1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/acpi.h> 21 #include <linux/arm_sdei.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/spinlock.h> 25 #include <linux/sched/mm.h> 26 #include <linux/sched/hotplug.h> 27 #include <linux/sched/task_stack.h> 28 #include <linux/interrupt.h> 29 #include <linux/cache.h> 30 #include <linux/profile.h> 31 #include <linux/errno.h> 32 #include <linux/mm.h> 33 #include <linux/err.h> 34 #include <linux/cpu.h> 35 #include <linux/smp.h> 36 #include <linux/seq_file.h> 37 #include <linux/irq.h> 38 #include <linux/percpu.h> 39 #include <linux/clockchips.h> 40 #include <linux/completion.h> 41 #include <linux/of.h> 42 #include <linux/irq_work.h> 43 #include <linux/kexec.h> 44 45 #include <asm/alternative.h> 46 #include <asm/atomic.h> 47 #include <asm/cacheflush.h> 48 #include <asm/cpu.h> 49 #include <asm/cputype.h> 50 #include <asm/cpu_ops.h> 51 #include <asm/daifflags.h> 52 #include <asm/mmu_context.h> 53 #include <asm/numa.h> 54 #include <asm/pgtable.h> 55 #include <asm/pgalloc.h> 56 #include <asm/processor.h> 57 #include <asm/smp_plat.h> 58 #include <asm/sections.h> 59 #include <asm/tlbflush.h> 60 #include <asm/ptrace.h> 61 #include <asm/virt.h> 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/ipi.h> 65 66 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 67 EXPORT_PER_CPU_SYMBOL(cpu_number); 68 69 /* 70 * as from 2.5, kernels no longer have an init_tasks structure 71 * so we need some other way of telling a new secondary core 72 * where to place its SVC stack 73 */ 74 struct secondary_data secondary_data; 75 /* Number of CPUs which aren't online, but looping in kernel text. */ 76 int cpus_stuck_in_kernel; 77 78 enum ipi_msg_type { 79 IPI_RESCHEDULE, 80 IPI_CALL_FUNC, 81 IPI_CPU_STOP, 82 IPI_CPU_CRASH_STOP, 83 IPI_TIMER, 84 IPI_IRQ_WORK, 85 IPI_WAKEUP 86 }; 87 88 #ifdef CONFIG_ARM64_VHE 89 90 /* Whether the boot CPU is running in HYP mode or not*/ 91 static bool boot_cpu_hyp_mode; 92 93 static inline void save_boot_cpu_run_el(void) 94 { 95 boot_cpu_hyp_mode = is_kernel_in_hyp_mode(); 96 } 97 98 static inline bool is_boot_cpu_in_hyp_mode(void) 99 { 100 return boot_cpu_hyp_mode; 101 } 102 103 /* 104 * Verify that a secondary CPU is running the kernel at the same 105 * EL as that of the boot CPU. 106 */ 107 void verify_cpu_run_el(void) 108 { 109 bool in_el2 = is_kernel_in_hyp_mode(); 110 bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode(); 111 112 if (in_el2 ^ boot_cpu_el2) { 113 pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n", 114 smp_processor_id(), 115 in_el2 ? 2 : 1, 116 boot_cpu_el2 ? 2 : 1); 117 cpu_panic_kernel(); 118 } 119 } 120 121 #else 122 static inline void save_boot_cpu_run_el(void) {} 123 #endif 124 125 #ifdef CONFIG_HOTPLUG_CPU 126 static int op_cpu_kill(unsigned int cpu); 127 #else 128 static inline int op_cpu_kill(unsigned int cpu) 129 { 130 return -ENOSYS; 131 } 132 #endif 133 134 135 /* 136 * Boot a secondary CPU, and assign it the specified idle task. 137 * This also gives us the initial stack to use for this CPU. 138 */ 139 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 140 { 141 if (cpu_ops[cpu]->cpu_boot) 142 return cpu_ops[cpu]->cpu_boot(cpu); 143 144 return -EOPNOTSUPP; 145 } 146 147 static DECLARE_COMPLETION(cpu_running); 148 149 int __cpu_up(unsigned int cpu, struct task_struct *idle) 150 { 151 int ret; 152 long status; 153 154 /* 155 * We need to tell the secondary core where to find its stack and the 156 * page tables. 157 */ 158 secondary_data.task = idle; 159 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 160 update_cpu_boot_status(CPU_MMU_OFF); 161 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 162 163 /* 164 * Now bring the CPU into our world. 