1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/acpi.h> 21 #include <linux/delay.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/sched/mm.h> 25 #include <linux/sched/hotplug.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/interrupt.h> 28 #include <linux/cache.h> 29 #include <linux/profile.h> 30 #include <linux/errno.h> 31 #include <linux/mm.h> 32 #include <linux/err.h> 33 #include <linux/cpu.h> 34 #include <linux/smp.h> 35 #include <linux/seq_file.h> 36 #include <linux/irq.h> 37 #include <linux/percpu.h> 38 #include <linux/clockchips.h> 39 #include <linux/completion.h> 40 #include <linux/of.h> 41 #include <linux/irq_work.h> 42 #include <linux/kexec.h> 43 44 #include <asm/alternative.h> 45 #include <asm/atomic.h> 46 #include <asm/cacheflush.h> 47 #include <asm/cpu.h> 48 #include <asm/cputype.h> 49 #include <asm/cpu_ops.h> 50 #include <asm/mmu_context.h> 51 #include <asm/numa.h> 52 #include <asm/pgtable.h> 53 #include <asm/pgalloc.h> 54 #include <asm/processor.h> 55 #include <asm/smp_plat.h> 56 #include <asm/sections.h> 57 #include <asm/tlbflush.h> 58 #include <asm/ptrace.h> 59 #include <asm/virt.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/ipi.h> 63 64 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 65 EXPORT_PER_CPU_SYMBOL(cpu_number); 66 67 /* 68 * as from 2.5, kernels no longer have an init_tasks structure 69 * so we need some other way of telling a new secondary core 70 * where to place its SVC stack 71 */ 72 struct secondary_data secondary_data; 73 /* Number of CPUs which aren't online, but looping in kernel text. */ 74 int cpus_stuck_in_kernel; 75 76 enum ipi_msg_type { 77 IPI_RESCHEDULE, 78 IPI_CALL_FUNC, 79 IPI_CPU_STOP, 80 IPI_CPU_CRASH_STOP, 81 IPI_TIMER, 82 IPI_IRQ_WORK, 83 IPI_WAKEUP 84 }; 85 86 #ifdef CONFIG_ARM64_VHE 87 88 /* Whether the boot CPU is running in HYP mode or not*/ 89 static bool boot_cpu_hyp_mode; 90 91 static inline void save_boot_cpu_run_el(void) 92 { 93 boot_cpu_hyp_mode = is_kernel_in_hyp_mode(); 94 } 95 96 static inline bool is_boot_cpu_in_hyp_mode(void) 97 { 98 return boot_cpu_hyp_mode; 99 } 100 101 /* 102 * Verify that a secondary CPU is running the kernel at the same 103 * EL as that of the boot CPU. 104 */ 105 void verify_cpu_run_el(void) 106 { 107 bool in_el2 = is_kernel_in_hyp_mode(); 108 bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode(); 109 110 if (in_el2 ^ boot_cpu_el2) { 111 pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n", 112 smp_processor_id(), 113 in_el2 ? 2 : 1, 114 boot_cpu_el2 ? 2 : 1); 115 cpu_panic_kernel(); 116 } 117 } 118 119 #else 120 static inline void save_boot_cpu_run_el(void) {} 121 #endif 122 123 #ifdef CONFIG_HOTPLUG_CPU 124 static int op_cpu_kill(unsigned int cpu); 125 #else 126 static inline int op_cpu_kill(unsigned int cpu) 127 { 128 return -ENOSYS; 129 } 130 #endif 131 132 133 /* 134 * Boot a secondary CPU, and assign it the specified idle task. 135 * This also gives us the initial stack to use for this CPU. 136 */ 137 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 138 { 139 if (cpu_ops[cpu]->cpu_boot) 140 return cpu_ops[cpu]->cpu_boot(cpu); 141 142 return -EOPNOTSUPP; 143 } 144 145 static DECLARE_COMPLETION(cpu_running); 146 147 int __cpu_up(unsigned int cpu, struct task_struct *idle) 148 { 149 int ret; 150 long status; 151 152 /* 153 * We need to tell the secondary core where to find its stack and the 154 * page tables. 155 */ 156 secondary_data.task = idle; 157 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 158 update_cpu_boot_status(CPU_MMU_OFF); 159 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 160 161 /* 162 * Now bring the CPU into our world. 