1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/acpi.h> 21 #include <linux/delay.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/sched.h> 25 #include <linux/interrupt.h> 26 #include <linux/cache.h> 27 #include <linux/profile.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/err.h> 31 #include <linux/cpu.h> 32 #include <linux/smp.h> 33 #include <linux/seq_file.h> 34 #include <linux/irq.h> 35 #include <linux/percpu.h> 36 #include <linux/clockchips.h> 37 #include <linux/completion.h> 38 #include <linux/of.h> 39 #include <linux/irq_work.h> 40 41 #include <asm/alternative.h> 42 #include <asm/atomic.h> 43 #include <asm/cacheflush.h> 44 #include <asm/cpu.h> 45 #include <asm/cputype.h> 46 #include <asm/cpu_ops.h> 47 #include <asm/mmu_context.h> 48 #include <asm/pgtable.h> 49 #include <asm/pgalloc.h> 50 #include <asm/processor.h> 51 #include <asm/smp_plat.h> 52 #include <asm/sections.h> 53 #include <asm/tlbflush.h> 54 #include <asm/ptrace.h> 55 #include <asm/virt.h> 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/ipi.h> 59 60 /* 61 * as from 2.5, kernels no longer have an init_tasks structure 62 * so we need some other way of telling a new secondary core 63 * where to place its SVC stack 64 */ 65 struct secondary_data secondary_data; 66 67 enum ipi_msg_type { 68 IPI_RESCHEDULE, 69 IPI_CALL_FUNC, 70 IPI_CPU_STOP, 71 IPI_TIMER, 72 IPI_IRQ_WORK, 73 }; 74 75 /* 76 * Boot a secondary CPU, and assign it the specified idle task. 77 * This also gives us the initial stack to use for this CPU. 78 */ 79 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 80 { 81 if (cpu_ops[cpu]->cpu_boot) 82 return cpu_ops[cpu]->cpu_boot(cpu); 83 84 return -EOPNOTSUPP; 85 } 86 87 static DECLARE_COMPLETION(cpu_running); 88 89 int __cpu_up(unsigned int cpu, struct task_struct *idle) 90 { 91 int ret; 92 93 /* 94 * We need to tell the secondary core where to find its stack and the 95 * page tables. 96 */ 97 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 98 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 99 100 /* 101 * Now bring the CPU into our world. 102 */ 103 ret = boot_secondary(cpu, idle); 104 if (ret == 0) { 105 /* 106 * CPU was successfully started, wait for it to come online or 107 * time out. 108 */ 109 wait_for_completion_timeout(&cpu_running, 110 msecs_to_jiffies(1000)); 111 112 if (!cpu_online(cpu)) { 113 pr_crit("CPU%u: failed to come online\n", cpu); 114 ret = -EIO; 115 } 116 } else { 117 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 118 } 119 120 secondary_data.stack = NULL; 121 122 return ret; 123 } 124 125 static void smp_store_cpu_info(unsigned int cpuid) 126 { 127 store_cpu_topology(cpuid); 128 } 129 130 /* 131 * This is the secondary CPU boot entry. We're using this CPUs 132 * idle thread stack, but a set of temporary page tables. 133 */ 134 asmlinkage void secondary_start_kernel(void) 135 { 136 struct mm_struct *mm = &init_mm; 137 unsigned int cpu = smp_processor_id(); 138 139 /* 140 * All kernel threads share the same mm context; grab a 141 * reference and switch to it. 142 */ 143 atomic_inc(&mm->mm_count); 144 current->active_mm = mm; 145 cpumask_set_cpu(cpu, mm_cpumask(mm)); 146 147 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 148 printk("CPU%u: Booted secondary processor\n", cpu); 149 150 /* 151 * TTBR0 is only used for the identity mapping at this stage. Make it 152 * point to zero page to avoid speculatively fetching new entries. 153 */ 154 cpu_set_reserved_ttbr0(); 155 flush_tlb_all(); 156 cpu_set_default_tcr_t0sz(); 157 158 preempt_disable(); 159 trace_hardirqs_off(); 160 161 if (cpu_ops[cpu]->cpu_postboot) 162 cpu_ops[cpu]->cpu_postboot(); 163 164 /* 165 * Log the CPU info before it is marked online and might get read. 166 */ 167 cpuinfo_store_cpu(); 168 169 /* 170 * Enable GIC and timers. 