165 */ 166 ret = boot_secondary(cpu, idle); 167 if (ret == 0) { 168 /* 169 * CPU was successfully started, wait for it to come online or 170 * time out. 171 */ 172 wait_for_completion_timeout(&cpu_running, 173 msecs_to_jiffies(1000)); 174 175 if (!cpu_online(cpu)) { 176 pr_crit("CPU%u: failed to come online\n", cpu); 177 ret = -EIO; 178 } 179 } else { 180 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 181 } 182 183 secondary_data.task = NULL; 184 secondary_data.stack = NULL; 185 status = READ_ONCE(secondary_data.status); 186 if (ret && status) { 187 188 if (status == CPU_MMU_OFF) 189 status = READ_ONCE(__early_cpu_boot_status); 190 191 switch (status) { 192 default: 193 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 194 cpu, status); 195 break; 196 case CPU_KILL_ME: 197 if (!op_cpu_kill(cpu)) { 198 pr_crit("CPU%u: died during early boot\n", cpu); 199 break; 200 } 201 /* Fall through */ 202 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 203 case CPU_STUCK_IN_KERNEL: 204 pr_crit("CPU%u: is stuck in kernel\n", cpu); 205 cpus_stuck_in_kernel++; 206 break; 207 case CPU_PANIC_KERNEL: 208 panic("CPU%u detected unsupported configuration\n", cpu); 209 } 210 } 211 212 return ret; 213 } 214 215 /* 216 * This is the secondary CPU boot entry. We're using this CPUs 217 * idle thread stack, but a set of temporary page tables. 218 */ 219 asmlinkage void secondary_start_kernel(void) 220 { 221 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 222 struct mm_struct *mm = &init_mm; 223 unsigned int cpu; 224 225 cpu = task_cpu(current); 226 set_my_cpu_offset(per_cpu_offset(cpu)); 227 228 /* 229 * All kernel threads share the same mm context; grab a 230 * reference and switch to it. 231 */ 232 mmgrab(mm); 233 current->active_mm = mm; 234 235 /* 236 * TTBR0 is only used for the identity mapping at this stage. Make it 237 * point to zero page to avoid speculatively fetching new entries. 238 */ 239 cpu_uninstall_idmap(); 240 241 preempt_disable(); 242 trace_hardirqs_off(); 243 244 /* 245 * If the system has established the capabilities, make sure 246 * this CPU ticks all of those. If it doesn't, the CPU will 247 * fail to come online. 248 */ 249 check_local_cpu_capabilities(); 250 251 if (cpu_ops[cpu]->cpu_postboot) 252 cpu_ops[cpu]->cpu_postboot(); 253 254 /* 255 * Log the CPU info before it is marked online and might get read. 256 */ 257 cpuinfo_store_cpu(); 258 259 /* 260 * Enable GIC and timers. 261 */ 262 notify_cpu_starting(cpu); 263 264 store_cpu_topology(cpu); 265 266 /* 267 * OK, now it's safe to let the boot CPU continue. Wait for 268 * the CPU migration code to notice that the CPU is online 269 * before we continue. 270 */ 271 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 272 cpu, (unsigned long)mpidr, 273 read_cpuid_id()); 274 update_cpu_boot_status(CPU_BOOT_SUCCESS); 275 set_cpu_online(cpu, true); 276 complete(&cpu_running); 277 278 local_daif_restore(DAIF_PROCCTX); 279 280 /* 281 * OK, it's off to the idle thread for us 282 */ 283 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 284 } 285 286 #ifdef CONFIG_HOTPLUG_CPU 287 static int op_cpu_disable(unsigned int cpu) 288 { 289 /* 290 * If we don't have a cpu_die method, abort before we reach the point 291 * of no return. CPU0 may not have an cpu_ops, so test for it. 292 */ 293 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 294 return -EOPNOTSUPP; 295 296 /* 297 * We may need to abort a hot unplug for some other mechanism-specific 298 * reason. 299 */ 300 if (cpu_ops[cpu]->cpu_disable) 301 return cpu_ops[cpu]->cpu_disable(cpu); 302 303 return 0; 304 } 305 306 /* 307 * __cpu_disable runs on the processor to be shutdown. 