163 */ 164 ret = boot_secondary(cpu, idle); 165 if (ret == 0) { 166 /* 167 * CPU was successfully started, wait for it to come online or 168 * time out. 169 */ 170 wait_for_completion_timeout(&cpu_running, 171 msecs_to_jiffies(1000)); 172 173 if (!cpu_online(cpu)) { 174 pr_crit("CPU%u: failed to come online\n", cpu); 175 ret = -EIO; 176 } 177 } else { 178 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 179 } 180 181 secondary_data.task = NULL; 182 secondary_data.stack = NULL; 183 status = READ_ONCE(secondary_data.status); 184 if (ret && status) { 185 186 if (status == CPU_MMU_OFF) 187 status = READ_ONCE(__early_cpu_boot_status); 188 189 switch (status) { 190 default: 191 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 192 cpu, status); 193 break; 194 case CPU_KILL_ME: 195 if (!op_cpu_kill(cpu)) { 196 pr_crit("CPU%u: died during early boot\n", cpu); 197 break; 198 } 199 /* Fall through */ 200 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 201 case CPU_STUCK_IN_KERNEL: 202 pr_crit("CPU%u: is stuck in kernel\n", cpu); 203 cpus_stuck_in_kernel++; 204 break; 205 case CPU_PANIC_KERNEL: 206 panic("CPU%u detected unsupported configuration\n", cpu); 207 } 208 } 209 210 return ret; 211 } 212 213 /* 214 * This is the secondary CPU boot entry. We're using this CPUs 215 * idle thread stack, but a set of temporary page tables. 216 */ 217 asmlinkage void secondary_start_kernel(void) 218 { 219 struct mm_struct *mm = &init_mm; 220 unsigned int cpu; 221 222 cpu = task_cpu(current); 223 set_my_cpu_offset(per_cpu_offset(cpu)); 224 225 /* 226 * All kernel threads share the same mm context; grab a 227 * reference and switch to it. 228 */ 229 mmgrab(mm); 230 current->active_mm = mm; 231 232 /* 233 * TTBR0 is only used for the identity mapping at this stage. Make it 234 * point to zero page to avoid speculatively fetching new entries. 235 */ 236 cpu_uninstall_idmap(); 237 238 preempt_disable(); 239 trace_hardirqs_off(); 240 241 /* 242 * If the system has established the capabilities, make sure 243 * this CPU ticks all of those. If it doesn't, the CPU will 244 * fail to come online. 245 */ 246 check_local_cpu_capabilities(); 247 248 if (cpu_ops[cpu]->cpu_postboot) 249 cpu_ops[cpu]->cpu_postboot(); 250 251 /* 252 * Log the CPU info before it is marked online and might get read. 253 */ 254 cpuinfo_store_cpu(); 255 256 /* 257 * Enable GIC and timers. 258 */ 259 notify_cpu_starting(cpu); 260 261 store_cpu_topology(cpu); 262 263 /* 264 * OK, now it's safe to let the boot CPU continue. Wait for 265 * the CPU migration code to notice that the CPU is online 266 * before we continue. 267 */ 268 pr_info("CPU%u: Booted secondary processor [%08x]\n", 269 cpu, read_cpuid_id()); 270 update_cpu_boot_status(CPU_BOOT_SUCCESS); 271 set_cpu_online(cpu, true); 272 complete(&cpu_running); 273 274 local_irq_enable(); 275 local_async_enable(); 276 277 /* 278 * OK, it's off to the idle thread for us 279 */ 280 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 281 } 282 283 #ifdef CONFIG_HOTPLUG_CPU 284 static int op_cpu_disable(unsigned int cpu) 285 { 286 /* 287 * If we don't have a cpu_die method, abort before we reach the point 288 * of no return. CPU0 may not have an cpu_ops, so test for it. 289 */ 290 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 291 return -EOPNOTSUPP; 292 293 /* 294 * We may need to abort a hot unplug for some other mechanism-specific 295 * reason. 296 */ 297 if (cpu_ops[cpu]->cpu_disable) 298 return cpu_ops[cpu]->cpu_disable(cpu); 299 300 return 0; 301 } 302 303 /* 304 * __cpu_disable runs on the processor to be shutdown. 