xref: /openbmc/linux/arch/arm64/kernel/topology.c (revision 15e3ae36)
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpufreq.h>
18 #include <linux/init.h>
19 #include <linux/percpu.h>
20 
21 #include <asm/cpu.h>
22 #include <asm/cputype.h>
23 #include <asm/topology.h>
24 
25 void store_cpu_topology(unsigned int cpuid)
26 {
27 	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
28 	u64 mpidr;
29 
30 	if (cpuid_topo->package_id != -1)
31 		goto topology_populated;
32 
33 	mpidr = read_cpuid_mpidr();
34 
35 	/* Uniprocessor systems can rely on default topology values */
36 	if (mpidr & MPIDR_UP_BITMASK)
37 		return;
38 
39 	/* Create cpu topology mapping based on MPIDR. */
40 	if (mpidr & MPIDR_MT_BITMASK) {
41 		/* Multiprocessor system : Multi-threads per core */
42 		cpuid_topo->thread_id  = MPIDR_AFFINITY_LEVEL(mpidr, 0);
43 		cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 1);
44 		cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |
45 					 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;
46 	} else {
47 		/* Multiprocessor system : Single-thread per core */
48 		cpuid_topo->thread_id  = -1;
49 		cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 0);
50 		cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |
51 					 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |
52 					 MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;
53 	}
54 
55 	pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
56 		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
57 		 cpuid_topo->thread_id, mpidr);
58 
59 topology_populated:
60 	update_siblings_masks(cpuid);
61 }
62 
63 #ifdef CONFIG_ACPI
64 static bool __init acpi_cpu_is_threaded(int cpu)
65 {
66 	int is_threaded = acpi_pptt_cpu_is_thread(cpu);
67 
68 	/*
69 	 * if the PPTT doesn't have thread information, assume a homogeneous
70 	 * machine and return the current CPU's thread state.
71 	 */
72 	if (is_threaded < 0)
73 		is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
74 
75 	return !!is_threaded;
76 }
77 
78 /*
79  * Propagate the topology information of the processor_topology_node tree to the
80  * cpu_topology array.
81  */
82 int __init parse_acpi_topology(void)
83 {
84 	int cpu, topology_id;
85 
86 	if (acpi_disabled)
87 		return 0;
88 
89 	for_each_possible_cpu(cpu) {
90 		int i, cache_id;
91 
92 		topology_id = find_acpi_cpu_topology(cpu, 0);
93 		if (topology_id < 0)
94 			return topology_id;
95 
96 		if (acpi_cpu_is_threaded(cpu)) {
97 			cpu_topology[cpu].thread_id = topology_id;
98 			topology_id = find_acpi_cpu_topology(cpu, 1);
99 			cpu_topology[cpu].core_id   = topology_id;
100 		} else {
101 			cpu_topology[cpu].thread_id  = -1;
102 			cpu_topology[cpu].core_id    = topology_id;
103 		}
104 		topology_id = find_acpi_cpu_topology_package(cpu);
105 		cpu_topology[cpu].package_id = topology_id;
106 
107 		i = acpi_find_last_cache_level(cpu);
108 
109 		if (i > 0) {
110 			/*
111 			 * this is the only part of cpu_topology that has
112 			 * a direct relationship with the cache topology
113 			 */
114 			cache_id = find_acpi_cpu_cache_topology(cpu, i);
115 			if (cache_id > 0)
116 				cpu_topology[cpu].llc_id = cache_id;
117 		}
118 	}
119 
120 	return 0;
121 }
122 #endif
123 
124 #ifdef CONFIG_ARM64_AMU_EXTN
125 
126 #undef pr_fmt
127 #define pr_fmt(fmt) "AMU: " fmt
128 
129 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
130 static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
131 static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
132 static cpumask_var_t amu_fie_cpus;
133 
134 /* Initialize counter reference per-cpu variables for the current CPU */
135 void init_cpu_freq_invariance_counters(void)
136 {
137 	this_cpu_write(arch_core_cycles_prev,
138 		       read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0));
139 	this_cpu_write(arch_const_cycles_prev,
140 		       read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0));
141 }
142 
143 static int validate_cpu_freq_invariance_counters(int cpu)
144 {
145 	u64 max_freq_hz, ratio;
146 
147 	if (!cpu_has_amu_feat(cpu)) {
148 		pr_debug("CPU%d: counters are not supported.\n", cpu);
149 		return -EINVAL;
150 	}
151 
152 	if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
153 		     !per_cpu(arch_core_cycles_prev, cpu))) {
154 		pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
155 		return -EINVAL;
156 	}
157 
158 	/* Convert maximum frequency from KHz to Hz and validate */
159 	max_freq_hz = cpufreq_get_hw_max_freq(cpu) * 1000;
160 	if (unlikely(!max_freq_hz)) {
161 		pr_debug("CPU%d: invalid maximum frequency.\n", cpu);
162 		return -EINVAL;
163 	}
164 
165 	/*
166 	 * Pre-compute the fixed ratio between the frequency of the constant
167 	 * counter and the maximum frequency of the CPU.
