xref: /openbmc/linux/arch/arm64/kernel/topology.c (revision 0b26ca68)
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpufreq.h>
18 #include <linux/init.h>
19 #include <linux/percpu.h>
20 
21 #include <asm/cpu.h>
22 #include <asm/cputype.h>
23 #include <asm/topology.h>
24 
25 void store_cpu_topology(unsigned int cpuid)
26 {
27 	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
28 	u64 mpidr;
29 
30 	if (cpuid_topo->package_id != -1)
31 		goto topology_populated;
32 
33 	mpidr = read_cpuid_mpidr();
34 
35 	/* Uniprocessor systems can rely on default topology values */
36 	if (mpidr & MPIDR_UP_BITMASK)
37 		return;
38 
39 	/*
40 	 * This would be the place to create cpu topology based on MPIDR.
41 	 *
42 	 * However, it cannot be trusted to depict the actual topology; some
43 	 * pieces of the architecture enforce an artificial cap on Aff0 values
44 	 * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an
45 	 * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up
46 	 * having absolutely no relationship to the actual underlying system
47 	 * topology, and cannot be reasonably used as core / package ID.
48 	 *
49 	 * If the MT bit is set, Aff0 *could* be used to define a thread ID, but
50 	 * we still wouldn't be able to obtain a sane core ID. This means we
51 	 * need to entirely ignore MPIDR for any topology deduction.
52 	 */
53 	cpuid_topo->thread_id  = -1;
54 	cpuid_topo->core_id    = cpuid;
55 	cpuid_topo->package_id = cpu_to_node(cpuid);
56 
57 	pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
58 		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
59 		 cpuid_topo->thread_id, mpidr);
60 
61 topology_populated:
62 	update_siblings_masks(cpuid);
63 }
64 
65 #ifdef CONFIG_ACPI
66 static bool __init acpi_cpu_is_threaded(int cpu)
67 {
68 	int is_threaded = acpi_pptt_cpu_is_thread(cpu);
69 
70 	/*
71 	 * if the PPTT doesn't have thread information, assume a homogeneous
72 	 * machine and return the current CPU's thread state.
73 	 */
74 	if (is_threaded < 0)
75 		is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
76 
77 	return !!is_threaded;
78 }
79 
80 /*
81  * Propagate the topology information of the processor_topology_node tree to the
82  * cpu_topology array.
83  */
84 int __init parse_acpi_topology(void)
85 {
86 	int cpu, topology_id;
87 
88 	if (acpi_disabled)
89 		return 0;
90 
91 	for_each_possible_cpu(cpu) {
92 		int i, cache_id;
93 
94 		topology_id = find_acpi_cpu_topology(cpu, 0);
95 		if (topology_id < 0)
96 			return topology_id;
97 
98 		if (acpi_cpu_is_threaded(cpu)) {
99 			cpu_topology[cpu].thread_id = topology_id;
100 			topology_id = find_acpi_cpu_topology(cpu, 1);
101 			cpu_topology[cpu].core_id   = topology_id;
102 		} else {
103 			cpu_topology[cpu].thread_id  = -1;
104 			cpu_topology[cpu].core_id    = topology_id;
105 		}
106 		topology_id = find_acpi_cpu_topology_package(cpu);
107 		cpu_topology[cpu].package_id = topology_id;
108 
109 		i = acpi_find_last_cache_level(cpu);
110 
111 		if (i > 0) {
112 			/*
113 			 * this is the only part of cpu_topology that has
114 			 * a direct relationship with the cache topology
115 			 */
116 			cache_id = find_acpi_cpu_cache_topology(cpu, i);
117 			if (cache_id > 0)
118 				cpu_topology[cpu].llc_id = cache_id;
119 		}
120 	}
121 
122 	return 0;
123 }
124 #endif
125 
126 #ifdef CONFIG_ARM64_AMU_EXTN
127 #define read_corecnt()	read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0)
128 #define read_constcnt()	read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0)
129 #else
130 #define read_corecnt()	(0UL)
131 #define read_constcnt()	(0UL)
132 #endif
133 
134 #undef pr_fmt
135 #define pr_fmt(fmt) "AMU: " fmt
136 
137 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
138 static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
139 static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