171 */ 172 notify_cpu_starting(cpu); 173 174 smp_store_cpu_info(cpu); 175 176 /* 177 * OK, now it's safe to let the boot CPU continue. Wait for 178 * the CPU migration code to notice that the CPU is online 179 * before we continue. 180 */ 181 set_cpu_online(cpu, true); 182 complete(&cpu_running); 183 184 local_dbg_enable(); 185 local_irq_enable(); 186 local_async_enable(); 187 188 /* 189 * OK, it's off to the idle thread for us 190 */ 191 cpu_startup_entry(CPUHP_ONLINE); 192 } 193 194 #ifdef CONFIG_HOTPLUG_CPU 195 static int op_cpu_disable(unsigned int cpu) 196 { 197 /* 198 * If we don't have a cpu_die method, abort before we reach the point 199 * of no return. CPU0 may not have an cpu_ops, so test for it. 200 */ 201 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 202 return -EOPNOTSUPP; 203 204 /* 205 * We may need to abort a hot unplug for some other mechanism-specific 206 * reason. 207 */ 208 if (cpu_ops[cpu]->cpu_disable) 209 return cpu_ops[cpu]->cpu_disable(cpu); 210 211 return 0; 212 } 213 214 /* 215 * __cpu_disable runs on the processor to be shutdown. 216 */ 217 int __cpu_disable(void) 218 { 219 unsigned int cpu = smp_processor_id(); 220 int ret; 221 222 ret = op_cpu_disable(cpu); 223 if (ret) 224 return ret; 225 226 /* 227 * Take this CPU offline. Once we clear this, we can't return, 228 * and we must not schedule until we're ready to give up the cpu. 229 */ 230 set_cpu_online(cpu, false); 231 232 /* 233 * OK - migrate IRQs away from this CPU 234 */ 235 migrate_irqs(); 236 237 /* 238 * Remove this CPU from the vm mask set of all processes. 239 */ 240 clear_tasks_mm_cpumask(cpu); 241 242 return 0; 243 } 244 245 static int op_cpu_kill(unsigned int cpu) 246 { 247 /* 248 * If we have no means of synchronising with the dying CPU, then assume 249 * that it is really dead. We can only wait for an arbitrary length of 250 * time and hope that it's dead, so let's skip the wait and just hope. 251 */ 252 if (!cpu_ops[cpu]->cpu_kill) 253 return 0; 254 255 return cpu_ops[cpu]->cpu_kill(cpu); 256 } 257 258 /* 259 * called on the thread which is asking for a CPU to be shutdown - 260 * waits until shutdown has completed, or it is timed out. 261 */ 262 void __cpu_die(unsigned int cpu) 263 { 264 int err; 265 266 if (!cpu_wait_death(cpu, 5)) { 267 pr_crit("CPU%u: cpu didn't die\n", cpu); 268 return; 269 } 270 pr_notice("CPU%u: shutdown\n", cpu); 271 272 /* 273 * Now that the dying CPU is beyond the point of no return w.r.t. 274 * in-kernel synchronisation, try to get the firwmare to help us to 275 * verify that it has really left the kernel before we consider 276 * clobbering anything it might still be using. 277 */ 278 err = op_cpu_kill(cpu); 279 if (err) 280 pr_warn("CPU%d may not have shut down cleanly: %d\n", 281 cpu, err); 282 } 283 284 /* 285 * Called from the idle thread for the CPU which has been shutdown. 286 * 287 * Note that we disable IRQs here, but do not re-enable them 288 * before returning to the caller. This is also the behaviour 289 * of the other hotplug-cpu capable cores, so presumably coming 290 * out of idle fixes this. 291 */ 292 void cpu_die(void) 293 { 294 unsigned int cpu = smp_processor_id(); 295 296 idle_task_exit(); 297 298 local_irq_disable(); 299 300 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 301 (void)cpu_report_death(); 302 303 /* 304 * Actually shutdown the CPU. This must never fail. The specific hotplug 305 * mechanism must perform all required cache maintenance to ensure that 306 * no dirty lines are lost in the process of shutting down the CPU. 307 */ 308 cpu_ops[cpu]->cpu_die(cpu); 309 310 BUG(); 311 } 312 #endif 313 314 static void __init hyp_mode_check(void) 315 { 316 if (is_hyp_mode_available()) 317 pr_info("CPU: All CPU(s) started at EL2\n"); 318 else if (is_hyp_mode_mismatched()) 319 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 320 "CPU: CPUs started in inconsistent modes"); 321 else 322 pr_info("CPU: All CPU(s) started at EL1\n"); 323 } 324 325 void __init smp_cpus_done(unsigned int max_cpus) 326 { 327 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 328 hyp_mode_check(); 329 apply_alternatives_all(); 330 } 331 332 void __init smp_prepare_boot_cpu(void) 333 { 334 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 335 } 336 337 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 338 { 339 const __be32 *cell; 340 u64 hwid; 341 342 /* 343 * A cpu node with missing "reg" property is 344 * considered invalid to build a cpu_logical_map 345 * entry. 346 */ 347 cell = of_get_property(dn, "reg", NULL); 348 if (!cell) { 349 pr_err("%s: missing reg property\n", dn->full_name); 350 return INVALID_HWID; 351 } 352 353 hwid = of_read_number(cell, of_n_addr_cells(dn)); 354 /* 355 * Non affinity bits must be set to 0 in the DT 356 */ 357 if (hwid & ~MPIDR_HWID_BITMASK) { 358 pr_err("%s: invalid reg property\n", dn->full_name); 359 return INVALID_HWID; 360 } 361 return hwid; 362 } 363 364 /* 365 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 366 * entries and check for duplicates. If any is found just ignore the 367 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 368 * matching valid MPIDR values. 369 */ 370 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 371 { 372 unsigned int i; 373 374 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 375 if (cpu_logical_map(i) == hwid) 376 return true; 377 return false; 378 } 379 380 /* 381 * Initialize cpu operations for a logical cpu and 382 * set it in the possible mask on success 383 */ 384 static int __init smp_cpu_setup(int cpu) 385 { 386 if (cpu_read_ops(cpu)) 387 return -ENODEV; 388 389 if (cpu_ops[cpu]->cpu_init(cpu)) 390 return -ENODEV; 391 392 set_cpu_possible(cpu, true); 393 394 return 0; 395 } 396 397 static bool bootcpu_valid __initdata; 398 static unsigned int cpu_count = 1; 399 400 #ifdef CONFIG_ACPI 401 /* 402 * acpi_map_gic_cpu_interface - parse processor MADT entry 403 * 404 * Carry out sanity checks on MADT processor entry and initialize 405 * cpu_logical_map on success 406 */ 407 static void __init 408 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 409 { 410 u64 hwid = processor->arm_mpidr; 411 412 if (!(processor->flags & ACPI_MADT_ENABLED)) { 413 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 414 return; 415 } 416 417 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 418 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 419 return; 420 } 421 422 if (is_mpidr_duplicate(cpu_count, hwid)) { 423 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 424 return; 425 } 426 427 /* Check if GICC structure of boot CPU is available in the MADT */ 428 if (cpu_logical_map(0) == hwid) { 429 if (bootcpu_valid) { 430 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 431 hwid); 432 return; 433 } 434 bootcpu_valid = true; 435 return; 436 } 437 438 if (cpu_count >= NR_CPUS) 439 return; 440 441 /* map the logical cpu id to cpu MPIDR */ 442 cpu_logical_map(cpu_count) = hwid; 443 444 cpu_count++; 445 } 446 447 static int __init 448 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, 449 const unsigned long end) 450 { 451 struct acpi_madt_generic_interrupt *processor; 452 453 processor = (struct acpi_madt_generic_interrupt *)header; 454 if (BAD_MADT_GICC_ENTRY(processor, end)) 455 return -EINVAL; 456 457 acpi_table_print_madt_entry(header); 458 459 acpi_map_gic_cpu_interface(processor); 460 461 return 0; 462 } 463 #else 464 #define acpi_table_parse_madt(...) do { } while (0) 465 #endif 466 467 /* 468 * Enumerate the possible CPU set from the device tree and build the 469 * cpu logical map array containing MPIDR values related to logical 470 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 471 */ 472 void __init