305 */ 306 int __cpu_disable(void) 307 { 308 unsigned int cpu = smp_processor_id(); 309 int ret; 310 311 ret = op_cpu_disable(cpu); 312 if (ret) 313 return ret; 314 315 /* 316 * Take this CPU offline. Once we clear this, we can't return, 317 * and we must not schedule until we're ready to give up the cpu. 318 */ 319 set_cpu_online(cpu, false); 320 321 /* 322 * OK - migrate IRQs away from this CPU 323 */ 324 irq_migrate_all_off_this_cpu(); 325 326 return 0; 327 } 328 329 static int op_cpu_kill(unsigned int cpu) 330 { 331 /* 332 * If we have no means of synchronising with the dying CPU, then assume 333 * that it is really dead. We can only wait for an arbitrary length of 334 * time and hope that it's dead, so let's skip the wait and just hope. 335 */ 336 if (!cpu_ops[cpu]->cpu_kill) 337 return 0; 338 339 return cpu_ops[cpu]->cpu_kill(cpu); 340 } 341 342 /* 343 * called on the thread which is asking for a CPU to be shutdown - 344 * waits until shutdown has completed, or it is timed out. 345 */ 346 void __cpu_die(unsigned int cpu) 347 { 348 int err; 349 350 if (!cpu_wait_death(cpu, 5)) { 351 pr_crit("CPU%u: cpu didn't die\n", cpu); 352 return; 353 } 354 pr_notice("CPU%u: shutdown\n", cpu); 355 356 /* 357 * Now that the dying CPU is beyond the point of no return w.r.t. 358 * in-kernel synchronisation, try to get the firwmare to help us to 359 * verify that it has really left the kernel before we consider 360 * clobbering anything it might still be using. 361 */ 362 err = op_cpu_kill(cpu); 363 if (err) 364 pr_warn("CPU%d may not have shut down cleanly: %d\n", 365 cpu, err); 366 } 367 368 /* 369 * Called from the idle thread for the CPU which has been shutdown. 370 * 371 * Note that we disable IRQs here, but do not re-enable them 372 * before returning to the caller. This is also the behaviour 373 * of the other hotplug-cpu capable cores, so presumably coming 374 * out of idle fixes this. 375 */ 376 void cpu_die(void) 377 { 378 unsigned int cpu = smp_processor_id(); 379 380 idle_task_exit(); 381 382 local_irq_disable(); 383 384 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 385 (void)cpu_report_death(); 386 387 /* 388 * Actually shutdown the CPU. This must never fail. The specific hotplug 389 * mechanism must perform all required cache maintenance to ensure that 390 * no dirty lines are lost in the process of shutting down the CPU. 391 */ 392 cpu_ops[cpu]->cpu_die(cpu); 393 394 BUG(); 395 } 396 #endif 397 398 /* 399 * Kill the calling secondary CPU, early in bringup before it is turned 400 * online. 401 */ 402 void cpu_die_early(void) 403 { 404 int cpu = smp_processor_id(); 405 406 pr_crit("CPU%d: will not boot\n", cpu); 407 408 /* Mark this CPU absent */ 409 set_cpu_present(cpu, 0); 410 411 #ifdef CONFIG_HOTPLUG_CPU 412 update_cpu_boot_status(CPU_KILL_ME); 413 /* Check if we can park ourselves */ 414 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 415 cpu_ops[cpu]->cpu_die(cpu); 416 #endif 417 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 418 419 cpu_park_loop(); 420 } 421 422 static void __init hyp_mode_check(void) 423 { 424 if (is_hyp_mode_available()) 425 pr_info("CPU: All CPU(s) started at EL2\n"); 426 else if (is_hyp_mode_mismatched()) 427 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 428 "CPU: CPUs started in inconsistent modes"); 429 else 430 pr_info("CPU: All CPU(s) started at EL1\n"); 431 } 432 433 void __init smp_cpus_done(unsigned int max_cpus) 434 { 435 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 436 setup_cpu_features(); 437 hyp_mode_check(); 438 apply_alternatives_all(); 439 mark_linear_text_alias_ro(); 440 } 441 442 void __init smp_prepare_boot_cpu(void) 443 { 444 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 445 /* 446 * Initialise the static keys early as they may be enabled by the 447 * cpufeature code. 448 */ 449 jump_label_init(); 450 cpuinfo_store_boot_cpu(); 451 save_boot_cpu_run_el(); 452 /* 453 * Run the errata work around checks on the boot CPU, once we have 454 * initialised the cpu feature infrastructure from 455 * cpuinfo_store_boot_cpu() above. 