xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision eb3fcf00)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40 
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/processor.h>
51 #include <asm/smp_plat.h>
52 #include <asm/sections.h>
53 #include <asm/tlbflush.h>
54 #include <asm/ptrace.h>
55 #include <asm/virt.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ipi.h>
59 
60 /*
61  * as from 2.5, kernels no longer have an init_tasks structure
62  * so we need some other way of telling a new secondary core
63  * where to place its SVC stack
64  */
65 struct secondary_data secondary_data;
66 
67 enum ipi_msg_type {
68 	IPI_RESCHEDULE,
69 	IPI_CALL_FUNC,
70 	IPI_CPU_STOP,
71 	IPI_TIMER,
72 	IPI_IRQ_WORK,
73 };
74 
75 /*
76  * Boot a secondary CPU, and assign it the specified idle task.
77  * This also gives us the initial stack to use for this CPU.
78  */
79 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
80 {
81 	if (cpu_ops[cpu]->cpu_boot)
82 		return cpu_ops[cpu]->cpu_boot(cpu);
83 
84 	return -EOPNOTSUPP;
85 }
86 
87 static DECLARE_COMPLETION(cpu_running);
88 
89 int __cpu_up(unsigned int cpu, struct task_struct *idle)
90 {
91 	int ret;
92 
93 	/*
94 	 * We need to tell the secondary core where to find its stack and the
95 	 * page tables.
96 	 */
97 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
98 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
99 
100 	/*
101 	 * Now bring the CPU into our world.
102 	 */
103 	ret = boot_secondary(cpu, idle);
104 	if (ret == 0) {
105 		/*
106 		 * CPU was successfully started, wait for it to come online or
107 		 * time out.
108 		 */
109 		wait_for_completion_timeout(&cpu_running,
110 					    msecs_to_jiffies(1000));
111 
112 		if (!cpu_online(cpu)) {
113 			pr_crit("CPU%u: failed to come online\n", cpu);
114 			ret = -EIO;
115 		}
116 	} else {
117 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
118 	}
119 
120 	secondary_data.stack = NULL;
121 
122 	return ret;
123 }
124 
125 static void smp_store_cpu_info(unsigned int cpuid)
126 {
127 	store_cpu_topology(cpuid);
128 }
129 
130 /*
131  * This is the secondary CPU boot entry.  We're using this CPUs
132  * idle thread stack, but a set of temporary page tables.
133  */
134 asmlinkage void secondary_start_kernel(void)
135 {
136 	struct mm_struct *mm = &init_mm;
137 	unsigned int cpu = smp_processor_id();
138 
139 	/*
140 	 * All kernel threads share the same mm context; grab a
141 	 * reference and switch to it.
142 	 */
143 	atomic_inc(&mm->mm_count);
144 	current->active_mm = mm;
145 	cpumask_set_cpu(cpu, mm_cpumask(mm));
146 
147 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
148 	printk("CPU%u: Booted secondary processor\n", cpu);
149 
150 	/*
151 	 * TTBR0 is only used for the identity mapping at this stage. Make it
152 	 * point to zero page to avoid speculatively fetching new entries.
153 	 */
154 	cpu_set_reserved_ttbr0();
155 	flush_tlb_all();
156 	cpu_set_default_tcr_t0sz();
157 
158 	preempt_disable();
159 	trace_hardirqs_off();
160 
161 	if (cpu_ops[cpu]->cpu_postboot)
162 		cpu_ops[cpu]->cpu_postboot();
163 
164 	/*
165 	 * Log the CPU info before it is marked online and might get read.
166 	 */
167 	cpuinfo_store_cpu();
168 
169 	/*
170 	 * Enable GIC and timers.
171 	 */
172 	notify_cpu_starting(cpu);
173 
174 	smp_store_cpu_info(cpu);
175 
176 	/*
177 	 * OK, now it's safe to let the boot CPU continue.  Wait for
178 	 * the CPU migration code to notice that the CPU is online
179 	 * before we continue.
