1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kvm_host.h> 36 37 #include <asm/alternative.h> 38 #include <asm/atomic.h> 39 #include <asm/cacheflush.h> 40 #include <asm/cpu.h> 41 #include <asm/cputype.h> 42 #include <asm/cpu_ops.h> 43 #include <asm/daifflags.h> 44 #include <asm/kvm_mmu.h> 45 #include <asm/mmu_context.h> 46 #include <asm/numa.h> 47 #include <asm/processor.h> 48 #include <asm/smp_plat.h> 49 #include <asm/sections.h> 50 #include <asm/tlbflush.h> 51 #include <asm/ptrace.h> 52 #include <asm/virt.h> 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ipi.h> 56 57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 58 EXPORT_PER_CPU_SYMBOL(cpu_number); 59 60 /* 61 * as from 2.5, kernels no longer have an init_tasks structure 62 * so we need some other way of telling a new secondary core 63 * where to place its SVC stack 64 */ 65 struct secondary_data secondary_data; 66 /* Number of CPUs which aren't online, but looping in kernel text. */ 67 static int cpus_stuck_in_kernel; 68 69 enum ipi_msg_type { 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNC, 72 IPI_CPU_STOP, 73 IPI_CPU_CRASH_STOP, 74 IPI_TIMER, 75 IPI_IRQ_WORK, 76 IPI_WAKEUP, 77 NR_IPI 78 }; 79 80 static int ipi_irq_base __read_mostly; 81 static int nr_ipi __read_mostly = NR_IPI; 82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly; 83 84 static void ipi_setup(int cpu); 85 86 #ifdef CONFIG_HOTPLUG_CPU 87 static void ipi_teardown(int cpu); 88 static int op_cpu_kill(unsigned int cpu); 89 #else 90 static inline int op_cpu_kill(unsigned int cpu) 91 { 92 return -ENOSYS; 93 } 94 #endif 95 96 97 /* 98 * Boot a secondary CPU, and assign it the specified idle task. 99 * This also gives us the initial stack to use for this CPU. 100 */ 101 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 102 { 103 const struct cpu_operations *ops = get_cpu_ops(cpu); 104 105 if (ops->cpu_boot) 106 return ops->cpu_boot(cpu); 107 108 return -EOPNOTSUPP; 109 } 110 111 static DECLARE_COMPLETION(cpu_running); 112 113 int __cpu_up(unsigned int cpu, struct task_struct *idle) 114 { 115 int ret; 116 long status; 117 118 /* 119 * We need to tell the secondary core where to find its stack and the 120 * page tables. 121 */ 122 secondary_data.task = idle; 123 update_cpu_boot_status(CPU_MMU_OFF); 124 125 /* Now bring the CPU into our world */ 126 ret = boot_secondary(cpu, idle); 127 if (ret) { 128 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 129 return ret; 130 } 131 132 /* 133 * CPU was successfully started, wait for it to come online or 134 * time out. 135 */ 136 wait_for_completion_timeout(&cpu_running, 137 msecs_to_jiffies(5000)); 138 if (cpu_online(cpu)) 139 return 0; 140 141 pr_crit("CPU%u: failed to come online\n", cpu); 142 secondary_data.task = NULL; 143 status = READ_ONCE(secondary_data.status); 144 if (status == CPU_MMU_OFF) 145 status = READ_ONCE(__early_cpu_boot_status); 146 147 switch (status & CPU_BOOT_STATUS_MASK) { 148 default: 149 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 150 cpu, status); 151 cpus_stuck_in_kernel++; 152 break; 153 case CPU_KILL_ME: 154 if (!op_cpu_kill(cpu)) { 155 pr_crit("CPU%u: died during early boot\n", cpu); 156 break; 157 } 158 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 159 fallthrough; 160 case CPU_STUCK_IN_KERNEL: 161 pr_crit("CPU%u: is stuck in kernel\n", cpu); 162 if (status & CPU_STUCK_REASON_52_BIT_VA) 163 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 164 if (status & CPU_STUCK_REASON_NO_GRAN) { 165 pr_crit("CPU%u: does not support %luK granule\n", 166 cpu, PAGE_SIZE / SZ_1K); 167 } 168 cpus_stuck_in_kernel++; 169 break; 170 case CPU_PANIC_KERNEL: 171 panic("CPU%u detected unsupported configuration\n", cpu); 172 } 173 174 return -EIO; 175 } 176 177 static void init_gic_priority_masking(void) 178 { 179 u32 cpuflags; 180 181 if (WARN_ON(!gic_enable_sre())) 182 return; 183 184 cpuflags = read_sysreg(daif); 185 186 WARN_ON(!