456 */ 457 update_cpu_errata_workarounds(); 458 } 459 460 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 461 { 462 const __be32 *cell; 463 u64 hwid; 464 465 /* 466 * A cpu node with missing "reg" property is 467 * considered invalid to build a cpu_logical_map 468 * entry. 469 */ 470 cell = of_get_property(dn, "reg", NULL); 471 if (!cell) { 472 pr_err("%pOF: missing reg property\n", dn); 473 return INVALID_HWID; 474 } 475 476 hwid = of_read_number(cell, of_n_addr_cells(dn)); 477 /* 478 * Non affinity bits must be set to 0 in the DT 479 */ 480 if (hwid & ~MPIDR_HWID_BITMASK) { 481 pr_err("%pOF: invalid reg property\n", dn); 482 return INVALID_HWID; 483 } 484 return hwid; 485 } 486 487 /* 488 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 489 * entries and check for duplicates. If any is found just ignore the 490 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 491 * matching valid MPIDR values. 492 */ 493 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 494 { 495 unsigned int i; 496 497 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 498 if (cpu_logical_map(i) == hwid) 499 return true; 500 return false; 501 } 502 503 /* 504 * Initialize cpu operations for a logical cpu and 505 * set it in the possible mask on success 506 */ 507 static int __init smp_cpu_setup(int cpu) 508 { 509 if (cpu_read_ops(cpu)) 510 return -ENODEV; 511 512 if (cpu_ops[cpu]->cpu_init(cpu)) 513 return -ENODEV; 514 515 set_cpu_possible(cpu, true); 516 517 return 0; 518 } 519 520 static bool bootcpu_valid __initdata; 521 static unsigned int cpu_count = 1; 522 523 #ifdef CONFIG_ACPI 524 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 525 526 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 527 { 528 return &cpu_madt_gicc[cpu]; 529 } 530 531 /* 532 * acpi_map_gic_cpu_interface - parse processor MADT entry 533 * 534 * Carry out sanity checks on MADT processor entry and initialize 535 * cpu_logical_map on success 536 */ 537 static void __init 538 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 539 { 540 u64 hwid = processor->arm_mpidr; 541 542 if (!(processor->flags & ACPI_MADT_ENABLED)) { 543 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 544 return; 545 } 546 547 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 548 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 549 return; 550 } 551 552 if (is_mpidr_duplicate(cpu_count, hwid)) { 553 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 554 return; 555 } 556 557 /* Check if GICC structure of boot CPU is available in the MADT */ 558 if (cpu_logical_map(0) == hwid) { 559 if (bootcpu_valid) { 560 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 561 hwid); 562 return; 563 } 564 bootcpu_valid = true; 565 cpu_madt_gicc[0] = *processor; 566 early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid)); 567 return; 568 } 569 570 if (cpu_count >= NR_CPUS) 571 return; 572 573 /* map the logical cpu id to cpu MPIDR */ 574 cpu_logical_map(cpu_count) = hwid; 575 576 cpu_madt_gicc[cpu_count] = *processor; 577 578 /* 579 * Set-up the ACPI parking protocol cpu entries 580 * while initializing the cpu_logical_map to 581 * avoid parsing MADT entries multiple times for 582 * nothing (ie a valid cpu_logical_map entry should 583 * contain a valid parking protocol data set to 584 * initialize the cpu if the parking protocol is 585 * the only available enable method). 