180 	 */
181 	set_cpu_online(cpu, true);
182 	complete(&cpu_running);
183 
184 	local_dbg_enable();
185 	local_irq_enable();
186 	local_async_enable();
187 
188 	/*
189 	 * OK, it's off to the idle thread for us
190 	 */
191 	cpu_startup_entry(CPUHP_ONLINE);
192 }
193 
194 #ifdef CONFIG_HOTPLUG_CPU
195 static int op_cpu_disable(unsigned int cpu)
196 {
197 	/*
198 	 * If we don't have a cpu_die method, abort before we reach the point
199 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
200 	 */
201 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
202 		return -EOPNOTSUPP;
203 
204 	/*
205 	 * We may need to abort a hot unplug for some other mechanism-specific
206 	 * reason.
207 	 */
208 	if (cpu_ops[cpu]->cpu_disable)
209 		return cpu_ops[cpu]->cpu_disable(cpu);
210 
211 	return 0;
212 }
213 
214 /*
215  * __cpu_disable runs on the processor to be shutdown.
216  */
217 int __cpu_disable(void)
218 {
219 	unsigned int cpu = smp_processor_id();
220 	int ret;
221 
222 	ret = op_cpu_disable(cpu);
223 	if (ret)
224 		return ret;
225 
226 	/*
227 	 * Take this CPU offline.  Once we clear this, we can't return,
228 	 * and we must not schedule until we're ready to give up the cpu.
229 	 */
230 	set_cpu_online(cpu, false);
231 
232 	/*
233 	 * OK - migrate IRQs away from this CPU
234 	 */
235 	migrate_irqs();
236 
237 	/*
238 	 * Remove this CPU from the vm mask set of all processes.
239 	 */
240 	clear_tasks_mm_cpumask(cpu);
241 
242 	return 0;
243 }
244 
245 static int op_cpu_kill(unsigned int cpu)
246 {
247 	/*
248 	 * If we have no means of synchronising with the dying CPU, then assume
249 	 * that it is really dead. We can only wait for an arbitrary length of
250 	 * time and hope that it's dead, so let's skip the wait and just hope.
251 	 */
252 	if (!cpu_ops[cpu]->cpu_kill)
253 		return 0;
254 
255 	return cpu_ops[cpu]->cpu_kill(cpu);
256 }
257 
258 /*
259  * called on the thread which is asking for a CPU to be shutdown -
260  * waits until shutdown has completed, or it is timed out.
261  */
262 void __cpu_die(unsigned int cpu)
263 {
264 	int err;
265 
266 	if (!cpu_wait_death(cpu, 5)) {
267 		pr_crit("CPU%u: cpu didn't die\n", cpu);
268 		return;
269 	}
270 	pr_notice("CPU%u: shutdown\n", cpu);
271 
272 	/*
273 	 * Now that the dying CPU is beyond the point of no return w.r.t.
274 	 * in-kernel synchronisation, try to get the firwmare to help us to
275 	 * verify that it has really left the kernel before we consider
276 	 * clobbering anything it might still be using.
277 	 */
278 	err = op_cpu_kill(cpu);
279 	if (err)
280 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
281 			cpu, err);
282 }
283 
284 /*
285  * Called from the idle thread for the CPU which has been shutdown.
286  *
287  * Note that we disable IRQs here, but do not re-enable them
288  * before returning to the caller. This is also the behaviour
289  * of the other hotplug-cpu capable cores, so presumably coming
290  * out of idle fixes this.
291  */
292 void cpu_die(void)
293 {
294 	unsigned int cpu = smp_processor_id();
295 
296 	idle_task_exit();
297 
298 	local_irq_disable();
299 
300 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
301 	(void)cpu_report_death();
302 
303 	/*
304 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
305 	 * mechanism must perform all required cache maintenance to ensure that
306 	 * no dirty lines are lost in the process of shutting down the CPU.
307 	 */
308 	cpu_ops[cpu]->cpu_die(cpu);
309 
310 	BUG();
311 }
312 #endif
313 
314 static void __init hyp_mode_check(void)
315 {
316 	if (is_hyp_mode_available())
317 		pr_info("CPU: All CPU(s) started at EL2\n");
318 	else if (is_hyp_mode_mismatched())
319 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
320 			   "CPU: CPUs started in inconsistent modes");
321 	else
322 		pr_info("CPU: All CPU(s) started at EL1\n");
323 }
324 
325 void __init smp_cpus_done(unsigned int max_cpus)
326 {
327 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
328 	hyp_mode_check();
329 	apply_alternatives_all();
330 }
331 
332 void __init smp_prepare_boot_cpu(void)
333 {
334 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
335 }
336 
337 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
338 {
339 	const __be32 *cell;
340 	u64 hwid;
341 
342 	/*
343 	 * A cpu node with missing "reg" property is
344 	 * considered invalid to build a cpu_logical_map
345 	 * entry.
