1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kernel_stat.h> 34 #include <linux/kexec.h> 35 #include <linux/kvm_host.h> 36 37 #include <asm/alternative.h> 38 #include <asm/atomic.h> 39 #include <asm/cacheflush.h> 40 #include <asm/cpu.h> 41 #include <asm/cputype.h> 42 #include <asm/cpu_ops.h> 43 #include <asm/daifflags.h> 44 #include <asm/kvm_mmu.h> 45 #include <asm/mmu_context.h> 46 #include <asm/numa.h> 47 #include <asm/processor.h> 48 #include <asm/smp_plat.h> 49 #include <asm/sections.h> 50 #include <asm/tlbflush.h> 51 #include <asm/ptrace.h> 52 #include <asm/virt.h> 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ipi.h> 56 57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 58 EXPORT_PER_CPU_SYMBOL(cpu_number); 59 60 /* 61 * as from 2.5, kernels no longer have an init_tasks structure 62 * so we need some other way of telling a new secondary core 63 * where to place its SVC stack 64 */ 65 struct secondary_data secondary_data; 66 /* Number of CPUs which aren't online, but looping in kernel text. */ 67 static int cpus_stuck_in_kernel; 68 69 enum ipi_msg_type { 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNC, 72 IPI_CPU_STOP, 73 IPI_CPU_CRASH_STOP, 74 IPI_TIMER, 75 IPI_IRQ_WORK, 76 IPI_WAKEUP, 77 NR_IPI 78 }; 79 80 static int ipi_irq_base __read_mostly; 81 static int nr_ipi __read_mostly = NR_IPI; 82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly; 83 84 static void ipi_setup(int cpu); 85 86 #ifdef CONFIG_HOTPLUG_CPU 87 static void ipi_teardown(int cpu); 88 static int op_cpu_kill(unsigned int cpu); 89 #else 90 static inline int op_cpu_kill(unsigned int cpu) 91 { 92 return -ENOSYS; 93 } 94 #endif 95 96 97 /* 98 * Boot a secondary CPU, and assign it the specified idle task. 99 * This also gives us the initial stack to use for this CPU. 100 */ 101 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 102 { 103 const struct cpu_operations *ops = get_cpu_ops(cpu); 104 105 if (ops->cpu_boot) 106 return ops->cpu_boot(cpu); 107 108 return -EOPNOTSUPP; 109 } 110 111 static DECLARE_COMPLETION(cpu_running); 112 113 int __cpu_up(unsigned int cpu, struct task_struct *idle) 114 { 115 int ret; 116 long status; 117 118 /* 119 * We need to tell the secondary core where to find its stack and the 120 * page tables. 121 */ 122 secondary_data.task = idle; 123 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 124 update_cpu_boot_status(CPU_MMU_OFF); 125 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 126 127 /* Now bring the CPU into our world */ 128 ret = boot_secondary(cpu, idle); 129 if (ret) { 130 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 131 return ret; 132 } 133 134 /* 135 * CPU was successfully started, wait for it to come online or 136 * time out. 137 */ 138 wait_for_completion_timeout(&cpu_running, 139 msecs_to_jiffies(5000)); 140 if (cpu_online(cpu)) 141 return 0; 142 143 pr_crit("CPU%u: failed to come online\n", cpu); 144 secondary_data.task = NULL; 145 secondary_data.stack = NULL; 146 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 147 status = READ_ONCE(secondary_data.status); 148 if (status == CPU_MMU_OFF) 149 status = READ_ONCE(__early_cpu_boot_status); 150 151 switch (status & CPU_BOOT_STATUS_MASK) { 152 default: 153 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 154 cpu, status); 155 cpus_stuck_in_kernel++; 156 break; 157 case CPU_KILL_ME: 158 if (!op_cpu_kill(cpu)) { 159 pr_crit("CPU%u: died during early boot\n", cpu); 160 break; 161 } 162 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 163 fallthrough; 164 case CPU_STUCK_IN_KERNEL: 165 pr_crit("CPU%u: is stuck in kernel\n", cpu); 166 if (status & CPU_STUCK_REASON_52_BIT_VA) 167 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 168 if (status & CPU_STUCK_REASON_NO_GRAN) { 169 pr_crit("CPU%u: does not support %luK granule\n", 170 cpu, PAGE_SIZE / SZ_1K); 171 } 172 cpus_stuck_in_kernel++; 173 break; 174 case CPU_PANIC_KERNEL: 175 panic("CPU%u detected unsupported configuration\n", cpu); 176 } 177 178 return -EIO; 179 } 180 181 static void init_gic_priority_masking(void) 182 { 183 u32 cpuflags; 184 185 if (WARN_ON(!gic_enable_sre())) 186 return; 187 188 cpuflags = read_sysreg(daif); 189 190 WARN_ON(!