(cpuflags & PSR_I_BIT)); 187 WARN_ON(!(cpuflags & PSR_F_BIT)); 188 189 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 190 } 191 192 /* 193 * This is the secondary CPU boot entry. We're using this CPUs 194 * idle thread stack, but a set of temporary page tables. 195 */ 196 asmlinkage notrace void secondary_start_kernel(void) 197 { 198 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 199 struct mm_struct *mm = &init_mm; 200 const struct cpu_operations *ops; 201 unsigned int cpu = smp_processor_id(); 202 203 /* 204 * All kernel threads share the same mm context; grab a 205 * reference and switch to it. 206 */ 207 mmgrab(mm); 208 current->active_mm = mm; 209 210 /* 211 * TTBR0 is only used for the identity mapping at this stage. Make it 212 * point to zero page to avoid speculatively fetching new entries. 213 */ 214 cpu_uninstall_idmap(); 215 216 if (system_uses_irq_prio_masking()) 217 init_gic_priority_masking(); 218 219 rcu_cpu_starting(cpu); 220 trace_hardirqs_off(); 221 222 /* 223 * If the system has established the capabilities, make sure 224 * this CPU ticks all of those. If it doesn't, the CPU will 225 * fail to come online. 226 */ 227 check_local_cpu_capabilities(); 228 229 ops = get_cpu_ops(cpu); 230 if (ops->cpu_postboot) 231 ops->cpu_postboot(); 232 233 /* 234 * Log the CPU info before it is marked online and might get read. 235 */ 236 cpuinfo_store_cpu(); 237 store_cpu_topology(cpu); 238 239 /* 240 * Enable GIC and timers. 241 */ 242 notify_cpu_starting(cpu); 243 244 ipi_setup(cpu); 245 246 numa_add_cpu(cpu); 247 248 /* 249 * OK, now it's safe to let the boot CPU continue. Wait for 250 * the CPU migration code to notice that the CPU is online 251 * before we continue. 252 */ 253 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 254 cpu, (unsigned long)mpidr, 255 read_cpuid_id()); 256 update_cpu_boot_status(CPU_BOOT_SUCCESS); 257 set_cpu_online(cpu, true); 258 complete(&cpu_running); 259 260 local_daif_restore(DAIF_PROCCTX); 261 262 /* 263 * OK, it's off to the idle thread for us 264 */ 265 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 266 } 267 268 #ifdef CONFIG_HOTPLUG_CPU 269 static int op_cpu_disable(unsigned int cpu) 270 { 271 const struct cpu_operations *ops = get_cpu_ops(cpu); 272 273 /* 274 * If we don't have a cpu_die method, abort before we reach the point 275 * of no return. CPU0 may not have an cpu_ops, so test for it. 276 */ 277 if (!ops || !ops->cpu_die) 278 return -EOPNOTSUPP; 279 280 /* 281 * We may need to abort a hot unplug for some other mechanism-specific 282 * reason. 283 */ 284 if (ops->cpu_disable) 285 return ops->cpu_disable(cpu); 286 287 return 0; 288 } 289 290 /* 291 * __cpu_disable runs on the processor to be shutdown. 292 */ 293 int __cpu_disable(void) 294 { 295 unsigned int cpu = smp_processor_id(); 296 int ret; 297 298 ret = op_cpu_disable(cpu); 299 if (ret) 300 return ret; 301 302 remove_cpu_topology(cpu); 303 numa_remove_cpu(cpu); 304 305 /* 306 * Take this CPU offline. Once we clear this, we can't return, 307 * and we must not schedule until we're ready to give up the cpu. 308 */ 309 set_cpu_online(cpu, false); 310 ipi_teardown(cpu); 311 312 /* 313 * OK - migrate IRQs away from this CPU 314 */ 315 irq_migrate_all_off_this_cpu(); 316 317 return 0; 318 } 319 320 static int op_cpu_kill(unsigned int cpu) 321 { 322 const struct cpu_operations *ops = get_cpu_ops(cpu); 323 324 /* 325 * If we have no means of synchronising with the dying CPU, then assume 326 * that it is really dead. We can only wait for an arbitrary length of 327 * time and hope that it's dead, so let's skip the wait and just hope. 328 */ 329 if (!ops->cpu_kill) 330 return 0; 331 332 return ops->cpu_kill(cpu); 333 } 334 335 /* 336 * called on the thread which is asking for a CPU to be shutdown - 337 * waits until shutdown has completed, or it is timed out. 338 */ 339 void __cpu_die(unsigned int cpu) 340 { 341 int err; 342 343 if (!cpu_wait_death(cpu, 5)) { 344 pr_crit("CPU%u: cpu didn't die\n", cpu); 345 return; 346 } 347 pr_debug("CPU%u: shutdown\n", cpu); 348 349 /* 350 * Now that the dying CPU is beyond the point of no return w.r.t. 351 * in-kernel synchronisation, try to get the firwmare to help us to 352 * verify that it has really left the kernel before we consider 353 * clobbering anything it might still be using. 