346 	 */
347 	cell = of_get_property(dn, "reg", NULL);
348 	if (!cell) {
349 		pr_err("%s: missing reg property\n", dn->full_name);
350 		return INVALID_HWID;
351 	}
352 
353 	hwid = of_read_number(cell, of_n_addr_cells(dn));
354 	/*
355 	 * Non affinity bits must be set to 0 in the DT
356 	 */
357 	if (hwid & ~MPIDR_HWID_BITMASK) {
358 		pr_err("%s: invalid reg property\n", dn->full_name);
359 		return INVALID_HWID;
360 	}
361 	return hwid;
362 }
363 
364 /*
365  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
366  * entries and check for duplicates. If any is found just ignore the
367  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
368  * matching valid MPIDR values.
369  */
370 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
371 {
372 	unsigned int i;
373 
374 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
375 		if (cpu_logical_map(i) == hwid)
376 			return true;
377 	return false;
378 }
379 
380 /*
381  * Initialize cpu operations for a logical cpu and
382  * set it in the possible mask on success
383  */
384 static int __init smp_cpu_setup(int cpu)
385 {
386 	if (cpu_read_ops(cpu))
387 		return -ENODEV;
388 
389 	if (cpu_ops[cpu]->cpu_init(cpu))
390 		return -ENODEV;
391 
392 	set_cpu_possible(cpu, true);
393 
394 	return 0;
395 }
396 
397 static bool bootcpu_valid __initdata;
398 static unsigned int cpu_count = 1;
399 
400 #ifdef CONFIG_ACPI
401 /*
402  * acpi_map_gic_cpu_interface - parse processor MADT entry
403  *
404  * Carry out sanity checks on MADT processor entry and initialize
405  * cpu_logical_map on success
406  */
407 static void __init
408 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
409 {
410 	u64 hwid = processor->arm_mpidr;
411 
412 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
413 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
414 		return;
415 	}
416 
417 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
418 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
419 		return;
420 	}
421 
422 	if (is_mpidr_duplicate(cpu_count, hwid)) {
423 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
424 		return;
425 	}
426 
427 	/* Check if GICC structure of boot CPU is available in the MADT */
428 	if (cpu_logical_map(0) == hwid) {
429 		if (bootcpu_valid) {
430 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
431 			       hwid);
432 			return;
433 		}
434 		bootcpu_valid = true;
435 		return;
436 	}
437 
438 	if (cpu_count >= NR_CPUS)
439 		return;
440 
441 	/* map the logical cpu id to cpu MPIDR */
442 	cpu_logical_map(cpu_count) = hwid;
443 
444 	cpu_count++;
445 }
446 
447 static int __init
448 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
449 			     const unsigned long end)
450 {
451 	struct acpi_madt_generic_interrupt *processor;
452 
453 	processor = (struct acpi_madt_generic_interrupt *)header;
454 	if (BAD_MADT_GICC_ENTRY(processor, end))
455 		return -EINVAL;
456 
457 	acpi_table_print_madt_entry(header);
458 
459 	acpi_map_gic_cpu_interface(processor);
460 
461 	return 0;
462 }
463 #else
464 #define acpi_table_parse_madt(...)	do { } while (0)
465 #endif
466 
467 /*
468  * Enumerate the possible CPU set from the device tree and build the
469  * cpu logical map array containing MPIDR values related to logical
470  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
471  */
472 void __init of_parse_and_init_cpus(void)
473 {
474 	struct device_node *dn = NULL;
475 
476 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
477 		u64 hwid = of_get_cpu_mpidr(dn);
478 
479 		if (hwid == INVALID_HWID)
480 			goto next;
481 
482 		if (is_mpidr_duplicate(cpu_count, hwid)) {
483 			pr_err("%s: duplicate cpu reg properties in the DT\n",
484 				dn->full_name);
485 			goto next;
486 		}
487 
488 		/*
489 		 * The numbering scheme requires that the boot CPU
490 		 * must be assigned logical id 0. Record it so that
491 		 * the logical map built from DT is validated and can
492 		 * be used.