(cpuflags & PSR_I_BIT)); 191 192 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 193 } 194 195 /* 196 * This is the secondary CPU boot entry. We're using this CPUs 197 * idle thread stack, but a set of temporary page tables. 198 */ 199 asmlinkage notrace void secondary_start_kernel(void) 200 { 201 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 202 struct mm_struct *mm = &init_mm; 203 const struct cpu_operations *ops; 204 unsigned int cpu; 205 206 cpu = task_cpu(current); 207 set_my_cpu_offset(per_cpu_offset(cpu)); 208 209 /* 210 * All kernel threads share the same mm context; grab a 211 * reference and switch to it. 212 */ 213 mmgrab(mm); 214 current->active_mm = mm; 215 216 /* 217 * TTBR0 is only used for the identity mapping at this stage. Make it 218 * point to zero page to avoid speculatively fetching new entries. 219 */ 220 cpu_uninstall_idmap(); 221 222 if (system_uses_irq_prio_masking()) 223 init_gic_priority_masking(); 224 225 rcu_cpu_starting(cpu); 226 preempt_disable(); 227 trace_hardirqs_off(); 228 229 /* 230 * If the system has established the capabilities, make sure 231 * this CPU ticks all of those. If it doesn't, the CPU will 232 * fail to come online. 233 */ 234 check_local_cpu_capabilities(); 235 236 ops = get_cpu_ops(cpu); 237 if (ops->cpu_postboot) 238 ops->cpu_postboot(); 239 240 /* 241 * Log the CPU info before it is marked online and might get read. 242 */ 243 cpuinfo_store_cpu(); 244 245 /* 246 * Enable GIC and timers. 247 */ 248 notify_cpu_starting(cpu); 249 250 ipi_setup(cpu); 251 252 store_cpu_topology(cpu); 253 numa_add_cpu(cpu); 254 255 /* 256 * OK, now it's safe to let the boot CPU continue. Wait for 257 * the CPU migration code to notice that the CPU is online 258 * before we continue. 259 */ 260 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 261 cpu, (unsigned long)mpidr, 262 read_cpuid_id()); 263 update_cpu_boot_status(CPU_BOOT_SUCCESS); 264 set_cpu_online(cpu, true); 265 complete(&cpu_running); 266 267 local_daif_restore(DAIF_PROCCTX); 268 269 /* 270 * OK, it's off to the idle thread for us 271 */ 272 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 273 } 274 275 #ifdef CONFIG_HOTPLUG_CPU 276 static int op_cpu_disable(unsigned int cpu) 277 { 278 const struct cpu_operations *ops = get_cpu_ops(cpu); 279 280 /* 281 * If we don't have a cpu_die method, abort before we reach the point 282 * of no return. CPU0 may not have an cpu_ops, so test for it. 283 */ 284 if (!ops || !ops->cpu_die) 285 return -EOPNOTSUPP; 286 287 /* 288 * We may need to abort a hot unplug for some other mechanism-specific 289 * reason. 290 */ 291 if (ops->cpu_disable) 292 return ops->cpu_disable(cpu); 293 294 return 0; 295 } 296 297 /* 298 * __cpu_disable runs on the processor to be shutdown. 299 */ 300 int __cpu_disable(void) 301 { 302 unsigned int cpu = smp_processor_id(); 303 int ret; 304 305 ret = op_cpu_disable(cpu); 306 if (ret) 307 return ret; 308 309 remove_cpu_topology(cpu); 310 numa_remove_cpu(cpu); 311 312 /* 313 * Take this CPU offline. Once we clear this, we can't return, 314 * and we must not schedule until we're ready to give up the cpu. 315 */ 316 set_cpu_online(cpu, false); 317 ipi_teardown(cpu); 318 319 /* 320 * OK - migrate IRQs away from this CPU 321 */ 322 irq_migrate_all_off_this_cpu(); 323 324 return 0; 325 } 326 327 static int op_cpu_kill(unsigned int cpu) 328 { 329 const struct cpu_operations *ops = get_cpu_ops(cpu); 330 331 /* 332 * If we have no means of synchronising with the dying CPU, then assume 333 * that it is really dead. We can only wait for an arbitrary length of 334 * time and hope that it's dead, so let's skip the wait and just hope. 335 */ 336 if (!ops->cpu_kill) 337 return 0; 338 339 return ops->cpu_kill(cpu); 340 } 341 342 /* 343 * called on the thread which is asking for a CPU to be shutdown - 344 * waits until shutdown has completed, or it is timed out. 345 */ 346 void __cpu_die(unsigned int cpu) 347 { 348 int err; 349 350 if (!cpu_wait_death(cpu, 5)) { 351 pr_crit("CPU%u: cpu didn't die\n", cpu); 352 return; 353 } 354 pr_notice("CPU%u: shutdown\n", cpu); 355 356 /* 357 * Now that the dying CPU is beyond the point of no return w.r.t. 358 * in-kernel synchronisation, try to get the firwmare to help us to 359 * verify that it has really left the kernel before we consider 360 * clobbering anything it might still be using. 361 */ 362 err = op_cpu_kill(cpu); 363 if (err) 364 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 365 } 366 367 /* 368 * Called from the idle thread for the CPU which has been shutdown. 369 * 370 */ 371 void cpu_die(void) 372 { 373 unsigned int cpu = smp_processor_id(); 374 const struct cpu_operations *ops = get_cpu_ops(cpu); 375 376 idle_task_exit(); 377 378 local_daif_mask(); 379 380 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 381 (void)cpu_report_death(); 382 383 /* 384 * Actually shutdown the CPU. This must never fail. The specific hotplug 385 * mechanism must perform all required cache maintenance to ensure that 386 * no dirty lines are lost in the process of shutting down the CPU. 387 */ 388 ops->cpu_die(cpu); 389 390 BUG(); 391 } 392 #endif 393 394 static void __cpu_try_die(int cpu) 395 { 396 #ifdef CONFIG_HOTPLUG_CPU 397 const struct cpu_operations *ops = get_cpu_ops(cpu); 398 399 if (ops && ops->cpu_die) 400 ops->cpu_die(cpu); 401 #endif 402 } 403 404 /* 405 * Kill the calling secondary CPU, early in bringup before it is turned 406 * online. 407 */ 408 void cpu_die_early(void) 409 { 410 int cpu = smp_processor_id(); 411 412 pr_crit("CPU%d: will not boot\n", cpu); 413 414 /* Mark this CPU absent */ 415 set_cpu_present(cpu, 0); 416 rcu_report_dead(cpu); 417 418 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 419 update_cpu_boot_status(CPU_KILL_ME); 420 __cpu_try_die(cpu); 421 } 422 423 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 424 425 cpu_park_loop(); 426 } 427 428 static void __init hyp_mode_check(void) 429 { 430 if (is_hyp_mode_available()) 431 pr_info("CPU: All CPU(s) started at EL2\n"); 432 else if (is_hyp_mode_mismatched()) 433 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 434 "CPU: CPUs started in inconsistent modes"); 435 else 436 pr_info("CPU: All CPU(s) started at EL1\n"); 437 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { 438 kvm_compute_layout(); 439 kvm_apply_hyp_relocations(); 440 } 441 } 442 443 void __init smp_cpus_done(unsigned int max_cpus) 444 { 445 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 446 setup_cpu_features(); 447 hyp_mode_check(); 448 apply_alternatives_all(); 449 mark_linear_text_alias_ro(); 450 } 451 452 void __init smp_prepare_boot_cpu(void) 453 { 454 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 455 cpuinfo_store_boot_cpu(); 456 457 /* 458 * We now know enough about the boot CPU to apply the 459 * alternatives that cannot wait until interrupt handling 460 * and/or scheduling is enabled. 461 */ 462 apply_boot_alternatives(); 463 464 /* Conditionally switch to GIC PMR for interrupt masking */ 465 if (system_uses_irq_prio_masking()) 466 init_gic_priority_masking(); 467 468 kasan_init_hw_tags(); 469 } 470 471 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 472 { 473 const __be32 *cell; 474 u64 hwid; 475 476 /* 477 * A cpu node with missing "reg" property is 478 * considered invalid to build a cpu_logical_map 479 * entry. 480 */ 481 cell = of_get_property(dn, "reg", NULL); 482 if (!cell) { 483 pr_err("%pOF: missing reg property\n", dn); 484 return INVALID_HWID; 485 } 486 487 hwid = of_read_number(cell, of_n_addr_cells(dn)); 488 /* 489 * Non affinity bits must be set to 0 in the DT 490 */ 491 if (hwid & ~MPIDR_HWID_BITMASK) { 492 pr_err("%pOF: invalid reg property\n", dn); 493 return INVALID_HWID; 494 } 495 return hwid; 496 } 497 498 /* 499 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 500 * entries and check for duplicates. If any is found just ignore the 501 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 502 * matching valid MPIDR values. 