354 */ 355 err = op_cpu_kill(cpu); 356 if (err) 357 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 358 } 359 360 /* 361 * Called from the idle thread for the CPU which has been shutdown. 362 * 363 */ 364 void cpu_die(void) 365 { 366 unsigned int cpu = smp_processor_id(); 367 const struct cpu_operations *ops = get_cpu_ops(cpu); 368 369 idle_task_exit(); 370 371 local_daif_mask(); 372 373 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 374 (void)cpu_report_death(); 375 376 /* 377 * Actually shutdown the CPU. This must never fail. The specific hotplug 378 * mechanism must perform all required cache maintenance to ensure that 379 * no dirty lines are lost in the process of shutting down the CPU. 380 */ 381 ops->cpu_die(cpu); 382 383 BUG(); 384 } 385 #endif 386 387 static void __cpu_try_die(int cpu) 388 { 389 #ifdef CONFIG_HOTPLUG_CPU 390 const struct cpu_operations *ops = get_cpu_ops(cpu); 391 392 if (ops && ops->cpu_die) 393 ops->cpu_die(cpu); 394 #endif 395 } 396 397 /* 398 * Kill the calling secondary CPU, early in bringup before it is turned 399 * online. 400 */ 401 void cpu_die_early(void) 402 { 403 int cpu = smp_processor_id(); 404 405 pr_crit("CPU%d: will not boot\n", cpu); 406 407 /* Mark this CPU absent */ 408 set_cpu_present(cpu, 0); 409 rcu_report_dead(cpu); 410 411 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 412 update_cpu_boot_status(CPU_KILL_ME); 413 __cpu_try_die(cpu); 414 } 415 416 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 417 418 cpu_park_loop(); 419 } 420 421 static void __init hyp_mode_check(void) 422 { 423 if (is_hyp_mode_available()) 424 pr_info("CPU: All CPU(s) started at EL2\n"); 425 else if (is_hyp_mode_mismatched()) 426 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 427 "CPU: CPUs started in inconsistent modes"); 428 else 429 pr_info("CPU: All CPU(s) started at EL1\n"); 430 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { 431 kvm_compute_layout(); 432 kvm_apply_hyp_relocations(); 433 } 434 } 435 436 void __init smp_cpus_done(unsigned int max_cpus) 437 { 438 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 439 setup_cpu_features(); 440 hyp_mode_check(); 441 apply_alternatives_all(); 442 mark_linear_text_alias_ro(); 443 } 444 445 void __init smp_prepare_boot_cpu(void) 446 { 447 /* 448 * The runtime per-cpu areas have been allocated by 449 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be 450 * freed shortly, so we must move over to the runtime per-cpu area. 451 */ 452 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 453 cpuinfo_store_boot_cpu(); 454 455 /* 456 * We now know enough about the boot CPU to apply the 457 * alternatives that cannot wait until interrupt handling 458 * and/or scheduling is enabled. 459 */ 460 apply_boot_alternatives(); 461 462 /* Conditionally switch to GIC PMR for interrupt masking */ 463 if (system_uses_irq_prio_masking()) 464 init_gic_priority_masking(); 465 466 kasan_init_hw_tags(); 467 } 468 469 /* 470 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 471 * entries and check for duplicates. If any is found just ignore the 472 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 473 * matching valid MPIDR values. 