308 */ 309 int __cpu_disable(void) 310 { 311 unsigned int cpu = smp_processor_id(); 312 int ret; 313 314 ret = op_cpu_disable(cpu); 315 if (ret) 316 return ret; 317 318 /* 319 * Take this CPU offline. Once we clear this, we can't return, 320 * and we must not schedule until we're ready to give up the cpu. 321 */ 322 set_cpu_online(cpu, false); 323 324 /* 325 * OK - migrate IRQs away from this CPU 326 */ 327 irq_migrate_all_off_this_cpu(); 328 329 return 0; 330 } 331 332 static int op_cpu_kill(unsigned int cpu) 333 { 334 /* 335 * If we have no means of synchronising with the dying CPU, then assume 336 * that it is really dead. We can only wait for an arbitrary length of 337 * time and hope that it's dead, so let's skip the wait and just hope. 338 */ 339 if (!cpu_ops[cpu]->cpu_kill) 340 return 0; 341 342 return cpu_ops[cpu]->cpu_kill(cpu); 343 } 344 345 /* 346 * called on the thread which is asking for a CPU to be shutdown - 347 * waits until shutdown has completed, or it is timed out. 348 */ 349 void __cpu_die(unsigned int cpu) 350 { 351 int err; 352 353 if (!cpu_wait_death(cpu, 5)) { 354 pr_crit("CPU%u: cpu didn't die\n", cpu); 355 return; 356 } 357 pr_notice("CPU%u: shutdown\n", cpu); 358 359 /* 360 * Now that the dying CPU is beyond the point of no return w.r.t. 361 * in-kernel synchronisation, try to get the firwmare to help us to 362 * verify that it has really left the kernel before we consider 363 * clobbering anything it might still be using. 364 */ 365 err = op_cpu_kill(cpu); 366 if (err) 367 pr_warn("CPU%d may not have shut down cleanly: %d\n", 368 cpu, err); 369 } 370 371 /* 372 * Called from the idle thread for the CPU which has been shutdown. 373 * 374 */ 375 void cpu_die(void) 376 { 377 unsigned int cpu = smp_processor_id(); 378 379 idle_task_exit(); 380 381 local_daif_mask(); 382 383 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 384 (void)cpu_report_death(); 385 386 /* 387 * Actually shutdown the CPU. This must never fail. The specific hotplug 388 * mechanism must perform all required cache maintenance to ensure that 389 * no dirty lines are lost in the process of shutting down the CPU. 390 */ 391 cpu_ops[cpu]->cpu_die(cpu); 392 393 BUG(); 394 } 395 #endif 396 397 /* 398 * Kill the calling secondary CPU, early in bringup before it is turned 399 * online. 400 */ 401 void cpu_die_early(void) 402 { 403 int cpu = smp_processor_id(); 404 405 pr_crit("CPU%d: will not boot\n", cpu); 406 407 /* Mark this CPU absent */ 408 set_cpu_present(cpu, 0); 409 410 #ifdef CONFIG_HOTPLUG_CPU 411 update_cpu_boot_status(CPU_KILL_ME); 412 /* Check if we can park ourselves */ 413 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 414 cpu_ops[cpu]->cpu_die(cpu); 415 #endif 416 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 417 418 cpu_park_loop(); 419 } 420 421 static void __init hyp_mode_check(void) 422 { 423 if (is_hyp_mode_available()) 424 pr_info("CPU: All CPU(s) started at EL2\n"); 425 else if (is_hyp_mode_mismatched()) 426 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 427 "CPU: CPUs started in inconsistent modes"); 428 else 429 pr_info("CPU: All CPU(s) started at EL1\n"); 430 } 431 432 void __init smp_cpus_done(unsigned int max_cpus) 433 { 434 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 435 setup_cpu_features(); 436 hyp_mode_check(); 437 apply_alternatives_all(); 438 mark_linear_text_alias_ro(); 439 } 440 441 void __init smp_prepare_boot_cpu(void) 442 { 443 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 444 /* 445 * Initialise the static keys early as they may be enabled by the 446 * cpufeature code. 447 */ 448 jump_label_init(); 449 cpuinfo_store_boot_cpu(); 450 save_boot_cpu_run_el(); 451 /* 452 * Run the errata work around checks on the boot CPU, once we have 453 * initialised the cpu feature infrastructure from 454 * cpuinfo_store_boot_cpu() above. 