493 		 */
494 		if (hwid == cpu_logical_map(0)) {
495 			if (bootcpu_valid) {
496 				pr_err("%s: duplicate boot cpu reg property in DT\n",
497 					dn->full_name);
498 				goto next;
499 			}
500 
501 			bootcpu_valid = true;
502 
503 			/*
504 			 * cpu_logical_map has already been
505 			 * initialized and the boot cpu doesn't need
506 			 * the enable-method so continue without
507 			 * incrementing cpu.
508 			 */
509 			continue;
510 		}
511 
512 		if (cpu_count >= NR_CPUS)
513 			goto next;
514 
515 		pr_debug("cpu logical map 0x%llx\n", hwid);
516 		cpu_logical_map(cpu_count) = hwid;
517 next:
518 		cpu_count++;
519 	}
520 }
521 
522 /*
523  * Enumerate the possible CPU set from the device tree or ACPI and build the
524  * cpu logical map array containing MPIDR values related to logical
525  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
526  */
527 void __init smp_init_cpus(void)
528 {
529 	int i;
530 
531 	if (acpi_disabled)
532 		of_parse_and_init_cpus();
533 	else
534 		/*
535 		 * do a walk of MADT to determine how many CPUs
536 		 * we have including disabled CPUs, and get information
537 		 * we need for SMP init
538 		 */
539 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
540 				      acpi_parse_gic_cpu_interface, 0);
541 
542 	if (cpu_count > NR_CPUS)
543 		pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n",
544 			cpu_count, NR_CPUS);
545 
546 	if (!bootcpu_valid) {
547 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
548 		return;
549 	}
550 
551 	/*
552 	 * We need to set the cpu_logical_map entries before enabling
553 	 * the cpus so that cpu processor description entries (DT cpu nodes
554 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
555 	 * with entries in cpu_logical_map while initializing the cpus.
556 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
557 	 */
558 	for (i = 1; i < NR_CPUS; i++) {
559 		if (cpu_logical_map(i) != INVALID_HWID) {
560 			if (smp_cpu_setup(i))
561 				cpu_logical_map(i) = INVALID_HWID;
562 		}
563 	}
564 }
565 
566 void __init smp_prepare_cpus(unsigned int max_cpus)
567 {
568 	int err;
569 	unsigned int cpu, ncores = num_possible_cpus();
570 
571 	init_cpu_topology();
572 
573 	smp_store_cpu_info(smp_processor_id());
574 
575 	/*
576 	 * are we trying to boot more cores than exist?
577 	 */
578 	if (max_cpus > ncores)
579 		max_cpus = ncores;
580 
581 	/* Don't bother if we're effectively UP */
582 	if (max_cpus <= 1)
583 		return;
584 
585 	/*
586 	 * Initialise the present map (which describes the set of CPUs
587 	 * actually populated at the present time) and release the
588 	 * secondaries from the bootloader.
589 	 *
590 	 * Make sure we online at most (max_cpus - 1) additional CPUs.
591 	 */
592 	max_cpus--;
593 	for_each_possible_cpu(cpu) {
594 		if (max_cpus == 0)
595 			break;
596 
597 		if (cpu == smp_processor_id())
598 			continue;
599 
600 		if (!cpu_ops[cpu])
601 			continue;
602 
603 		err = cpu_ops[cpu]->cpu_prepare(cpu);
604 		if (err)
605 			continue;
606 
607 		set_cpu_present(cpu, true);
608 		max_cpus--;
609 	}
610 }
611 
612 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
613 
614 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
615 {
616 	__smp_cross_call = fn;
617 }
618 
619 static const char *ipi_types[NR_IPI] __tracepoint_string = {
620 #define S(x,s)	[x] = s
621 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
622 	S(IPI_CALL_FUNC, "Function call interrupts"),
623 	S(IPI_CPU_STOP, "CPU stop interrupts"),
624 	S(IPI_TIMER, "Timer broadcast interrupts"),
625 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
626 };
627 
628 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
629 {
630 	trace_ipi_raise(target, ipi_types[ipinr]);
631 	__smp_cross_call(target, ipinr);