of_parse_and_init_cpus(void) 473 { 474 struct device_node *dn = NULL; 475 476 while ((dn = of_find_node_by_type(dn, "cpu"))) { 477 u64 hwid = of_get_cpu_mpidr(dn); 478 479 if (hwid == INVALID_HWID) 480 goto next; 481 482 if (is_mpidr_duplicate(cpu_count, hwid)) { 483 pr_err("%s: duplicate cpu reg properties in the DT\n", 484 dn->full_name); 485 goto next; 486 } 487 488 /* 489 * The numbering scheme requires that the boot CPU 490 * must be assigned logical id 0. Record it so that 491 * the logical map built from DT is validated and can 492 * be used. 493 */ 494 if (hwid == cpu_logical_map(0)) { 495 if (bootcpu_valid) { 496 pr_err("%s: duplicate boot cpu reg property in DT\n", 497 dn->full_name); 498 goto next; 499 } 500 501 bootcpu_valid = true; 502 503 /* 504 * cpu_logical_map has already been 505 * initialized and the boot cpu doesn't need 506 * the enable-method so continue without 507 * incrementing cpu. 508 */ 509 continue; 510 } 511 512 if (cpu_count >= NR_CPUS) 513 goto next; 514 515 pr_debug("cpu logical map 0x%llx\n", hwid); 516 cpu_logical_map(cpu_count) = hwid; 517 next: 518 cpu_count++; 519 } 520 } 521 522 /* 523 * Enumerate the possible CPU set from the device tree or ACPI and build the 524 * cpu logical map array containing MPIDR values related to logical 525 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 526 */ 527 void __init smp_init_cpus(void) 528 { 529 int i; 530 531 if (acpi_disabled) 532 of_parse_and_init_cpus(); 533 else 534 /* 535 * do a walk of MADT to determine how many CPUs 536 * we have including disabled CPUs, and get information 537 * we need for SMP init 538 */ 539 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 540 acpi_parse_gic_cpu_interface, 0); 541 542 if (cpu_count > NR_CPUS) 543 pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n", 544 cpu_count, NR_CPUS); 545 546 if (!bootcpu_valid) { 547 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 548 return; 549 } 550 551 /* 552 * We need to set the cpu_logical_map entries before enabling 553 * the cpus so that cpu processor description entries (DT cpu nodes 554 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 555 * with entries in cpu_logical_map while initializing the cpus. 556 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 557 */ 558 for (i = 1; i < NR_CPUS; i++) { 559 if (cpu_logical_map(i) != INVALID_HWID) { 560 if (smp_cpu_setup(i)) 561 cpu_logical_map(i) = INVALID_HWID; 562 } 563 } 564 } 565 566 void __init smp_prepare_cpus(unsigned int max_cpus) 567 { 568 int err; 569 unsigned int cpu, ncores = num_possible_cpus(); 570 571 init_cpu_topology(); 572 573 smp_store_cpu_info(smp_processor_id()); 574 575 /* 576 * are we trying to boot more cores than exist? 577 */ 578 if (max_cpus > ncores) 579 max_cpus = ncores; 580 581 /* Don't bother if we're effectively UP */ 582 if (max_cpus <= 1) 583 return; 584 585 /* 586 * Initialise the present map (which describes the set of CPUs 587 * actually populated at the present time) and release the 588 * secondaries from the bootloader. 589 * 590 * Make sure we online at most (max_cpus - 1) additional CPUs. 591 */ 592 max_cpus--; 593 for_each_possible_cpu(cpu) { 594 if (max_cpus == 0) 595 break; 596 597 if (cpu == smp_processor_id()) 598 continue; 599 600 if (!cpu_ops[cpu]) 601 continue; 602 603 err = cpu_ops[cpu]->cpu_prepare(cpu); 604 if (err) 605 continue; 606 607 set_cpu_present(cpu, true); 608 max_cpus--; 609 } 610 } 611 612 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 613 614 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 615 { 616 __smp_cross_call = fn; 617 } 618 619 static const char *ipi_types[NR_IPI] __tracepoint_string = { 620 #define S(x,s) [x] = s 621 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 622 S(IPI_CALL_FUNC, "Function call interrupts"), 623 S(IPI_CPU_STOP, "CPU stop interrupts"), 