586 */ 587 acpi_set_mailbox_entry(cpu_count, processor); 588 589 early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid)); 590 591 cpu_count++; 592 } 593 594 static int __init 595 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, 596 const unsigned long end) 597 { 598 struct acpi_madt_generic_interrupt *processor; 599 600 processor = (struct acpi_madt_generic_interrupt *)header; 601 if (BAD_MADT_GICC_ENTRY(processor, end)) 602 return -EINVAL; 603 604 acpi_table_print_madt_entry(header); 605 606 acpi_map_gic_cpu_interface(processor); 607 608 return 0; 609 } 610 #else 611 #define acpi_table_parse_madt(...) do { } while (0) 612 #endif 613 614 /* 615 * Enumerate the possible CPU set from the device tree and build the 616 * cpu logical map array containing MPIDR values related to logical 617 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 618 */ 619 static void __init of_parse_and_init_cpus(void) 620 { 621 struct device_node *dn; 622 623 for_each_node_by_type(dn, "cpu") { 624 u64 hwid = of_get_cpu_mpidr(dn); 625 626 if (hwid == INVALID_HWID) 627 goto next; 628 629 if (is_mpidr_duplicate(cpu_count, hwid)) { 630 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 631 dn); 632 goto next; 633 } 634 635 /* 636 * The numbering scheme requires that the boot CPU 637 * must be assigned logical id 0. Record it so that 638 * the logical map built from DT is validated and can 639 * be used. 640 */ 641 if (hwid == cpu_logical_map(0)) { 642 if (bootcpu_valid) { 643 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 644 dn); 645 goto next; 646 } 647 648 bootcpu_valid = true; 649 early_map_cpu_to_node(0, of_node_to_nid(dn)); 650 651 /* 652 * cpu_logical_map has already been 653 * initialized and the boot cpu doesn't need 654 * the enable-method so continue without 655 * incrementing cpu. 656 */ 657 continue; 658 } 659 660 if (cpu_count >= NR_CPUS) 661 goto next; 662 663 pr_debug("cpu logical map 0x%llx\n", hwid); 664 cpu_logical_map(cpu_count) = hwid; 665 666 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 667 next: 668 cpu_count++; 669 } 670 } 671 672 /* 673 * Enumerate the possible CPU set from the device tree or ACPI and build the 674 * cpu logical map array containing MPIDR values related to logical 675 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 676 */ 677 void __init smp_init_cpus(void) 678 { 679 int i; 680 681 if (acpi_disabled) 682 of_parse_and_init_cpus(); 683 else 684 /* 685 * do a walk of MADT to determine how many CPUs 686 * we have including disabled CPUs, and get information 687 * we need for SMP init 688 */ 689 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 690 acpi_parse_gic_cpu_interface, 0); 691 692 if (cpu_count > nr_cpu_ids) 693 pr_warn("Number of cores (%d) exceeds configured maximum of %d - clipping\n", 694 cpu_count, nr_cpu_ids); 695 696 if (!bootcpu_valid) { 697 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 698 return; 699 } 700 701 /* 702 * We need to set the cpu_logical_map entries before enabling 703 * the cpus so that cpu processor description entries (DT cpu nodes 704 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 705 * with entries in cpu_logical_map while initializing the cpus. 706 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 707 */ 708 for (i = 1; i < nr_cpu_ids; i++) { 709 if (cpu_logical_map(i) != INVALID_HWID) { 710 if (smp_cpu_setup(i)) 711 cpu_logical_map(i) = INVALID_HWID; 712 } 713 } 714 } 715 716 void __init smp_prepare_cpus(unsigned int max_cpus) 717 { 718 int err; 719 unsigned int cpu; 720 unsigned int this_cpu; 721 722 init_cpu_topology(); 723 724 this_cpu = smp_processor_id(); 725 store_cpu_topology(this_cpu); 726 numa_store_cpu_info(this_cpu); 727 728 /* 729 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 730 * secondary CPUs present. 