1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/delay.h> 21 #include <linux/init.h> 22 #include <linux/spinlock.h> 23 #include <linux/sched.h> 24 #include <linux/interrupt.h> 25 #include <linux/cache.h> 26 #include <linux/profile.h> 27 #include <linux/errno.h> 28 #include <linux/mm.h> 29 #include <linux/err.h> 30 #include <linux/cpu.h> 31 #include <linux/smp.h> 32 #include <linux/seq_file.h> 33 #include <linux/irq.h> 34 #include <linux/percpu.h> 35 #include <linux/clockchips.h> 36 #include <linux/completion.h> 37 #include <linux/of.h> 38 #include <linux/irq_work.h> 39 40 #include <asm/atomic.h> 41 #include <asm/cacheflush.h> 42 #include <asm/cputype.h> 43 #include <asm/cpu_ops.h> 44 #include <asm/mmu_context.h> 45 #include <asm/pgtable.h> 46 #include <asm/pgalloc.h> 47 #include <asm/processor.h> 48 #include <asm/smp_plat.h> 49 #include <asm/sections.h> 50 #include <asm/tlbflush.h> 51 #include <asm/ptrace.h> 52 53 /* 54 * as from 2.5, kernels no longer have an init_tasks structure 55 * so we need some other way of telling a new secondary core 56 * where to place its SVC stack 57 */ 58 struct secondary_data secondary_data; 59 60 enum ipi_msg_type { 61 IPI_RESCHEDULE, 62 IPI_CALL_FUNC, 63 IPI_CALL_FUNC_SINGLE, 64 IPI_CPU_STOP, 65 IPI_TIMER, 66 IPI_IRQ_WORK, 67 }; 68 69 /* 70 * Boot a secondary CPU, and assign it the specified idle task. 71 * This also gives us the initial stack to use for this CPU. 72 */ 73 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 74 { 75 if (cpu_ops[cpu]->cpu_boot) 76 return cpu_ops[cpu]->cpu_boot(cpu); 77 78 return -EOPNOTSUPP; 79 } 80 81 static DECLARE_COMPLETION(cpu_running); 82 83 int __cpu_up(unsigned int cpu, struct task_struct *idle) 84 { 85 int ret; 86 87 /* 88 * We need to tell the secondary core where to find its stack and the 89 * page tables. 90 */ 91 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 92 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 93 94 /* 95 * Now bring the CPU into our world. 96 */ 97 ret = boot_secondary(cpu, idle); 98 if (ret == 0) { 99 /* 100 * CPU was successfully started, wait for it to come online or 101 * time out. 102 */ 103 wait_for_completion_timeout(&cpu_running, 104 msecs_to_jiffies(1000)); 105 106 if (!cpu_online(cpu)) { 107 pr_crit("CPU%u: failed to come online\n", cpu); 108 ret = -EIO; 109 } 110 } else { 111 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 112 } 113 114 secondary_data.stack = NULL; 115 116 return ret; 117 } 118 119 static void smp_store_cpu_info(unsigned int cpuid) 120 { 121 store_cpu_topology(cpuid); 122 } 123 124 /* 125 * This is the secondary CPU boot entry. We're using this CPUs 126 * idle thread stack, but a set of temporary page tables. 127 */ 128 asmlinkage void secondary_start_kernel(void) 129 { 130 struct mm_struct *mm = &init_mm; 131 unsigned int cpu = smp_processor_id(); 132 133 /* 134 * All kernel threads share the same mm context; grab a 135 * reference and switch to it. 136 */ 137 atomic_inc(&mm->mm_count); 138 current->active_mm = mm; 139 cpumask_set_cpu(cpu, mm_cpumask(mm)); 140 141 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 142 printk("CPU%u: Booted secondary processor\n", cpu); 143 144 /* 145 * TTBR0 is only used for the identity mapping at this stage. Make it 146 * point to zero page to avoid speculatively fetching new entries. 147 */ 148 cpu_set_reserved_ttbr0(); 149 flush_tlb_all(); 150 151 preempt_disable(); 152 trace_hardirqs_off(); 153 154 if (cpu_ops[cpu]->cpu_postboot) 155 cpu_ops[cpu]->cpu_postboot(); 156 157 /* 158 * Enable GIC and timers. 159 */ 160 notify_cpu_starting(cpu); 161 162 smp_store_cpu_info(cpu); 163 164 /* 165 * OK, now it's safe to let the boot CPU continue. Wait for 166 * the CPU migration code to notice that the CPU is online 167 * before we continue. 