503 */ 504 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 505 { 506 unsigned int i; 507 508 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 509 if (cpu_logical_map(i) == hwid) 510 return true; 511 return false; 512 } 513 514 /* 515 * Initialize cpu operations for a logical cpu and 516 * set it in the possible mask on success 517 */ 518 static int __init smp_cpu_setup(int cpu) 519 { 520 const struct cpu_operations *ops; 521 522 if (init_cpu_ops(cpu)) 523 return -ENODEV; 524 525 ops = get_cpu_ops(cpu); 526 if (ops->cpu_init(cpu)) 527 return -ENODEV; 528 529 set_cpu_possible(cpu, true); 530 531 return 0; 532 } 533 534 static bool bootcpu_valid __initdata; 535 static unsigned int cpu_count = 1; 536 537 #ifdef CONFIG_ACPI 538 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 539 540 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 541 { 542 return &cpu_madt_gicc[cpu]; 543 } 544 545 /* 546 * acpi_map_gic_cpu_interface - parse processor MADT entry 547 * 548 * Carry out sanity checks on MADT processor entry and initialize 549 * cpu_logical_map on success 550 */ 551 static void __init 552 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 553 { 554 u64 hwid = processor->arm_mpidr; 555 556 if (!(processor->flags & ACPI_MADT_ENABLED)) { 557 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 558 return; 559 } 560 561 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 562 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 563 return; 564 } 565 566 if (is_mpidr_duplicate(cpu_count, hwid)) { 567 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 568 return; 569 } 570 571 /* Check if GICC structure of boot CPU is available in the MADT */ 572 if (cpu_logical_map(0) == hwid) { 573 if (bootcpu_valid) { 574 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 575 hwid); 576 return; 577 } 578 bootcpu_valid = true; 579 cpu_madt_gicc[0] = *processor; 580 return; 581 } 582 583 if (cpu_count >= NR_CPUS) 584 return; 585 586 /* map the logical cpu id to cpu MPIDR */ 587 set_cpu_logical_map(cpu_count, hwid); 588 589 cpu_madt_gicc[cpu_count] = *processor; 590 591 /* 592 * Set-up the ACPI parking protocol cpu entries 593 * while initializing the cpu_logical_map to 594 * avoid parsing MADT entries multiple times for 595 * nothing (ie a valid cpu_logical_map entry should 596 * contain a valid parking protocol data set to 597 * initialize the cpu if the parking protocol is 598 * the only available enable method). 599 */ 600 acpi_set_mailbox_entry(cpu_count, processor); 601 602 cpu_count++; 603 } 604 605 static int __init 606 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 607 const unsigned long end) 608 { 609 struct acpi_madt_generic_interrupt *processor; 610 611 processor = (struct acpi_madt_generic_interrupt *)header; 612 if (BAD_MADT_GICC_ENTRY(processor, end)) 613 return -EINVAL; 614 615 acpi_table_print_madt_entry(&header->common); 616 617 acpi_map_gic_cpu_interface(processor); 618 619 return 0; 620 } 621 622 static void __init acpi_parse_and_init_cpus(void) 623 { 624 int i; 625 626 /* 627 * do a walk of MADT to determine how many CPUs 628 * we have including disabled CPUs, and get information 629 * we need for SMP init. 630 */ 631 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 632 acpi_parse_gic_cpu_interface, 0); 633 634 /* 635 * In ACPI, SMP and CPU NUMA information is provided in separate 636 * static tables, namely the MADT and the SRAT. 637 * 638 * Thus, it is simpler to first create the cpu logical map through 639 * an MADT walk and then map the logical cpus to their node ids 640 * as separate steps. 