731 */ 732 if (max_cpus == 0) 733 return; 734 735 /* 736 * Initialise the present map (which describes the set of CPUs 737 * actually populated at the present time) and release the 738 * secondaries from the bootloader. 739 */ 740 for_each_possible_cpu(cpu) { 741 742 per_cpu(cpu_number, cpu) = cpu; 743 744 if (cpu == smp_processor_id()) 745 continue; 746 747 if (!cpu_ops[cpu]) 748 continue; 749 750 err = cpu_ops[cpu]->cpu_prepare(cpu); 751 if (err) 752 continue; 753 754 set_cpu_present(cpu, true); 755 numa_store_cpu_info(cpu); 756 } 757 } 758 759 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 760 761 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 762 { 763 __smp_cross_call = fn; 764 } 765 766 static const char *ipi_types[NR_IPI] __tracepoint_string = { 767 #define S(x,s) [x] = s 768 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 769 S(IPI_CALL_FUNC, "Function call interrupts"), 770 S(IPI_CPU_STOP, "CPU stop interrupts"), 771 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 772 S(IPI_TIMER, "Timer broadcast interrupts"), 773 S(IPI_IRQ_WORK, "IRQ work interrupts"), 774 S(IPI_WAKEUP, "CPU wake-up interrupts"), 775 }; 776 777 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 778 { 779 trace_ipi_raise(target, ipi_types[ipinr]); 780 __smp_cross_call(target, ipinr); 781 } 782 783 void show_ipi_list(struct seq_file *p, int prec) 784 { 785 unsigned int cpu, i; 786 787 for (i = 0; i < NR_IPI; i++) { 788 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 789 prec >= 4 ? " " : ""); 790 for_each_online_cpu(cpu) 791 seq_printf(p, "%10u ", 792 __get_irq_stat(cpu, ipi_irqs[i])); 793 seq_printf(p, " %s\n", ipi_types[i]); 794 } 795 } 796 797 u64 smp_irq_stat_cpu(unsigned int cpu) 798 { 799 u64 sum = 0; 800 int i; 801 802 for (i = 0; i < NR_IPI; i++) 803 sum += __get_irq_stat(cpu, ipi_irqs[i]); 804 805 return sum; 806 } 807 808 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 809 { 810 smp_cross_call(mask, IPI_CALL_FUNC); 811 } 812 813 void arch_send_call_function_single_ipi(int cpu) 814 { 815 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 816 } 817 818 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 819 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 820 { 821 smp_cross_call(mask, IPI_WAKEUP); 822 } 823 #endif 824 825 #ifdef CONFIG_IRQ_WORK 826 void arch_irq_work_raise(void) 827 { 828 if (__smp_cross_call) 829 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 830 } 831 #endif 832 833 /* 834 * ipi_cpu_stop - handle IPI from smp_send_stop() 835 */ 836 static void ipi_cpu_stop(unsigned int cpu) 837 { 838 set_cpu_online(cpu, false); 839 840 local_irq_disable(); 841 842 while (1) 843 cpu_relax(); 844 } 845 846 #ifdef CONFIG_KEXEC_CORE 847 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 848 #endif 849 850 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 851 { 852 #ifdef CONFIG_KEXEC_CORE 853 crash_save_cpu(regs, cpu); 854 855 atomic_dec(&waiting_for_crash_ipi); 856 857 local_irq_disable(); 858 859 #ifdef CONFIG_HOTPLUG_CPU 860 if (cpu_ops[cpu]->cpu_die) 861 cpu_ops[cpu]->cpu_die(cpu); 862 #endif 863 864 /* just in case */ 865 cpu_park_loop(); 866 #endif 867 } 868 869 /* 870 * Main handler for inter-processor interrupts 871 */ 872 void handle_IPI(int ipinr, struct pt_regs *regs) 873 { 874 unsigned int cpu = smp_processor_id(); 875 struct pt_regs *old_regs = set_irq_regs(regs); 876 877 if ((unsigned)ipinr < NR_IPI) { 878 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 