455 */ 456 update_cpu_errata_workarounds(); 457 } 458 459 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 460 { 461 const __be32 *cell; 462 u64 hwid; 463 464 /* 465 * A cpu node with missing "reg" property is 466 * considered invalid to build a cpu_logical_map 467 * entry. 468 */ 469 cell = of_get_property(dn, "reg", NULL); 470 if (!cell) { 471 pr_err("%pOF: missing reg property\n", dn); 472 return INVALID_HWID; 473 } 474 475 hwid = of_read_number(cell, of_n_addr_cells(dn)); 476 /* 477 * Non affinity bits must be set to 0 in the DT 478 */ 479 if (hwid & ~MPIDR_HWID_BITMASK) { 480 pr_err("%pOF: invalid reg property\n", dn); 481 return INVALID_HWID; 482 } 483 return hwid; 484 } 485 486 /* 487 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 488 * entries and check for duplicates. If any is found just ignore the 489 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 490 * matching valid MPIDR values. 491 */ 492 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 493 { 494 unsigned int i; 495 496 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 497 if (cpu_logical_map(i) == hwid) 498 return true; 499 return false; 500 } 501 502 /* 503 * Initialize cpu operations for a logical cpu and 504 * set it in the possible mask on success 505 */ 506 static int __init smp_cpu_setup(int cpu) 507 { 508 if (cpu_read_ops(cpu)) 509 return -ENODEV; 510 511 if (cpu_ops[cpu]->cpu_init(cpu)) 512 return -ENODEV; 513 514 set_cpu_possible(cpu, true); 515 516 return 0; 517 } 518 519 static bool bootcpu_valid __initdata; 520 static unsigned int cpu_count = 1; 521 522 #ifdef CONFIG_ACPI 523 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 524 525 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 526 { 527 return &cpu_madt_gicc[cpu]; 528 } 529 530 /* 531 * acpi_map_gic_cpu_interface - parse processor MADT entry 532 * 533 * Carry out sanity checks on MADT processor entry and initialize 534 * cpu_logical_map on success 535 */ 536 static void __init 537 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 538 { 539 u64 hwid = processor->arm_mpidr; 540 541 if (!(processor->flags & ACPI_MADT_ENABLED)) { 542 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 543 return; 544 } 545 546 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 547 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 548 return; 549 } 550 551 if (is_mpidr_duplicate(cpu_count, hwid)) { 552 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 553 return; 554 } 555 556 /* Check if GICC structure of boot CPU is available in the MADT */ 557 if (cpu_logical_map(0) == hwid) { 558 if (bootcpu_valid) { 559 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 560 hwid); 561 return; 562 } 563 bootcpu_valid = true; 564 cpu_madt_gicc[0] = *processor; 565 early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid)); 566 return; 567 } 568 569 if (cpu_count >= NR_CPUS) 570 return; 571 572 /* map the logical cpu id to cpu MPIDR */ 573 cpu_logical_map(cpu_count) = hwid; 574 575 cpu_madt_gicc[cpu_count] = *processor; 576 577 /* 578 * Set-up the ACPI parking protocol cpu entries 579 * while initializing the cpu_logical_map to 580 * avoid parsing MADT entries multiple times for 581 * nothing (ie a valid cpu_logical_map entry should 582 * contain a valid parking protocol data set to 583 * initialize the cpu if the parking protocol is 584 * the only available enable method). 585 */ 586 acpi_set_mailbox_entry(cpu_count, processor); 587 588 early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid)); 589 590 cpu_count++; 591 } 592 593 static int __init 594 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, 595 const unsigned long end) 596 { 597 struct acpi_madt_generic_interrupt *processor; 598 599 processor = (struct acpi_madt_generic_interrupt *)header; 600 if (BAD_MADT_GICC_ENTRY(processor, end)) 601 return -EINVAL; 602 603 acpi_table_print_madt_entry(header); 604 605 acpi_map_gic_cpu_interface(processor); 606 607 return 0; 608 } 609 #else 610 #define acpi_table_parse_madt(...) do { } while (0) 611 #endif 612 613 /* 614 * Enumerate the possible CPU set from the device tree and build the 615 * cpu logical map array containing MPIDR values related to logical 616 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 617 */ 618 static void __init of_parse_and_init_cpus(void) 619 { 620 struct device_node *dn; 621 622 for_each_node_by_type(dn, "cpu") { 623 u64 hwid = of_get_cpu_mpidr(dn); 624 625 if (hwid == INVALID_HWID) 626 goto next; 627 628 if (is_mpidr_duplicate(cpu_count, hwid)) { 629 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 630 dn); 631 goto next; 632 } 633 634 /* 635 * The numbering scheme requires that the boot CPU 636 * must be assigned logical id 0. Record it so that 637 * the logical map built from DT is validated and can 638 * be used. 639 */ 640 if (hwid == cpu_logical_map(0)) { 641 if (bootcpu_valid) { 642 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 643 dn); 644 goto next; 645 } 646 647 bootcpu_valid = true; 648 early_map_cpu_to_node(0, of_node_to_nid(dn)); 649 650 /* 651 * cpu_logical_map has already been 652 * initialized and the boot cpu doesn't need 653 * the enable-method so continue without 654 * incrementing cpu. 655 */ 656 continue; 657 } 658 659 if (cpu_count >= NR_CPUS) 660 goto next; 661 662 pr_debug("cpu logical map 0x%llx\n", hwid); 663 cpu_logical_map(cpu_count) = hwid; 664 665 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 666 next: 667 cpu_count++; 668 } 669 } 670 671 /* 672 * Enumerate the possible CPU set from the device tree or ACPI and build the 673 * cpu logical map array containing MPIDR values related to logical 674 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 675 */ 676 void __init smp_init_cpus(void) 677 { 678 int i; 679 680 if (acpi_disabled) 681 of_parse_and_init_cpus(); 682 else 683 /* 684 * do a walk of MADT to determine how many CPUs 685 * we have including disabled CPUs, and get information 686 * we need for SMP init 687 */ 688 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 689 acpi_parse_gic_cpu_interface, 0); 690 691 if (cpu_count > nr_cpu_ids) 692 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 693 cpu_count, nr_cpu_ids); 694 695 if (!bootcpu_valid) { 696 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 697 return; 698 } 699 700 /* 701 * We need to set the cpu_logical_map entries before enabling 702 * the cpus so that cpu processor description entries (DT cpu nodes 703 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 704 * with entries in cpu_logical_map while initializing the cpus. 705 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 706 */ 707 for (i = 1; i < nr_cpu_ids; i++) { 708 if (cpu_logical_map(i) != INVALID_HWID) { 709 if (smp_cpu_setup(i)) 710 cpu_logical_map(i) = INVALID_HWID; 711 } 712 } 713 } 714 715 void __init smp_prepare_cpus(unsigned int max_cpus) 716 { 717 int err; 718 unsigned int cpu; 719 unsigned int this_cpu; 720 721 init_cpu_topology(); 722 723 this_cpu = smp_processor_id(); 724 store_cpu_topology(this_cpu); 725 numa_store_cpu_info(this_cpu); 726 727 /* 728 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 729 * secondary CPUs present. 