641 */ 642 acpi_map_cpus_to_nodes(); 643 644 for (i = 0; i < nr_cpu_ids; i++) 645 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 646 } 647 #else 648 #define acpi_parse_and_init_cpus(...) do { } while (0) 649 #endif 650 651 /* 652 * Enumerate the possible CPU set from the device tree and build the 653 * cpu logical map array containing MPIDR values related to logical 654 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 655 */ 656 static void __init of_parse_and_init_cpus(void) 657 { 658 struct device_node *dn; 659 660 for_each_of_cpu_node(dn) { 661 u64 hwid = of_get_cpu_mpidr(dn); 662 663 if (hwid == INVALID_HWID) 664 goto next; 665 666 if (is_mpidr_duplicate(cpu_count, hwid)) { 667 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 668 dn); 669 goto next; 670 } 671 672 /* 673 * The numbering scheme requires that the boot CPU 674 * must be assigned logical id 0. Record it so that 675 * the logical map built from DT is validated and can 676 * be used. 677 */ 678 if (hwid == cpu_logical_map(0)) { 679 if (bootcpu_valid) { 680 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 681 dn); 682 goto next; 683 } 684 685 bootcpu_valid = true; 686 early_map_cpu_to_node(0, of_node_to_nid(dn)); 687 688 /* 689 * cpu_logical_map has already been 690 * initialized and the boot cpu doesn't need 691 * the enable-method so continue without 692 * incrementing cpu. 693 */ 694 continue; 695 } 696 697 if (cpu_count >= NR_CPUS) 698 goto next; 699 700 pr_debug("cpu logical map 0x%llx\n", hwid); 701 set_cpu_logical_map(cpu_count, hwid); 702 703 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 704 next: 705 cpu_count++; 706 } 707 } 708 709 /* 710 * Enumerate the possible CPU set from the device tree or ACPI and build the 711 * cpu logical map array containing MPIDR values related to logical 712 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 713 */ 714 void __init smp_init_cpus(void) 715 { 716 int i; 717 718 if (acpi_disabled) 719 of_parse_and_init_cpus(); 720 else 721 acpi_parse_and_init_cpus(); 722 723 if (cpu_count > nr_cpu_ids) 724 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 725 cpu_count, nr_cpu_ids); 726 727 if (!bootcpu_valid) { 728 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 729 return; 730 } 731 732 /* 733 * We need to set the cpu_logical_map entries before enabling 734 * the cpus so that cpu processor description entries (DT cpu nodes 735 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 736 * with entries in cpu_logical_map while initializing the cpus. 737 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 738 */ 739 for (i = 1; i < nr_cpu_ids; i++) { 740 if (cpu_logical_map(i) != INVALID_HWID) { 741 if (smp_cpu_setup(i)) 742 set_cpu_logical_map(i, INVALID_HWID); 743 } 744 } 745 } 746 747 void __init smp_prepare_cpus(unsigned int max_cpus) 748 { 749 const struct cpu_operations *ops; 750 int err; 751 unsigned int cpu; 752 unsigned int this_cpu; 753 754 init_cpu_topology(); 755 756 this_cpu = smp_processor_id(); 757 store_cpu_topology(this_cpu); 758 numa_store_cpu_info(this_cpu); 759 numa_add_cpu(this_cpu); 760 761 /* 762 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 763 * secondary CPUs present. 764 */ 765 if (max_cpus == 0) 766 return; 767 768 /* 769 * Initialise the present map (which describes the set of CPUs 770 * actually populated at the present time) and release the 771 * secondaries from the bootloader. 772 */ 773 for_each_possible_cpu(cpu) { 774 775 per_cpu(cpu_number, cpu) = cpu; 776 777 if (cpu == smp_processor_id()) 778 continue; 779 780 ops = get_cpu_ops(cpu); 781 if (!ops) 782 continue; 783 784 err = ops->cpu_prepare(cpu); 785 if (err) 786 continue; 787 788 set_cpu_present(cpu, true); 789 numa_store_cpu_info(cpu); 790 } 791 } 792 793 static const char *ipi_types[NR_IPI] __tracepoint_string = { 794 [IPI_RESCHEDULE] = "Rescheduling interrupts", 795 [IPI_CALL_FUNC] = "Function call interrupts", 796 [IPI_CPU_STOP] = "CPU stop interrupts", 797 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts", 798 [IPI_TIMER] = "Timer broadcast interrupts", 799 [IPI_IRQ_WORK] = "IRQ work interrupts", 800 [IPI_WAKEUP] = "CPU wake-up interrupts", 801 }; 802 803 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 804 805 unsigned long irq_err_count; 806 807 int arch_show_interrupts(struct seq_file *p, int prec) 808 { 809 unsigned int cpu, i; 810 811 for (i = 0; i < NR_IPI; i++) { 812 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 813 prec >= 4 ? " " : ""); 814 for_each_online_cpu(cpu) 815 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 816 seq_printf(p, " %s\n", ipi_types[i]); 817 } 818 819 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); 820 return 0; 821 } 822 823 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 824 { 825 smp_cross_call(mask, IPI_CALL_FUNC); 826 } 827 828 void arch_send_call_function_single_ipi(int cpu) 829 { 830 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 831 } 832 833 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 834 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 835 { 836 smp_cross_call(mask, IPI_WAKEUP); 837 } 838 #endif 839 840 #ifdef CONFIG_IRQ_WORK 841 void arch_irq_work_raise(void) 842 { 843 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 844 } 845 #endif 846 847 static void local_cpu_stop(void) 848 { 849 set_cpu_online(smp_processor_id(), false); 850 851 local_daif_mask(); 852 sdei_mask_local_cpu(); 853 cpu_park_loop(); 854 } 855 856 /* 857 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 858 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 859 * CPUs that have already stopped themselves. 860 */ 861 void panic_smp_self_stop(void) 862 { 863 local_cpu_stop(); 864 } 865 866 #ifdef CONFIG_KEXEC_CORE 867 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 868 #endif 869 870 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 871 { 872 #ifdef CONFIG_KEXEC_CORE 873 crash_save_cpu(regs, cpu); 874 875 atomic_dec(&waiting_for_crash_ipi); 876 877 local_irq_disable(); 878 sdei_mask_local_cpu(); 879 880 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 881 __cpu_try_die(cpu); 882 883 /* just in case */ 884 cpu_park_loop(); 885 #endif 886 } 887 888 /* 889 * Main handler for inter-processor interrupts 890 */ 891 static void do_handle_IPI(int ipinr) 892 { 893 unsigned int cpu = smp_processor_id(); 894 895 if ((unsigned)ipinr < NR_IPI) 896 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 897 898 switch (ipinr) { 899 case IPI_RESCHEDULE: 900 scheduler_ipi(); 901 break; 902 903 case IPI_CALL_FUNC: 904 generic_smp_call_function_interrupt(); 905 break; 906 907 case IPI_CPU_STOP: 908 local_cpu_stop(); 909 break; 910 911 case IPI_CPU_CRASH_STOP: 912 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 913 ipi_cpu_crash_stop(cpu, get_irq_regs()); 914 915 unreachable(); 916 } 917 break; 918 919 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 920 case IPI_TIMER: 921 tick_receive_broadcast(); 922 break; 923 #endif 924 925 #ifdef CONFIG_IRQ_WORK 926 case IPI_IRQ_WORK: 927 irq_work_run(); 928 break; 929 #endif 930 931 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 932 case IPI_WAKEUP: 933 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 934 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 935 cpu); 936 break; 937 #endif 938 939 default: 940 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 941 break; 942 } 943 944 if ((unsigned)ipinr < NR_IPI) 945 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 946 } 947 948 static irqreturn_t ipi_handler(int irq, void *data) 949 { 950 do_handle_IPI(irq - ipi_irq_base); 951 return IRQ_HANDLED; 952 } 953 954 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 955 { 956 trace_ipi_raise(target, ipi_types[ipinr]); 957 __ipi_send_mask(ipi_desc[ipinr], target); 958 } 959 960 static void ipi_setup(int cpu) 961 { 962 int i; 963 964 if (WARN_ON_ONCE(!ipi_irq_base)) 965 return; 966 967 for (i = 0; i < nr_ipi; i++) 968 enable_percpu_irq(ipi_irq_base + i, 0); 969 } 970 971 #ifdef CONFIG_HOTPLUG_CPU 972 static void ipi_teardown(int cpu) 973 { 