168 */ 169 set_cpu_online(cpu, true); 170 complete(&cpu_running); 171 172 local_dbg_enable(); 173 local_irq_enable(); 174 local_async_enable(); 175 176 /* 177 * OK, it's off to the idle thread for us 178 */ 179 cpu_startup_entry(CPUHP_ONLINE); 180 } 181 182 #ifdef CONFIG_HOTPLUG_CPU 183 static int op_cpu_disable(unsigned int cpu) 184 { 185 /* 186 * If we don't have a cpu_die method, abort before we reach the point 187 * of no return. CPU0 may not have an cpu_ops, so test for it. 188 */ 189 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 190 return -EOPNOTSUPP; 191 192 /* 193 * We may need to abort a hot unplug for some other mechanism-specific 194 * reason. 195 */ 196 if (cpu_ops[cpu]->cpu_disable) 197 return cpu_ops[cpu]->cpu_disable(cpu); 198 199 return 0; 200 } 201 202 /* 203 * __cpu_disable runs on the processor to be shutdown. 204 */ 205 int __cpu_disable(void) 206 { 207 unsigned int cpu = smp_processor_id(); 208 int ret; 209 210 ret = op_cpu_disable(cpu); 211 if (ret) 212 return ret; 213 214 /* 215 * Take this CPU offline. Once we clear this, we can't return, 216 * and we must not schedule until we're ready to give up the cpu. 217 */ 218 set_cpu_online(cpu, false); 219 220 /* 221 * OK - migrate IRQs away from this CPU 222 */ 223 migrate_irqs(); 224 225 /* 226 * Remove this CPU from the vm mask set of all processes. 227 */ 228 clear_tasks_mm_cpumask(cpu); 229 230 return 0; 231 } 232 233 static int op_cpu_kill(unsigned int cpu) 234 { 235 /* 236 * If we have no means of synchronising with the dying CPU, then assume 237 * that it is really dead. We can only wait for an arbitrary length of 238 * time and hope that it's dead, so let's skip the wait and just hope. 239 */ 240 if (!cpu_ops[cpu]->cpu_kill) 241 return 1; 242 243 return cpu_ops[cpu]->cpu_kill(cpu); 244 } 245 246 static DECLARE_COMPLETION(cpu_died); 247 248 /* 249 * called on the thread which is asking for a CPU to be shutdown - 250 * waits until shutdown has completed, or it is timed out. 251 */ 252 void __cpu_die(unsigned int cpu) 253 { 254 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 255 pr_crit("CPU%u: cpu didn't die\n", cpu); 256 return; 257 } 258 pr_notice("CPU%u: shutdown\n", cpu); 259 260 /* 261 * Now that the dying CPU is beyond the point of no return w.r.t. 262 * in-kernel synchronisation, try to get the firwmare to help us to 263 * verify that it has really left the kernel before we consider 264 * clobbering anything it might still be using. 265 */ 266 if (!op_cpu_kill(cpu)) 267 pr_warn("CPU%d may not have shut down cleanly\n", cpu); 268 } 269 270 /* 271 * Called from the idle thread for the CPU which has been shutdown. 272 * 273 * Note that we disable IRQs here, but do not re-enable them 274 * before returning to the caller. This is also the behaviour 275 * of the other hotplug-cpu capable cores, so presumably coming 276 * out of idle fixes this. 277 */ 278 void cpu_die(void) 279 { 280 unsigned int cpu = smp_processor_id(); 281 282 idle_task_exit(); 283 284 local_irq_disable(); 285 286 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 287 complete(&cpu_died); 288 289 /* 290 * Actually shutdown the CPU. This must never fail. The specific hotplug 291 * mechanism must perform all required cache maintenance to ensure that 292 * no dirty lines are lost in the process of shutting down the CPU. 293 */ 294 cpu_ops[cpu]->cpu_die(cpu); 295 296 BUG(); 297 } 298 #endif 299 300 void __init smp_cpus_done(unsigned int max_cpus) 301 { 302 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 303 } 304 305 void __init smp_prepare_boot_cpu(void) 306 { 307 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 308 } 309 310 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 311 312 /* 313 * Enumerate the possible CPU set from the device tree and build the 314 * cpu logical map array containing MPIDR values related to logical 315 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 316 */ 317 void __init smp_init_cpus(void) 318 { 319 struct device_node *dn = NULL; 320 unsigned int i, cpu = 1; 321 bool bootcpu_valid = false; 322 323 while ((dn = of_find_node_by_type(dn, "cpu"))) { 324 const u32 *cell; 325 u64 hwid; 326 327 /* 328 * A cpu node with missing "reg" property is 329 * considered invalid to build a cpu_logical_map 330 * entry. 