730 */ 731 if (max_cpus == 0) 732 return; 733 734 /* 735 * Initialise the present map (which describes the set of CPUs 736 * actually populated at the present time) and release the 737 * secondaries from the bootloader. 738 */ 739 for_each_possible_cpu(cpu) { 740 741 per_cpu(cpu_number, cpu) = cpu; 742 743 if (cpu == smp_processor_id()) 744 continue; 745 746 if (!cpu_ops[cpu]) 747 continue; 748 749 err = cpu_ops[cpu]->cpu_prepare(cpu); 750 if (err) 751 continue; 752 753 set_cpu_present(cpu, true); 754 numa_store_cpu_info(cpu); 755 } 756 } 757 758 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 759 760 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 761 { 762 __smp_cross_call = fn; 763 } 764 765 static const char *ipi_types[NR_IPI] __tracepoint_string = { 766 #define S(x,s) [x] = s 767 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 768 S(IPI_CALL_FUNC, "Function call interrupts"), 769 S(IPI_CPU_STOP, "CPU stop interrupts"), 770 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 771 S(IPI_TIMER, "Timer broadcast interrupts"), 772 S(IPI_IRQ_WORK, "IRQ work interrupts"), 773 S(IPI_WAKEUP, "CPU wake-up interrupts"), 774 }; 775 776 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 777 { 778 trace_ipi_raise(target, ipi_types[ipinr]); 779 __smp_cross_call(target, ipinr); 780 } 781 782 void show_ipi_list(struct seq_file *p, int prec) 783 { 784 unsigned int cpu, i; 785 786 for (i = 0; i < NR_IPI; i++) { 787 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 788 prec >= 4 ? " " : ""); 789 for_each_online_cpu(cpu) 790 seq_printf(p, "%10u ", 791 __get_irq_stat(cpu, ipi_irqs[i])); 792 seq_printf(p, " %s\n", ipi_types[i]); 793 } 794 } 795 796 u64 smp_irq_stat_cpu(unsigned int cpu) 797 { 798 u64 sum = 0; 799 int i; 800 801 for (i = 0; i < NR_IPI; i++) 802 sum += __get_irq_stat(cpu, ipi_irqs[i]); 803 804 return sum; 805 } 806 807 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 808 { 809 smp_cross_call(mask, IPI_CALL_FUNC); 810 } 811 812 void arch_send_call_function_single_ipi(int cpu) 813 { 814 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 815 } 816 817 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 818 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 819 { 820 smp_cross_call(mask, IPI_WAKEUP); 821 } 822 #endif 823 824 #ifdef CONFIG_IRQ_WORK 825 void arch_irq_work_raise(void) 826 { 827 if (__smp_cross_call) 828 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 829 } 830 #endif 831 832 /* 833 * ipi_cpu_stop - handle IPI from smp_send_stop() 834 */ 835 static void ipi_cpu_stop(unsigned int cpu) 836 { 837 set_cpu_online(cpu, false); 838 839 local_daif_mask(); 840 sdei_mask_local_cpu(); 841 842 while (1) 843 cpu_relax(); 844 } 845 846 #ifdef CONFIG_KEXEC_CORE 847 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 848 #endif 849 850 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 851 { 852 #ifdef CONFIG_KEXEC_CORE 853 crash_save_cpu(regs, cpu); 854 855 atomic_dec(&waiting_for_crash_ipi); 856 857 local_irq_disable(); 858 sdei_mask_local_cpu(); 859 860 #ifdef CONFIG_HOTPLUG_CPU 861 if (cpu_ops[cpu]->cpu_die) 862 cpu_ops[cpu]->cpu_die(cpu); 863 #endif 864 865 /* just in case */ 866 cpu_park_loop(); 867 #endif 868 } 869 870 /* 871 * Main handler for inter-processor interrupts 872 */ 873 void handle_IPI(int ipinr, struct pt_regs *regs) 874 { 875 unsigned int cpu = smp_processor_id(); 876 struct pt_regs *old_regs = set_irq_regs(regs); 877 878 if ((unsigned)ipinr < NR_IPI) { 879 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 880 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 881 } 882 883 switch (ipinr) { 884 case IPI_RESCHEDULE: 885 scheduler_ipi(); 886 break; 887 888 case IPI_CALL_FUNC: 889 irq_enter(); 890 generic_smp_call_function_interrupt(); 891 irq_exit(); 892 break; 893 894 