cpu].package_id = topology_id;
108 	}
109 
110 	return 0;
111 }
112 #endif
113 
114 #ifdef CONFIG_ARM64_AMU_EXTN
115 #define read_corecnt()	read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0)
116 #define read_constcnt()	read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0)
117 #else
118 #define read_corecnt()	(0UL)
119 #define read_constcnt()	(0UL)
120 #endif
121 
122 #undef pr_fmt
123 #define pr_fmt(fmt) "AMU: " fmt
124 
125 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
126 static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
127 static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
128 static cpumask_var_t amu_fie_cpus;
129 
130 void update_freq_counters_refs(void)
131 {
132 	this_cpu_write(arch_core_cycles_prev, read_corecnt());
133 	this_cpu_write(arch_const_cycles_prev, read_constcnt());
134 }
135 
136 static inline bool freq_counters_valid(int cpu)
137 {
138 	if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
139 		return false;
140 
141 	if (!cpu_has_amu_feat(cpu)) {
142 		pr_debug("CPU%d: counters are not supported.\n", cpu);
143 		return false;
144 	}
145 
146 	if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
147 		     !per_cpu(arch_core_cycles_prev, cpu))) {
148 		pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
149 		return false;
150 	}
151 
152 	return true;
153 }
154 
155 static int freq_inv_set_max_ratio(int cpu, u64 max_rate, u64 ref_rate)
156 {
157 	u64 ratio;
158 
159 	if (unlikely(!max_rate || !ref_rate)) {
160 		pr_debug("CPU%d: invalid maximum or reference frequency.\n",
161 			 cpu);
162 		return -EINVAL;
163 	}
164 
165 	/*
166 	 * Pre-compute the fixed ratio between the frequency of the constant
167 	 * reference counter and the maximum frequency of the CPU.
168 	 *
169 	 *			    ref_rate
170 	 * arch_max_freq_scale =   ---------- * SCHED_CAPACITY_SCALE²
171 	 *			    max_rate
172 	 *
173 	 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
174 	 * in order to ensure a good resolution for arch_max_freq_scale for
175 	 * very low reference frequencies (down to the KHz range which should
176 	 * be unlikely).
177 	 */
178 	ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT);
179 	ratio = div64_u64(ratio, max_rate);
180 	if (!ratio) {
181 		WARN_ONCE(1, "Reference frequency too low.\n");
182 		return -EINVAL;
183 	}
184 
185 	per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
186 
187 	return 0;
188 }
189 
190 static void amu_scale_freq_tick(void)
191 {
192 	u64 prev_core_cnt, prev_const_cnt;
193 	u64 core_cnt, const_cnt, scale;
194 
195 	prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
196 	prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
197 
198 	update_freq_counters_refs();
199 
200 	const_cnt = this_cpu_read(arch_const_cycles_prev);
201 	core_cnt = this_cpu_read(arch_core_cycles_prev);
202 
203 	if (unlikely(core_cnt <= prev_core_cnt ||
204 		     const_cnt <= prev_const_cnt))
205 		return;
206 
207 	/*
208 	 *	    /\core    arch_max_freq_scale
209 	 * scale =  ------- * --------------------
210 	 *	    /\const   SCHED_CAPACITY_SCALE
211 	 *
212 	 * See validate_cpu_freq_invariance_counters() for details on
213 	 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
214 	 */
215 	scale = core_cnt - prev_core_cnt;
216 	scale *= this_cpu_read(arch_max_freq_scale);
217 	scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
218 			  const_cnt - prev_const_cnt);
219 
220 	scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
221 	this_cpu_write(arch_freq_scale, (unsigned long)scale);
222 }
223 
224 static struct scale_freq_data amu_sfd = {
225 	.source = SCALE_FREQ_SOURCE_ARCH,
226 	.set_freq_scale = amu_scale_freq_tick,
227 };
228 
229 static void amu_fie_setup(const struct cpumask *cpus)
230 {
231 	int cpu;
232 
233 	/* We are already set since the last insmod of cpufreq driver */
234 	if (unlikely(cpumask_subset(cpus, amu_fie_cpus)))
235 		return;
236 
237 	for_each_cpu(cpu, cpus) {
238 		if (!freq_counters_valid(cpu) ||
239 		    freq_inv_set_max_ratio(cpu,
240 					   cpufreq_get_hw_max_freq(cpu) * 1000,
241 					   arch_timer_get_rate()))
242 			return;
243 	}
244 
245 	cpumask_or(amu_fie_cpus, amu_fie_cpus, cpus);
246 
247 	topology_set_scale_freq_source(&amu_sfd, amu_fie_cpus);
248 
249 	pr_debug("CPUs[%*pbl]: counters will be used for FIE.",
250 		 cpumask_pr_args(cpus));
251 }
252 
253 static int init_amu_fie_callback(struct notifier_block *nb, unsigned long val,
254 				 void *data)
255 {
256 	struct cpufreq_policy *policy = data;
257 
258 	if (val == CPUFREQ_CREATE_POLICY)
259 		amu_fie_setup(policy->related_cpus);
260 
261 	/*
262 	 * We don't need to handle CPUFREQ_REMOVE_POLICY event as the AMU
263 	 * counters don't have any dependency on cpufreq driver once we have
264 	 * initialized AMU support and enabled invariance. The AMU counters will
265 	 * keep on working just fine in the absence of the cpufreq driver, and
266 	 * for the CPUs for which there are no counters available, the last set
267 	 * value of arch_freq_scale will remain valid as that is the frequency
268 	 * those CPUs are running at.