879 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 880 } 881 882 switch (ipinr) { 883 case IPI_RESCHEDULE: 884 scheduler_ipi(); 885 break; 886 887 case IPI_CALL_FUNC: 888 irq_enter(); 889 generic_smp_call_function_interrupt(); 890 irq_exit(); 891 break; 892 893 case IPI_CPU_STOP: 894 irq_enter(); 895 ipi_cpu_stop(cpu); 896 irq_exit(); 897 break; 898 899 case IPI_CPU_CRASH_STOP: 900 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 901 irq_enter(); 902 ipi_cpu_crash_stop(cpu, regs); 903 904 unreachable(); 905 } 906 break; 907 908 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 909 case IPI_TIMER: 910 irq_enter(); 911 tick_receive_broadcast(); 912 irq_exit(); 913 break; 914 #endif 915 916 #ifdef CONFIG_IRQ_WORK 917 case IPI_IRQ_WORK: 918 irq_enter(); 919 irq_work_run(); 920 irq_exit(); 921 break; 922 #endif 923 924 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 925 case IPI_WAKEUP: 926 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 927 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 928 cpu); 929 break; 930 #endif 931 932 default: 933 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 934 break; 935 } 936 937 if ((unsigned)ipinr < NR_IPI) 938 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 939 set_irq_regs(old_regs); 940 } 941 942 void smp_send_reschedule(int cpu) 943 { 944 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 945 } 946 947 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 948 void tick_broadcast(const struct cpumask *mask) 949 { 950 smp_cross_call(mask, IPI_TIMER); 951 } 952 #endif 953 954 void smp_send_stop(void) 955 { 956 unsigned long timeout; 957 958 if (num_online_cpus() > 1) { 959 cpumask_t mask; 960 961 cpumask_copy(&mask, cpu_online_mask); 962 cpumask_clear_cpu(smp_processor_id(), &mask); 963 964 if (system_state <= SYSTEM_RUNNING) 965 pr_crit("SMP: stopping secondary CPUs\n"); 966 smp_cross_call(&mask, IPI_CPU_STOP); 967 } 968 969 /* Wait up to one second for other CPUs to stop */ 970 timeout = USEC_PER_SEC; 971 while (num_online_cpus() > 1 && timeout--) 972 udelay(1); 973 974 if (num_online_cpus() > 1) 975 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 976 cpumask_pr_args(cpu_online_mask)); 977 } 978 979 #ifdef CONFIG_KEXEC_CORE 980 void smp_send_crash_stop(void) 981 { 982 cpumask_t mask; 983 unsigned long timeout; 984 985 if (num_online_cpus() == 1) 986 return; 987 988 cpumask_copy(&mask, cpu_online_mask); 989 cpumask_clear_cpu(smp_processor_id(), &mask); 990 991 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); 992 993 pr_crit("SMP: stopping secondary CPUs\n"); 994 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 995 996 /* Wait up to one second for other CPUs to stop */ 997 timeout = USEC_PER_SEC; 998 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 999 udelay(1); 1000 1001 if (atomic_read(&waiting_for_crash_ipi) > 0) 1002 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 1003 cpumask_pr_args(&mask)); 1004 } 1005 1006 bool smp_crash_stop_failed(void) 1007 { 1008 return (atomic_read(&waiting_for_crash_ipi) > 0); 1009 } 1010 #endif 1011 1012 /* 1013 * not supported here 1014 */ 1015 int setup_profiling_timer(unsigned int multiplier) 1016 { 1017 return -EINVAL; 1018 } 1019 1020 static bool have_cpu_die(void) 1021 { 1022 #ifdef CONFIG_HOTPLUG_CPU 1023 int any_cpu = raw_smp_processor_id(); 1024 1025 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) 1026 return true; 1027 #endif 1028 return false; 1029 } 1030 1031 bool cpus_are_stuck_in_kernel(void) 1032 { 1033 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1034 1035 return !!cpus_stuck_in_kernel || smp_spin_tables; 1036 } 1037