632 }
633 
634 void show_ipi_list(struct seq_file *p, int prec)
635 {
636 	unsigned int cpu, i;
637 
638 	for (i = 0; i < NR_IPI; i++) {
639 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
640 			   prec >= 4 ? " " : "");
641 		for_each_online_cpu(cpu)
642 			seq_printf(p, "%10u ",
643 				   __get_irq_stat(cpu, ipi_irqs[i]));
644 		seq_printf(p, "      %s\n", ipi_types[i]);
645 	}
646 }
647 
648 u64 smp_irq_stat_cpu(unsigned int cpu)
649 {
650 	u64 sum = 0;
651 	int i;
652 
653 	for (i = 0; i < NR_IPI; i++)
654 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
655 
656 	return sum;
657 }
658 
659 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
660 {
661 	smp_cross_call(mask, IPI_CALL_FUNC);
662 }
663 
664 void arch_send_call_function_single_ipi(int cpu)
665 {
666 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
667 }
668 
669 #ifdef CONFIG_IRQ_WORK
670 void arch_irq_work_raise(void)
671 {
672 	if (__smp_cross_call)
673 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
674 }
675 #endif
676 
677 static DEFINE_RAW_SPINLOCK(stop_lock);
678 
679 /*
680  * ipi_cpu_stop - handle IPI from smp_send_stop()
681  */
682 static void ipi_cpu_stop(unsigned int cpu)
683 {
684 	if (system_state == SYSTEM_BOOTING ||
685 	    system_state == SYSTEM_RUNNING) {
686 		raw_spin_lock(&stop_lock);
687 		pr_crit("CPU%u: stopping\n", cpu);
688 		dump_stack();
689 		raw_spin_unlock(&stop_lock);
690 	}
691 
692 	set_cpu_online(cpu, false);
693 
694 	local_irq_disable();
695 
696 	while (1)
697 		cpu_relax();
698 }
699 
700 /*
701  * Main handler for inter-processor interrupts
702  */
703 void handle_IPI(int ipinr, struct pt_regs *regs)
704 {
705 	unsigned int cpu = smp_processor_id();
706 	struct pt_regs *old_regs = set_irq_regs(regs);
707 
708 	if ((unsigned)ipinr < NR_IPI) {
709 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
710 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
711 	}
712 
713 	switch (ipinr) {
714 	case IPI_RESCHEDULE:
715 		scheduler_ipi();
716 		break;
717 
718 	case IPI_CALL_FUNC:
719 		irq_enter();
720 		generic_smp_call_function_interrupt();
721 		irq_exit();
722 		break;
723 
724 	case IPI_CPU_STOP:
725 		irq_enter();
726 		ipi_cpu_stop(cpu);
727 		irq_exit();
728 		break;
729 
730 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
731 	case IPI_TIMER:
732 		irq_enter();
733 		tick_receive_broadcast();
734 		irq_exit();
735 		break;
736 #endif
737 
738 #ifdef CONFIG_IRQ_WORK
739 	case IPI_IRQ_WORK:
740 		irq_enter();
741 		irq_work_run();
742 		irq_exit();
743 		break;
744 #endif
745 
746 	default:
747 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
748 		break;
749 	}
750 
751 	if ((unsigned)ipinr < NR_IPI)
752 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
753 	set_irq_regs(old_regs);
754 }
755 
756 void smp_send_reschedule(int cpu)
757 {
758 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
759 }
760 
761 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
762 void tick_broadcast(const struct cpumask *mask)
763 {
764 	smp_cross_call(mask, IPI_TIMER);
765 }
766 #endif
767 
768 void smp_send_stop(void)
769 {
770 	unsigned long timeout;
771 
772 	if (num_online_cpus() > 1) {
773 		cpumask_t mask;
774 
775 		cpumask_copy(&mask, cpu_online_mask);
776 		cpumask_clear_cpu(smp_processor_id(), &mask);
777 
778 		smp_cross_call(&mask, IPI_CPU_STOP);
779 	}
780 
781 	/* Wait up to one second for other CPUs to stop */
782 	timeout = USEC_PER_SEC;
783 	while (num_online_cpus() > 1 && timeout--)
784 		udelay(1);
785 
786 	if (num_online_cpus() > 1)
787 		pr_warning("SMP: failed to stop secondary CPUs\n");
788 }
789 
790 /*
791  * not supported here
792  */
793 int setup_profiling_timer(unsigned int multiplier)
794 {
795 	return -EINVAL;
796 }
797