case IPI_CPU_STOP: 895 irq_enter(); 896 ipi_cpu_stop(cpu); 897 irq_exit(); 898 break; 899 900 case IPI_CPU_CRASH_STOP: 901 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 902 irq_enter(); 903 ipi_cpu_crash_stop(cpu, regs); 904 905 unreachable(); 906 } 907 break; 908 909 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 910 case IPI_TIMER: 911 irq_enter(); 912 tick_receive_broadcast(); 913 irq_exit(); 914 break; 915 #endif 916 917 #ifdef CONFIG_IRQ_WORK 918 case IPI_IRQ_WORK: 919 irq_enter(); 920 irq_work_run(); 921 irq_exit(); 922 break; 923 #endif 924 925 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 926 case IPI_WAKEUP: 927 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 928 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 929 cpu); 930 break; 931 #endif 932 933 default: 934 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 935 break; 936 } 937 938 if ((unsigned)ipinr < NR_IPI) 939 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 940 set_irq_regs(old_regs); 941 } 942 943 void smp_send_reschedule(int cpu) 944 { 945 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 946 } 947 948 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 949 void tick_broadcast(const struct cpumask *mask) 950 { 951 smp_cross_call(mask, IPI_TIMER); 952 } 953 #endif 954 955 void smp_send_stop(void) 956 { 957 unsigned long timeout; 958 959 if (num_online_cpus() > 1) { 960 cpumask_t mask; 961 962 cpumask_copy(&mask, cpu_online_mask); 963 cpumask_clear_cpu(smp_processor_id(), &mask); 964 965 if (system_state <= SYSTEM_RUNNING) 966 pr_crit("SMP: stopping secondary CPUs\n"); 967 smp_cross_call(&mask, IPI_CPU_STOP); 968 } 969 970 /* Wait up to one second for other CPUs to stop */ 971 timeout = USEC_PER_SEC; 972 while (num_online_cpus() > 1 && timeout--) 973 udelay(1); 974 975 if (num_online_cpus() > 1) 976 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 977 cpumask_pr_args(cpu_online_mask)); 978 979 sdei_mask_local_cpu(); 980 } 981 982 #ifdef CONFIG_KEXEC_CORE 983 void crash_smp_send_stop(void) 984 { 985 static int cpus_stopped; 986 cpumask_t mask; 987 unsigned long timeout; 988 989 /* 990 * This function can be called twice in panic path, but obviously 991 * we execute this only once. 992 */ 993 if (cpus_stopped) 994 return; 995 996 cpus_stopped = 1; 997 998 if (num_online_cpus() == 1) { 999 sdei_mask_local_cpu(); 1000 return; 1001 } 1002 1003 cpumask_copy(&mask, cpu_online_mask); 1004 cpumask_clear_cpu(smp_processor_id(), &mask); 1005 1006 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); 1007 1008 pr_crit("SMP: stopping secondary CPUs\n"); 1009 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1010 1011 /* Wait up to one second for other CPUs to stop */ 1012 timeout = USEC_PER_SEC; 1013 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1014 udelay(1); 1015 1016 if (atomic_read(&waiting_for_crash_ipi) > 0) 1017 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 1018 cpumask_pr_args(&mask)); 1019 1020 sdei_mask_local_cpu(); 1021 } 1022 1023 bool smp_crash_stop_failed(void) 1024 { 1025 return (atomic_read(&waiting_for_crash_ipi) > 0); 1026 } 1027 #endif 1028 1029 /* 1030 * not supported here 1031 */ 1032 int setup_profiling_timer(unsigned int multiplier) 1033 { 1034 return -EINVAL; 1035 } 1036 1037 static bool have_cpu_die(void) 1038 { 1039 #ifdef CONFIG_HOTPLUG_CPU 1040 int any_cpu = raw_smp_processor_id(); 1041 1042 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) 1043 return true; 1044 #endif 1045 return false; 1046 } 1047 1048 bool cpus_are_stuck_in_kernel(void) 1049 { 1050 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1051 1052 return !!cpus_stuck_in_kernel || smp_spin_tables; 1053 } 1054