474 */ 475 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 476 { 477 unsigned int i; 478 479 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 480 if (cpu_logical_map(i) == hwid) 481 return true; 482 return false; 483 } 484 485 /* 486 * Initialize cpu operations for a logical cpu and 487 * set it in the possible mask on success 488 */ 489 static int __init smp_cpu_setup(int cpu) 490 { 491 const struct cpu_operations *ops; 492 493 if (init_cpu_ops(cpu)) 494 return -ENODEV; 495 496 ops = get_cpu_ops(cpu); 497 if (ops->cpu_init(cpu)) 498 return -ENODEV; 499 500 set_cpu_possible(cpu, true); 501 502 return 0; 503 } 504 505 static bool bootcpu_valid __initdata; 506 static unsigned int cpu_count = 1; 507 508 #ifdef CONFIG_ACPI 509 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 510 511 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 512 { 513 return &cpu_madt_gicc[cpu]; 514 } 515 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc); 516 517 /* 518 * acpi_map_gic_cpu_interface - parse processor MADT entry 519 * 520 * Carry out sanity checks on MADT processor entry and initialize 521 * cpu_logical_map on success 522 */ 523 static void __init 524 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 525 { 526 u64 hwid = processor->arm_mpidr; 527 528 if (!(processor->flags & ACPI_MADT_ENABLED)) { 529 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 530 return; 531 } 532 533 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 534 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 535 return; 536 } 537 538 if (is_mpidr_duplicate(cpu_count, hwid)) { 539 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 540 return; 541 } 542 543 /* Check if GICC structure of boot CPU is available in the MADT */ 544 if (cpu_logical_map(0) == hwid) { 545 if (bootcpu_valid) { 546 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 547 hwid); 548 return; 549 } 550 bootcpu_valid = true; 551 cpu_madt_gicc[0] = *processor; 552 return; 553 } 554 555 if (cpu_count >= NR_CPUS) 556 return; 557 558 /* map the logical cpu id to cpu MPIDR */ 559 set_cpu_logical_map(cpu_count, hwid); 560 561 cpu_madt_gicc[cpu_count] = *processor; 562 563 /* 564 * Set-up the ACPI parking protocol cpu entries 565 * while initializing the cpu_logical_map to 566 * avoid parsing MADT entries multiple times for 567 * nothing (ie a valid cpu_logical_map entry should 568 * contain a valid parking protocol data set to 569 * initialize the cpu if the parking protocol is 570 * the only available enable method). 571 */ 572 acpi_set_mailbox_entry(cpu_count, processor); 573 574 cpu_count++; 575 } 576 577 static int __init 578 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 579 const unsigned long end) 580 { 581 struct acpi_madt_generic_interrupt *processor; 582 583 processor = (struct acpi_madt_generic_interrupt *)header; 584 if (BAD_MADT_GICC_ENTRY(processor, end)) 585 return -EINVAL; 586 587 acpi_table_print_madt_entry(&header->common); 588 589 acpi_map_gic_cpu_interface(processor); 590 591 return 0; 592 } 593 594 static void __init acpi_parse_and_init_cpus(void) 595 { 596 int i; 597 598 /* 599 * do a walk of MADT to determine how many CPUs 600 * we have including disabled CPUs, and get information 601 * we need for SMP init. 602 */ 603 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 604 acpi_parse_gic_cpu_interface, 0); 605 606 /* 607 * In ACPI, SMP and CPU NUMA information is provided in separate 608 * static tables, namely the MADT and the SRAT. 609 * 610 * Thus, it is simpler to first create the cpu logical map through 611 * an MADT walk and then map the logical cpus to their node ids 612 * as separate steps. 