269 	 */
270 
271 	return 0;
272 }
273 
274 static struct notifier_block init_amu_fie_notifier = {
275 	.notifier_call = init_amu_fie_callback,
276 };
277 
278 static int __init init_amu_fie(void)
279 {
280 	int ret;
281 
282 	if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL))
283 		return -ENOMEM;
284 
285 	ret = cpufreq_register_notifier(&init_amu_fie_notifier,
286 					CPUFREQ_POLICY_NOTIFIER);
287 	if (ret)
288 		free_cpumask_var(amu_fie_cpus);
289 
290 	return ret;
291 }
292 core_initcall(init_amu_fie);
293 
294 #ifdef CONFIG_ACPI_CPPC_LIB
295 #include <acpi/cppc_acpi.h>
296 
297 static void cpu_read_corecnt(void *val)
298 {
299 	/*
300 	 * A value of 0 can be returned if the current CPU does not support AMUs
301 	 * or if the counter is disabled for this CPU. A return value of 0 at
302 	 * counter read is properly handled as an error case by the users of the
303 	 * counter.
304 	 */
305 	*(u64 *)val = read_corecnt();
306 }
307 
308 static void cpu_read_constcnt(void *val)
309 {
310 	/*
311 	 * Return 0 if the current CPU is affected by erratum 2457168. A value
312 	 * of 0 is also returned if the current CPU does not support AMUs or if
313 	 * the counter is disabled. A return value of 0 at counter read is
314 	 * properly handled as an error case by the users of the counter.
315 	 */
316 	*(u64 *)val = this_cpu_has_cap(ARM64_WORKAROUND_2457168) ?
317 		      0UL : read_constcnt();
318 }
319 
320 static inline
321 int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val)
322 {
323 	/*
324 	 * Abort call on counterless CPU or when interrupts are
325 	 * disabled - can lead to deadlock in smp sync call.
326 	 */
327 	if (!cpu_has_amu_feat(cpu))
328 		return -EOPNOTSUPP;
329 
330 	if (WARN_ON_ONCE(irqs_disabled()))
331 		return -EPERM;
332 
333 	smp_call_function_single(cpu, func, val, 1);
334 
335 	return 0;
336 }
337 
338 /*
339  * Refer to drivers/acpi/cppc_acpi.c for the description of the functions
340  * below.
341  */
342 bool cpc_ffh_supported(void)
343 {
344 	int cpu = get_cpu_with_amu_feat();
345 
346 	/*
347 	 * FFH is considered supported if there is at least one present CPU that
348 	 * supports AMUs. Using FFH to read core and reference counters for CPUs
349 	 * that do not support AMUs, have counters disabled or that are affected
350 	 * by errata, will result in a return value of 0.
351 	 *
352 	 * This is done to allow any enabled and valid counters to be read
353 	 * through FFH, knowing that potentially returning 0 as counter value is
354 	 * properly handled by the users of these counters.
355 	 */
356 	if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
357 		return false;
358 
359 	return true;
360 }
361 
362 int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val)
363 {
364 	int ret = -EOPNOTSUPP;
365 
366 	switch ((u64)reg->address) {
367 	case 0x0:
368 		ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val);
369 		break;
370 	case 0x1:
371 		ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val);
372 		break;
373 	}
374 
375 	if (!ret) {
376 		*val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
377 				    reg->bit_offset);
378 		*val >>= reg->bit_offset;
379 	}
380 
381 	return ret;
382 }
383 
384 int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
385 {
386 	return -EOPNOTSUPP;
387 }
388 #endif /* CONFIG_ACPI_CPPC_LIB */
389