140 static cpumask_var_t amu_fie_cpus;
141 
142 void update_freq_counters_refs(void)
143 {
144 	this_cpu_write(arch_core_cycles_prev, read_corecnt());
145 	this_cpu_write(arch_const_cycles_prev, read_constcnt());
146 }
147 
148 static inline bool freq_counters_valid(int cpu)
149 {
150 	if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
151 		return false;
152 
153 	if (!cpu_has_amu_feat(cpu)) {
154 		pr_debug("CPU%d: counters are not supported.\n", cpu);
155 		return false;
156 	}
157 
158 	if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
159 		     !per_cpu(arch_core_cycles_prev, cpu))) {
160 		pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
161 		return false;
162 	}
163 
164 	return true;
165 }
166 
167 static int freq_inv_set_max_ratio(int cpu, u64 max_rate, u64 ref_rate)
168 {
169 	u64 ratio;
170 
171 	if (unlikely(!max_rate || !ref_rate)) {
172 		pr_debug("CPU%d: invalid maximum or reference frequency.\n",
173 			 cpu);
174 		return -EINVAL;
175 	}
176 
177 	/*
178 	 * Pre-compute the fixed ratio between the frequency of the constant
179 	 * reference counter and the maximum frequency of the CPU.
180 	 *
181 	 *			    ref_rate
182 	 * arch_max_freq_scale =   ---------- * SCHED_CAPACITY_SCALE²
183 	 *			    max_rate
184 	 *
185 	 * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
186 	 * in order to ensure a good resolution for arch_max_freq_scale for
187 	 * very low reference frequencies (down to the KHz range which should
188 	 * be unlikely).
189 	 */
190 	ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT);
191 	ratio = div64_u64(ratio, max_rate);
192 	if (!ratio) {
193 		WARN_ONCE(1, "Reference frequency too low.\n");
194 		return -EINVAL;
195 	}
196 
197 	per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
198 
199 	return 0;
200 }
201 
202 static inline bool
203 enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus)
204 {
205 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
206 
207 	if (!policy) {
208 		pr_debug("CPU%d: No cpufreq policy found.\n", cpu);
209 		return false;
210 	}
211 
212 	if (cpumask_subset(policy->related_cpus, valid_cpus))
213 		cpumask_or(amu_fie_cpus, policy->related_cpus,
214 			   amu_fie_cpus);
215 
216 	cpufreq_cpu_put(policy);
217 
218 	return true;
219 }
220 
221 static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
222 #define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)
223 
224 static int __init init_amu_fie(void)
225 {
226 	bool invariance_status = topology_scale_freq_invariant();
227 	cpumask_var_t valid_cpus;
228 	bool have_policy = false;
229 	int ret = 0;
230 	int cpu;
231 
232 	if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL))
233 		return -ENOMEM;
234 
235 	if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
236 		ret = -ENOMEM;
237 		goto free_valid_mask;
238 	}
239 
240 	for_each_present_cpu(cpu) {
241 		if (!freq_counters_valid(cpu) ||
242 		    freq_inv_set_max_ratio(cpu,
243 					   cpufreq_get_hw_max_freq(cpu) * 1000,
244 					   arch_timer_get_rate()))
245 			continue;
246 
247 		cpumask_set_cpu(cpu, valid_cpus);
248 		have_policy |= enable_policy_freq_counters(cpu, valid_cpus);
249 	}
250 
251 	/*
252 	 * If we are not restricted by cpufreq policies, we only enable
253 	 * the use of the AMU feature for FIE if all CPUs support AMU.
254 	 * Otherwise, enable_policy_freq_counters has already enabled
255 	 * policy cpus.
256 	 */
257 	if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask))
258 		cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus);
259 
260 	if (!cpumask_empty(amu_fie_cpus)) {
261 		pr_info("CPUs[%*pbl]: counters will be used for FIE.",
262 			cpumask_pr_args(amu_fie_cpus));
263 		static_branch_enable(&amu_fie_key);
264 	}
265 
266 	/*
267 	 * If the system is not fully invariant after AMU init, disable
268 	 * partial use of counters for frequency invariance.