331 */ 332 cell = of_get_property(dn, "reg", NULL); 333 if (!cell) { 334 pr_err("%s: missing reg property\n", dn->full_name); 335 goto next; 336 } 337 hwid = of_read_number(cell, of_n_addr_cells(dn)); 338 339 /* 340 * Non affinity bits must be set to 0 in the DT 341 */ 342 if (hwid & ~MPIDR_HWID_BITMASK) { 343 pr_err("%s: invalid reg property\n", dn->full_name); 344 goto next; 345 } 346 347 /* 348 * Duplicate MPIDRs are a recipe for disaster. Scan 349 * all initialized entries and check for 350 * duplicates. If any is found just ignore the cpu. 351 * cpu_logical_map was initialized to INVALID_HWID to 352 * avoid matching valid MPIDR values. 353 */ 354 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) { 355 if (cpu_logical_map(i) == hwid) { 356 pr_err("%s: duplicate cpu reg properties in the DT\n", 357 dn->full_name); 358 goto next; 359 } 360 } 361 362 /* 363 * The numbering scheme requires that the boot CPU 364 * must be assigned logical id 0. Record it so that 365 * the logical map built from DT is validated and can 366 * be used. 367 */ 368 if (hwid == cpu_logical_map(0)) { 369 if (bootcpu_valid) { 370 pr_err("%s: duplicate boot cpu reg property in DT\n", 371 dn->full_name); 372 goto next; 373 } 374 375 bootcpu_valid = true; 376 377 /* 378 * cpu_logical_map has already been 379 * initialized and the boot cpu doesn't need 380 * the enable-method so continue without 381 * incrementing cpu. 382 */ 383 continue; 384 } 385 386 if (cpu >= NR_CPUS) 387 goto next; 388 389 if (cpu_read_ops(dn, cpu) != 0) 390 goto next; 391 392 if (cpu_ops[cpu]->cpu_init(dn, cpu)) 393 goto next; 394 395 pr_debug("cpu logical map 0x%llx\n", hwid); 396 cpu_logical_map(cpu) = hwid; 397 next: 398 cpu++; 399 } 400 401 /* sanity check */ 402 if (cpu > NR_CPUS) 403 pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n", 404 cpu, NR_CPUS); 405 406 if (!bootcpu_valid) { 407 pr_err("DT missing boot CPU MPIDR, not enabling secondaries\n"); 408 return; 409 } 410 411 /* 412 * All the cpus that made it to the cpu_logical_map have been 413 * validated so set them as possible cpus. 414 */ 415 for (i = 0; i < NR_CPUS; i++) 416 if (cpu_logical_map(i) != INVALID_HWID) 417 set_cpu_possible(i, true); 418 } 419 420 void __init smp_prepare_cpus(unsigned int max_cpus) 421 { 422 int err; 423 unsigned int cpu, ncores = num_possible_cpus(); 424 425 init_cpu_topology(); 426 427 smp_store_cpu_info(smp_processor_id()); 428 429 /* 430 * are we trying to boot more cores than exist? 431 */ 432 if (max_cpus > ncores) 433 max_cpus = ncores; 434 435 /* Don't bother if we're effectively UP */ 436 if (max_cpus <= 1) 437 return; 438 439 /* 440 * Initialise the present map (which describes the set of CPUs 441 * actually populated at the present time) and release the 442 * secondaries from the bootloader. 443 * 444 * Make sure we online at most (max_cpus - 1) additional CPUs. 445 */ 446 max_cpus--; 447 for_each_possible_cpu(cpu) { 448 if (max_cpus == 0) 449 break; 450 451 if (cpu == smp_processor_id()) 452 continue; 453 454 if (!cpu_ops[cpu]) 455 continue; 456 457 err = cpu_ops[cpu]->cpu_prepare(cpu); 458 if (err) 459 continue; 460 461 set_cpu_present(cpu, true); 462 max_cpus--; 463 } 464 } 465 466 467 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 468 { 469 smp_cross_call = fn; 470 } 471 472 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 473 { 474 smp_cross_call(mask, IPI_CALL_FUNC); 475 } 476 477 void arch_send_call_function_single_ipi(int