168 	 *
169 	 *			      const_freq
170 	 * arch_max_freq_scale =   ---------------- * SCHED_CAPACITY_SCALE²
171 	 *			   cpuinfo_max_freq
172 	 *
173 	 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
174 	 * in order to ensure a good resolution for arch_max_freq_scale for
175 	 * very low arch timer frequencies (down to the KHz range which should
176 	 * be unlikely).
177 	 */
178 	ratio = (u64)arch_timer_get_rate() << (2 * SCHED_CAPACITY_SHIFT);
179 	ratio = div64_u64(ratio, max_freq_hz);
180 	if (!ratio) {
181 		WARN_ONCE(1, "System timer frequency too low.\n");
182 		return -EINVAL;
183 	}
184 
185 	per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
186 
187 	return 0;
188 }
189 
190 static inline bool
191 enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus)
192 {
193 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
194 
195 	if (!policy) {
196 		pr_debug("CPU%d: No cpufreq policy found.\n", cpu);
197 		return false;
198 	}
199 
200 	if (cpumask_subset(policy->related_cpus, valid_cpus))
201 		cpumask_or(amu_fie_cpus, policy->related_cpus,
202 			   amu_fie_cpus);
203 
204 	cpufreq_cpu_put(policy);
205 
206 	return true;
207 }
208 
209 static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
210 #define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)
211 
212 static int __init init_amu_fie(void)
213 {
214 	cpumask_var_t valid_cpus;
215 	bool have_policy = false;
216 	int ret = 0;
217 	int cpu;
218 
219 	if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL))
220 		return -ENOMEM;
221 
222 	if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
223 		ret = -ENOMEM;
224 		goto free_valid_mask;
225 	}
226 
227 	for_each_present_cpu(cpu) {
228 		if (validate_cpu_freq_invariance_counters(cpu))
229 			continue;
230 		cpumask_set_cpu(cpu, valid_cpus);
231 		have_policy |= enable_policy_freq_counters(cpu, valid_cpus);
232 	}
233 
234 	/*
235 	 * If we are not restricted by cpufreq policies, we only enable
236 	 * the use of the AMU feature for FIE if all CPUs support AMU.
237 	 * Otherwise, enable_policy_freq_counters has already enabled
238 	 * policy cpus.
239 	 */
240 	if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask))
241 		cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus);
242 
243 	if (!cpumask_empty(amu_fie_cpus)) {
244 		pr_info("CPUs[%*pbl]: counters will be used for FIE.",
245 			cpumask_pr_args(amu_fie_cpus));
246 		static_branch_enable(&amu_fie_key);
247 	}
248 
249 free_valid_mask:
250 	free_cpumask_var(valid_cpus);
251 
252 	return ret;
253 }
254 late_initcall_sync(init_amu_fie);
255 
256 bool arch_freq_counters_available(struct cpumask *cpus)
257 {
258 	return amu_freq_invariant() &&
259 	       cpumask_subset(cpus, amu_fie_cpus);
260 }
261 
262 void topology_scale_freq_tick(void)
263 {
264 	u64 prev_core_cnt, prev_const_cnt;
265 	u64 core_cnt, const_cnt, scale;
266 	int cpu = smp_processor_id();
267 
268 	if (!amu_freq_invariant())
269 		return;
270 
271 	if (!cpumask_test_cpu(cpu, amu_fie_cpus))
272 		return;
273 
274 	const_cnt = read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0);
275 	core_cnt = read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0);
276 	prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
277 	prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
278 
279 	if (unlikely(core_cnt <= prev_core_cnt ||
280 		     const_cnt <= prev_const_cnt))
281 		goto store_and_exit;
282 
283 	/*
284 	 *	    /\core    arch_max_freq_scale
285 	 * scale =  ------- * --------------------
286 	 *	    /\const   SCHED_CAPACITY_SCALE
287 	 *
288 	 * See validate_cpu_freq_invariance_counters() for details on
289 	 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
290 	 */
291 	scale = core_cnt - prev_core_cnt;
292 	scale *= this_cpu_read(arch_max_freq_scale);
293 	scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
294 			  const_cnt - prev_const_cnt);
295 
296 	scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
297 	this_cpu_write(freq_scale, (unsigned long)scale);
298 
299 store_and_exit:
300 	this_cpu_write(arch_core_cycles_prev, core_cnt);
301 	this_cpu_write(arch_const_cycles_prev, const_cnt);
302 }
303 #endif /* CONFIG_ARM64_AMU_EXTN */
304