269 	 */
270 	if (!topology_scale_freq_invariant())
271 		static_branch_disable(&amu_fie_key);
272 
273 	/*
274 	 * Task scheduler behavior depends on frequency invariance support,
275 	 * either cpufreq or counter driven. If the support status changes as
276 	 * a result of counter initialisation and use, retrigger the build of
277 	 * scheduling domains to ensure the information is propagated properly.
278 	 */
279 	if (invariance_status != topology_scale_freq_invariant())
280 		rebuild_sched_domains_energy();
281 
282 free_valid_mask:
283 	free_cpumask_var(valid_cpus);
284 
285 	return ret;
286 }
287 late_initcall_sync(init_amu_fie);
288 
289 bool arch_freq_counters_available(const struct cpumask *cpus)
290 {
291 	return amu_freq_invariant() &&
292 	       cpumask_subset(cpus, amu_fie_cpus);
293 }
294 
295 void topology_scale_freq_tick(void)
296 {
297 	u64 prev_core_cnt, prev_const_cnt;
298 	u64 core_cnt, const_cnt, scale;
299 	int cpu = smp_processor_id();
300 
301 	if (!amu_freq_invariant())
302 		return;
303 
304 	if (!cpumask_test_cpu(cpu, amu_fie_cpus))
305 		return;
306 
307 	prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
308 	prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
309 
310 	update_freq_counters_refs();
311 
312 	const_cnt = this_cpu_read(arch_const_cycles_prev);
313 	core_cnt = this_cpu_read(arch_core_cycles_prev);
314 
315 	if (unlikely(core_cnt <= prev_core_cnt ||
316 		     const_cnt <= prev_const_cnt))
317 		return;
318 
319 	/*
320 	 *	    /\core    arch_max_freq_scale
321 	 * scale =  ------- * --------------------
322 	 *	    /\const   SCHED_CAPACITY_SCALE
323 	 *
324 	 * See validate_cpu_freq_invariance_counters() for details on
325 	 * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
326 	 */
327 	scale = core_cnt - prev_core_cnt;
328 	scale *= this_cpu_read(arch_max_freq_scale);
329 	scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
330 			  const_cnt - prev_const_cnt);
331 
332 	scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
333 	this_cpu_write(freq_scale, (unsigned long)scale);
334 }
335 
336 #ifdef CONFIG_ACPI_CPPC_LIB
337 #include <acpi/cppc_acpi.h>
338 
339 static void cpu_read_corecnt(void *val)
340 {
341 	*(u64 *)val = read_corecnt();
342 }
343 
344 static void cpu_read_constcnt(void *val)
345 {
346 	*(u64 *)val = read_constcnt();
347 }
348 
349 static inline
350 int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val)
351 {
352 	/*
353 	 * Abort call on counterless CPU or when interrupts are
354 	 * disabled - can lead to deadlock in smp sync call.
355 	 */
356 	if (!cpu_has_amu_feat(cpu))
357 		return -EOPNOTSUPP;
358 
359 	if (WARN_ON_ONCE(irqs_disabled()))
360 		return -EPERM;
361 
362 	smp_call_function_single(cpu, func, val, 1);
363 
364 	return 0;
365 }
366 
367 /*
368  * Refer to drivers/acpi/cppc_acpi.c for the description of the functions
369  * below.
370  */
371 bool cpc_ffh_supported(void)
372 {
373 	return freq_counters_valid(get_cpu_with_amu_feat());
374 }
375 
376 int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val)
377 {
378 	int ret = -EOPNOTSUPP;
379 
380 	switch ((u64)reg->address) {
381 	case 0x0:
382 		ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val);
383 		break;
384 	case 0x1:
385 		ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val);
386 		break;
387 	}
388 
389 	if (!ret) {
390 		*val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
391 				    reg->bit_offset);
392 		*val >>= reg->bit_offset;
393 	}
394 
395 	return ret;
396 }
397 
398 int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
399 {
400 	return -EOPNOTSUPP;
401 }
402 #endif /* CONFIG_ACPI_CPPC_LIB */
403