613 */ 614 acpi_map_cpus_to_nodes(); 615 616 for (i = 0; i < nr_cpu_ids; i++) 617 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 618 } 619 #else 620 #define acpi_parse_and_init_cpus(...) do { } while (0) 621 #endif 622 623 /* 624 * Enumerate the possible CPU set from the device tree and build the 625 * cpu logical map array containing MPIDR values related to logical 626 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 627 */ 628 static void __init of_parse_and_init_cpus(void) 629 { 630 struct device_node *dn; 631 632 for_each_of_cpu_node(dn) { 633 u64 hwid = of_get_cpu_hwid(dn, 0); 634 635 if (hwid & ~MPIDR_HWID_BITMASK) 636 goto next; 637 638 if (is_mpidr_duplicate(cpu_count, hwid)) { 639 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 640 dn); 641 goto next; 642 } 643 644 /* 645 * The numbering scheme requires that the boot CPU 646 * must be assigned logical id 0. Record it so that 647 * the logical map built from DT is validated and can 648 * be used. 649 */ 650 if (hwid == cpu_logical_map(0)) { 651 if (bootcpu_valid) { 652 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 653 dn); 654 goto next; 655 } 656 657 bootcpu_valid = true; 658 early_map_cpu_to_node(0, of_node_to_nid(dn)); 659 660 /* 661 * cpu_logical_map has already been 662 * initialized and the boot cpu doesn't need 663 * the enable-method so continue without 664 * incrementing cpu. 665 */ 666 continue; 667 } 668 669 if (cpu_count >= NR_CPUS) 670 goto next; 671 672 pr_debug("cpu logical map 0x%llx\n", hwid); 673 set_cpu_logical_map(cpu_count, hwid); 674 675 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 676 next: 677 cpu_count++; 678 } 679 } 680 681 /* 682 * Enumerate the possible CPU set from the device tree or ACPI and build the 683 * cpu logical map array containing MPIDR values related to logical 684 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 685 */ 686 void __init smp_init_cpus(void) 687 { 688 int i; 689 690 if (acpi_disabled) 691 of_parse_and_init_cpus(); 692 else 693 acpi_parse_and_init_cpus(); 694 695 if (cpu_count > nr_cpu_ids) 696 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 697 cpu_count, nr_cpu_ids); 698 699 if (!bootcpu_valid) { 700 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 701 return; 702 } 703 704 /* 705 * We need to set the cpu_logical_map entries before enabling 706 * the cpus so that cpu processor description entries (DT cpu nodes 707 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 708 * with entries in cpu_logical_map while initializing the cpus. 709 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 710 */ 711 for (i = 1; i < nr_cpu_ids; i++) { 712 if (cpu_logical_map(i) != INVALID_HWID) { 713 if (smp_cpu_setup(i)) 714 set_cpu_logical_map(i, INVALID_HWID); 715 } 716 } 717 } 718 719 void __init smp_prepare_cpus(unsigned int max_cpus) 720 { 721 const struct cpu_operations *ops; 722 int err; 723 unsigned int cpu; 724 unsigned int this_cpu; 725 726 init_cpu_topology(); 727 728 this_cpu = smp_processor_id(); 729 store_cpu_topology(this_cpu); 730 numa_store_cpu_info(this_cpu); 731 numa_add_cpu(this_cpu); 732 733 /* 734 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 735 * secondary CPUs present. 736 */ 737 if (max_cpus == 0) 738 return; 739 740 /* 741 * Initialise the present map (which describes the set of CPUs 742 * actually populated at the present time) and release the 743 * secondaries from the bootloader. 744 */ 745 for_each_possible_cpu(cpu) { 746 747 per_cpu(cpu_number, cpu) = cpu; 748 749 if (cpu == smp_processor_id()) 750 continue; 751 752 ops = get_cpu_ops(cpu); 753 if (!ops) 754 continue; 755 756 err = ops->cpu_prepare(cpu); 757 if (err) 758 continue; 759 760 set_cpu_present(cpu, true); 761 numa_store_cpu_info(cpu); 762 } 763 } 764 765 static const char *ipi_types[NR_IPI] __tracepoint_string = { 766 [IPI_RESCHEDULE] = "Rescheduling interrupts", 767 [IPI_CALL_FUNC] = "Function call interrupts", 768 [IPI_CPU_STOP] = "CPU stop interrupts", 769 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts", 770 [IPI_TIMER] = "Timer broadcast interrupts", 771 [IPI_IRQ_WORK] = "IRQ work interrupts", 772 [IPI_WAKEUP] = "CPU wake-up interrupts", 773 }; 774 775 