cpu) 478 { 479 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 480 } 481 482 #ifdef CONFIG_IRQ_WORK 483 void arch_irq_work_raise(void) 484 { 485 if (smp_cross_call) 486 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 487 } 488 #endif 489 490 static const char *ipi_types[NR_IPI] = { 491 #define S(x,s) [x - IPI_RESCHEDULE] = s 492 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 493 S(IPI_CALL_FUNC, "Function call interrupts"), 494 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 495 S(IPI_CPU_STOP, "CPU stop interrupts"), 496 S(IPI_TIMER, "Timer broadcast interrupts"), 497 S(IPI_IRQ_WORK, "IRQ work interrupts"), 498 }; 499 500 void show_ipi_list(struct seq_file *p, int prec) 501 { 502 unsigned int cpu, i; 503 504 for (i = 0; i < NR_IPI; i++) { 505 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i + IPI_RESCHEDULE, 506 prec >= 4 ? " " : ""); 507 for_each_online_cpu(cpu) 508 seq_printf(p, "%10u ", 509 __get_irq_stat(cpu, ipi_irqs[i])); 510 seq_printf(p, " %s\n", ipi_types[i]); 511 } 512 } 513 514 u64 smp_irq_stat_cpu(unsigned int cpu) 515 { 516 u64 sum = 0; 517 int i; 518 519 for (i = 0; i < NR_IPI; i++) 520 sum += __get_irq_stat(cpu, ipi_irqs[i]); 521 522 return sum; 523 } 524 525 static DEFINE_RAW_SPINLOCK(stop_lock); 526 527 /* 528 * ipi_cpu_stop - handle IPI from smp_send_stop() 529 */ 530 static void ipi_cpu_stop(unsigned int cpu) 531 { 532 if (system_state == SYSTEM_BOOTING || 533 system_state == SYSTEM_RUNNING) { 534 raw_spin_lock(&stop_lock); 535 pr_crit("CPU%u: stopping\n", cpu); 536 dump_stack(); 537 raw_spin_unlock(&stop_lock); 538 } 539 540 set_cpu_online(cpu, false); 541 542 local_irq_disable(); 543 544 while (1) 545 cpu_relax(); 546 } 547 548 /* 549 * Main handler for inter-processor interrupts 550 */ 551 void handle_IPI(int ipinr, struct pt_regs *regs) 552 { 553 unsigned int cpu = smp_processor_id(); 554 struct pt_regs *old_regs = set_irq_regs(regs); 555 556 if (ipinr >= IPI_RESCHEDULE && ipinr < IPI_RESCHEDULE + NR_IPI) 557 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_RESCHEDULE]); 558 559 switch (ipinr) { 560 case IPI_RESCHEDULE: 561 scheduler_ipi(); 562 break; 563 564 case IPI_CALL_FUNC: 565 irq_enter(); 566 generic_smp_call_function_interrupt(); 567 irq_exit(); 568 break; 569 570 case IPI_CALL_FUNC_SINGLE: 571 irq_enter(); 572 generic_smp_call_function_single_interrupt(); 573 irq_exit(); 574 break; 575 576 case IPI_CPU_STOP: 577 irq_enter(); 578 ipi_cpu_stop(cpu); 579 irq_exit(); 580 break; 581 582 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 583 case IPI_TIMER: 584 irq_enter(); 585 tick_receive_broadcast(); 586 irq_exit(); 587 break; 588 #endif 589 590 #ifdef CONFIG_IRQ_WORK 591 case IPI_IRQ_WORK: 592 irq_enter(); 593 irq_work_run(); 594 irq_exit(); 595 break; 596 #endif 597 598 default: 599 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 600 break; 601 } 602 set_irq_regs(old_regs); 603 } 604 605 void smp_send_reschedule(int cpu) 606 { 607 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 608 } 609 610 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 611 void tick_broadcast(const struct cpumask *mask) 612 { 613 smp_cross_call(mask, IPI_TIMER); 614 } 615 #endif 616 617 void smp_send_stop(void) 618 { 619 unsigned long timeout; 620 621 if (num_online_cpus() > 1) { 622 cpumask_t mask; 623 624 cpumask_copy(&mask, cpu_online_mask); 625 cpu_clear(smp_processor_id(), mask); 626 627 smp_cross_call(&mask, IPI_CPU_STOP); 628 } 629 630 /* Wait up to one second for other CPUs to stop */ 631 timeout = USEC_PER_SEC; 632 while (num_online_cpus() > 1 && timeout--) 633 udelay(1); 634 635 if (num_online_cpus() > 1) 636 pr_warning("SMP: failed to stop secondary CPUs\n"); 637 } 638 639 /* 640 * not supported here 641 */ 642 int setup_profiling_timer(unsigned int multiplier) 643 { 644 return -EINVAL; 645 } 646