974 int i; 975 976 if (WARN_ON_ONCE(!ipi_irq_base)) 977 return; 978 979 for (i = 0; i < nr_ipi; i++) 980 disable_percpu_irq(ipi_irq_base + i); 981 } 982 #endif 983 984 void __init set_smp_ipi_range(int ipi_base, int n) 985 { 986 int i; 987 988 WARN_ON(n < NR_IPI); 989 nr_ipi = min(n, NR_IPI); 990 991 for (i = 0; i < nr_ipi; i++) { 992 int err; 993 994 err = request_percpu_irq(ipi_base + i, ipi_handler, 995 "IPI", &cpu_number); 996 WARN_ON(err); 997 998 ipi_desc[i] = irq_to_desc(ipi_base + i); 999 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 1000 } 1001 1002 ipi_irq_base = ipi_base; 1003 1004 /* Setup the boot CPU immediately */ 1005 ipi_setup(smp_processor_id()); 1006 } 1007 1008 void smp_send_reschedule(int cpu) 1009 { 1010 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 1011 } 1012 1013 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 1014 void tick_broadcast(const struct cpumask *mask) 1015 { 1016 smp_cross_call(mask, IPI_TIMER); 1017 } 1018 #endif 1019 1020 /* 1021 * The number of CPUs online, not counting this CPU (which may not be 1022 * fully online and so not counted in num_online_cpus()). 1023 */ 1024 static inline unsigned int num_other_online_cpus(void) 1025 { 1026 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 1027 1028 return num_online_cpus() - this_cpu_online; 1029 } 1030 1031 void smp_send_stop(void) 1032 { 1033 unsigned long timeout; 1034 1035 if (num_other_online_cpus()) { 1036 cpumask_t mask; 1037 1038 cpumask_copy(&mask, cpu_online_mask); 1039 cpumask_clear_cpu(smp_processor_id(), &mask); 1040 1041 if (system_state <= SYSTEM_RUNNING) 1042 pr_crit("SMP: stopping secondary CPUs\n"); 1043 smp_cross_call(&mask, IPI_CPU_STOP); 1044 } 1045 1046 /* Wait up to one second for other CPUs to stop */ 1047 timeout = USEC_PER_SEC; 1048 while (num_other_online_cpus() && timeout--) 1049 udelay(1); 1050 1051 if (num_other_online_cpus()) 1052 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1053 cpumask_pr_args(cpu_online_mask)); 1054 1055 sdei_mask_local_cpu(); 1056 } 1057 1058 #ifdef CONFIG_KEXEC_CORE 1059 void crash_smp_send_stop(void) 1060 { 1061 static int cpus_stopped; 1062 cpumask_t mask; 1063 unsigned long timeout; 1064 1065 /* 1066 * This function can be called twice in panic path, but obviously 1067 * we execute this only once. 1068 */ 1069 if (cpus_stopped) 1070 return; 1071 1072 cpus_stopped = 1; 1073 1074 /* 1075 * If this cpu is the only one alive at this point in time, online or 1076 * not, there are no stop messages to be sent around, so just back out. 1077 */ 1078 if (num_other_online_cpus() == 0) { 1079 sdei_mask_local_cpu(); 1080 return; 1081 } 1082 1083 cpumask_copy(&mask, cpu_online_mask); 1084 cpumask_clear_cpu(smp_processor_id(), &mask); 1085 1086 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1087 1088 pr_crit("SMP: stopping secondary CPUs\n"); 1089 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1090 1091 /* Wait up to one second for other CPUs to stop */ 1092 timeout = USEC_PER_SEC; 1093 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1094 udelay(1); 1095 1096 if (atomic_read(&waiting_for_crash_ipi) > 0) 1097 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1098 cpumask_pr_args(&mask)); 1099 1100 sdei_mask_local_cpu(); 1101 } 1102 1103 bool smp_crash_stop_failed(void) 1104 { 1105 return (atomic_read(&waiting_for_crash_ipi) > 0); 1106 } 1107 #endif 1108 1109 /* 1110 * not supported here 1111 */ 1112 int setup_profiling_timer(unsigned int multiplier) 1113 { 1114 return -EINVAL; 1115 } 1116 1117 static bool have_cpu_die(void) 1118 { 1119 #ifdef CONFIG_HOTPLUG_CPU 1120 int any_cpu = raw_smp_processor_id(); 1121 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1122 1123 if (ops && ops->cpu_die) 1124 return true; 1125 #endif 1126 return false; 1127 } 1128 1129 bool cpus_are_stuck_in_kernel(void) 1130 { 1131 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1132 1133 return !!cpus_stuck_in_kernel || smp_spin_tables; 1134 } 1135