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 776 777 unsigned long irq_err_count; 778 779 int arch_show_interrupts(struct seq_file *p, int prec) 780 { 781 unsigned int cpu, i; 782 783 for (i = 0; i < NR_IPI; i++) { 784 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 785 prec >= 4 ? " " : ""); 786 for_each_online_cpu(cpu) 787 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 788 seq_printf(p, " %s\n", ipi_types[i]); 789 } 790 791 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 792 return 0; 793 } 794 795 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 796 { 797 smp_cross_call(mask, IPI_CALL_FUNC); 798 } 799 800 void arch_send_call_function_single_ipi(int cpu) 801 { 802 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 803 } 804 805 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 806 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 807 { 808 smp_cross_call(mask, IPI_WAKEUP); 809 } 810 #endif 811 812 #ifdef CONFIG_IRQ_WORK 813 void arch_irq_work_raise(void) 814 { 815 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 816 } 817 #endif 818 819 static void local_cpu_stop(void) 820 { 821 set_cpu_online(smp_processor_id(), false); 822 823 local_daif_mask(); 824 sdei_mask_local_cpu(); 825 cpu_park_loop(); 826 } 827 828 /* 829 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 830 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 831 * CPUs that have already stopped themselves. 832 */ 833 void panic_smp_self_stop(void) 834 { 835 local_cpu_stop(); 836 } 837 838 #ifdef CONFIG_KEXEC_CORE 839 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 840 #endif 841 842 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 843 { 844 #ifdef CONFIG_KEXEC_CORE 845 crash_save_cpu(regs, cpu); 846 847 atomic_dec(&waiting_for_crash_ipi); 848 849 local_irq_disable(); 850 sdei_mask_local_cpu(); 851 852 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 853 __cpu_try_die(cpu); 854 855 /* just in case */ 856 cpu_park_loop(); 857 #endif 858 } 859 860 /* 861 * Main handler for inter-processor interrupts 862 */ 863 static void do_handle_IPI(int ipinr) 864 { 865 unsigned int cpu = smp_processor_id(); 866 867 if ((unsigned)ipinr < NR_IPI) 868 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 869 870 switch (ipinr) { 871 case IPI_RESCHEDULE: 872 scheduler_ipi(); 873 break; 874 875 case IPI_CALL_FUNC: 876 generic_smp_call_function_interrupt(); 877 break; 878 879 case IPI_CPU_STOP: 880 local_cpu_stop(); 881 break; 882 883 case IPI_CPU_CRASH_STOP: 884 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 885 ipi_cpu_crash_stop(cpu, get_irq_regs()); 886 887 unreachable(); 888 } 889 break; 890 891 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 892 case IPI_TIMER: 893 tick_receive_broadcast(); 894 break; 895 #endif 896 897 #ifdef CONFIG_IRQ_WORK 898 case IPI_IRQ_WORK: 899 irq_work_run(); 900 break; 901 #endif 902 903 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 904 case IPI_WAKEUP: 905 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 906 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 907 cpu); 908 break; 909 #endif 910 911 default: 912 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 913 break; 914 } 915 916 if ((unsigned)ipinr < NR_IPI) 917 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 918 } 919 920 static irqreturn_t ipi_handler(int irq, void *data) 921 { 922 do_handle_IPI(irq - ipi_irq_base); 923 return IRQ_HANDLED; 924 } 925 926 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 927 { 928 trace_ipi_raise(target, ipi_types[ipinr]); 929 __ipi_send_mask(ipi_desc[ipinr], target); 930 } 931 932 static void ipi_setup(int cpu) 933 { 934 int i; 935 936 if (WARN_ON_ONCE(!ipi_irq_base)) 937 return; 938 939 for (i = 0; i < nr_ipi; i++) 940 enable_percpu_irq(ipi_irq_base + i, 0); 941 } 942 943 #ifdef CONFIG_HOTPLUG_CPU 944 static void ipi_teardown(int