624 S(IPI_TIMER, "Timer broadcast interrupts"), 625 S(IPI_IRQ_WORK, "IRQ work interrupts"), 626 }; 627 628 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 629 { 630 trace_ipi_raise(target, ipi_types[ipinr]); 631 __smp_cross_call(target, ipinr); 632 } 633 634 void show_ipi_list(struct seq_file *p, int prec) 635 { 636 unsigned int cpu, i; 637 638 for (i = 0; i < NR_IPI; i++) { 639 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 640 prec >= 4 ? " " : ""); 641 for_each_online_cpu(cpu) 642 seq_printf(p, "%10u ", 643 __get_irq_stat(cpu, ipi_irqs[i])); 644 seq_printf(p, " %s\n", ipi_types[i]); 645 } 646 } 647 648 u64 smp_irq_stat_cpu(unsigned int cpu) 649 { 650 u64 sum = 0; 651 int i; 652 653 for (i = 0; i < NR_IPI; i++) 654 sum += __get_irq_stat(cpu, ipi_irqs[i]); 655 656 return sum; 657 } 658 659 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 660 { 661 smp_cross_call(mask, IPI_CALL_FUNC); 662 } 663 664 void arch_send_call_function_single_ipi(int cpu) 665 { 666 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 667 } 668 669 #ifdef CONFIG_IRQ_WORK 670 void arch_irq_work_raise(void) 671 { 672 if (__smp_cross_call) 673 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 674 } 675 #endif 676 677 static DEFINE_RAW_SPINLOCK(stop_lock); 678 679 /* 680 * ipi_cpu_stop - handle IPI from smp_send_stop() 681 */ 682 static void ipi_cpu_stop(unsigned int cpu) 683 { 684 if (system_state == SYSTEM_BOOTING || 685 system_state == SYSTEM_RUNNING) { 686 raw_spin_lock(&stop_lock); 687 pr_crit("CPU%u: stopping\n", cpu); 688 dump_stack(); 689 raw_spin_unlock(&stop_lock); 690 } 691 692 set_cpu_online(cpu, false); 693 694 local_irq_disable(); 695 696 while (1) 697 cpu_relax(); 698 } 699 700 /* 701 * Main handler for inter-processor interrupts 702 */ 703 void handle_IPI(int ipinr, struct pt_regs *regs) 704 { 705 unsigned int cpu = smp_processor_id(); 706 struct pt_regs *old_regs = set_irq_regs(regs); 707 708 if ((unsigned)ipinr < NR_IPI) { 709 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 710 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 711 } 712 713 switch (ipinr) { 714 case IPI_RESCHEDULE: 715 scheduler_ipi(); 716 break; 717 718 case IPI_CALL_FUNC: 719 irq_enter(); 720 generic_smp_call_function_interrupt(); 721 irq_exit(); 722 break; 723 724 case IPI_CPU_STOP: 725 irq_enter(); 726 ipi_cpu_stop(cpu); 727 irq_exit(); 728 break; 729 730 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 731 case IPI_TIMER: 732 irq_enter(); 733 tick_receive_broadcast(); 734 irq_exit(); 735 break; 736 #endif 737 738 #ifdef CONFIG_IRQ_WORK 739 case IPI_IRQ_WORK: 740 irq_enter(); 741 irq_work_run(); 742 irq_exit(); 743 break; 744 #endif 745 746 default: 747 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 748 break; 749 } 750 751 if ((unsigned)ipinr < NR_IPI) 752 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 753 set_irq_regs(old_regs); 754 } 755 756 void smp_send_reschedule(int cpu) 757 { 758 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 759 } 760 761 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 762 void tick_broadcast(const struct cpumask *mask) 763 { 764 smp_cross_call(mask, IPI_TIMER); 765 } 766 #endif 767 768 void smp_send_stop(void) 769 { 770 unsigned long timeout; 771 772 if (num_online_cpus() > 1) { 773 cpumask_t mask; 774 775 cpumask_copy(&mask, cpu_online_mask); 776 cpumask_clear_cpu(smp_processor_id(), &mask); 777 778 smp_cross_call(&mask, IPI_CPU_STOP); 779 } 780 781 /* Wait up to one second for other CPUs to stop */ 782 timeout = USEC_PER_SEC; 783 while (num_online_cpus() > 1 && timeout--) 784 udelay(1); 785 786 if (num_online_cpus() > 1) 787 pr_warning("SMP: failed to stop secondary CPUs\n"); 788 } 789 790 /* 791 * not supported here 792 */ 793 int setup_profiling_timer(unsigned int multiplier) 794 { 795 return -EINVAL; 796 } 797