cpu) 945 { 946 int i; 947 948 if (WARN_ON_ONCE(!ipi_irq_base)) 949 return; 950 951 for (i = 0; i < nr_ipi; i++) 952 disable_percpu_irq(ipi_irq_base + i); 953 } 954 #endif 955 956 void __init set_smp_ipi_range(int ipi_base, int n) 957 { 958 int i; 959 960 WARN_ON(n < NR_IPI); 961 nr_ipi = min(n, NR_IPI); 962 963 for (i = 0; i < nr_ipi; i++) { 964 int err; 965 966 err = request_percpu_irq(ipi_base + i, ipi_handler, 967 "IPI", &cpu_number); 968 WARN_ON(err); 969 970 ipi_desc[i] = irq_to_desc(ipi_base + i); 971 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 972 } 973 974 ipi_irq_base = ipi_base; 975 976 /* Setup the boot CPU immediately */ 977 ipi_setup(smp_processor_id()); 978 } 979 980 void smp_send_reschedule(int cpu) 981 { 982 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 983 } 984 985 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 986 void tick_broadcast(const struct cpumask *mask) 987 { 988 smp_cross_call(mask, IPI_TIMER); 989 } 990 #endif 991 992 /* 993 * The number of CPUs online, not counting this CPU (which may not be 994 * fully online and so not counted in num_online_cpus()). 995 */ 996 static inline unsigned int num_other_online_cpus(void) 997 { 998 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 999 1000 return num_online_cpus() - this_cpu_online; 1001 } 1002 1003 void smp_send_stop(void) 1004 { 1005 unsigned long timeout; 1006 1007 if (num_other_online_cpus()) { 1008 cpumask_t mask; 1009 1010 cpumask_copy(&mask, cpu_online_mask); 1011 cpumask_clear_cpu(smp_processor_id(), &mask); 1012 1013 if (system_state <= SYSTEM_RUNNING) 1014 pr_crit("SMP: stopping secondary CPUs\n"); 1015 smp_cross_call(&mask, IPI_CPU_STOP); 1016 } 1017 1018 /* Wait up to one second for other CPUs to stop */ 1019 timeout = USEC_PER_SEC; 1020 while (num_other_online_cpus() && timeout--) 1021 udelay(1); 1022 1023 if (num_other_online_cpus()) 1024 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1025 cpumask_pr_args(cpu_online_mask)); 1026 1027 sdei_mask_local_cpu(); 1028 } 1029 1030 #ifdef CONFIG_KEXEC_CORE 1031 void crash_smp_send_stop(void) 1032 { 1033 static int cpus_stopped; 1034 cpumask_t mask; 1035 unsigned long timeout; 1036 1037 /* 1038 * This function can be called twice in panic path, but obviously 1039 * we execute this only once. 1040 */ 1041 if (cpus_stopped) 1042 return; 1043 1044 cpus_stopped = 1; 1045 1046 /* 1047 * If this cpu is the only one alive at this point in time, online or 1048 * not, there are no stop messages to be sent around, so just back out. 1049 */ 1050 if (num_other_online_cpus() == 0) { 1051 sdei_mask_local_cpu(); 1052 return; 1053 } 1054 1055 cpumask_copy(&mask, cpu_online_mask); 1056 cpumask_clear_cpu(smp_processor_id(), &mask); 1057 1058 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1059 1060 pr_crit("SMP: stopping secondary CPUs\n"); 1061 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1062 1063 /* Wait up to one second for other CPUs to stop */ 1064 timeout = USEC_PER_SEC; 1065 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1066 udelay(1); 1067 1068 if (atomic_read(&waiting_for_crash_ipi) > 0) 1069 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1070 cpumask_pr_args(&mask)); 1071 1072 sdei_mask_local_cpu(); 1073 } 1074 1075 bool smp_crash_stop_failed(void) 1076 { 1077 return (atomic_read(&waiting_for_crash_ipi) > 0); 1078 } 1079 #endif 1080 1081 static bool have_cpu_die(void) 1082 { 1083 #ifdef CONFIG_HOTPLUG_CPU 1084 int any_cpu = raw_smp_processor_id(); 1085 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1086 1087 if (ops && ops->cpu_die) 1088 return true; 1089 #endif 1090 return false; 1091 } 1092 1093 bool cpus_are_stuck_in_kernel(void) 1094 { 1095 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1096 1097 return !!cpus_stuck_in_kernel || smp_spin_tables || 1098 is_protected_kvm_enabled(); 1099 } 1100