1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/acpi.h> 21 #include <linux/arm_sdei.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/spinlock.h> 25 #include <linux/sched/mm.h> 26 #include <linux/sched/hotplug.h> 27 #include <linux/sched/task_stack.h> 28 #include <linux/interrupt.h> 29 #include <linux/cache.h> 30 #include <linux/profile.h> 31 #include <linux/errno.h> 32 #include <linux/mm.h> 33 #include <linux/err.h> 34 #include <linux/cpu.h> 35 #include <linux/smp.h> 36 #include <linux/seq_file.h> 37 #include <linux/irq.h> 38 #include <linux/irqchip/arm-gic-v3.h> 39 #include <linux/percpu.h> 40 #include <linux/clockchips.h> 41 #include <linux/completion.h> 42 #include <linux/of.h> 43 #include <linux/irq_work.h> 44 #include <linux/kexec.h> 45 46 #include <asm/alternative.h> 47 #include <asm/atomic.h> 48 #include <asm/cacheflush.h> 49 #include <asm/cpu.h> 50 #include <asm/cputype.h> 51 #include <asm/cpu_ops.h> 52 #include <asm/daifflags.h> 53 #include <asm/mmu_context.h> 54 #include <asm/numa.h> 55 #include <asm/pgtable.h> 56 #include <asm/pgalloc.h> 57 #include <asm/processor.h> 58 #include <asm/smp_plat.h> 59 #include <asm/sections.h> 60 #include <asm/tlbflush.h> 61 #include <asm/ptrace.h> 62 #include <asm/virt.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/ipi.h> 66 67 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 68 EXPORT_PER_CPU_SYMBOL(cpu_number); 69 70 /* 71 * as from 2.5, kernels no longer have an init_tasks structure 72 * so we need some other way of telling a new secondary core 73 * where to place its SVC stack 74 */ 75 struct secondary_data secondary_data; 76 /* Number of CPUs which aren't online, but looping in kernel text. */ 77 int cpus_stuck_in_kernel; 78 79 enum ipi_msg_type { 80 IPI_RESCHEDULE, 81 IPI_CALL_FUNC, 82 IPI_CPU_STOP, 83 IPI_CPU_CRASH_STOP, 84 IPI_TIMER, 85 IPI_IRQ_WORK, 86 IPI_WAKEUP 87 }; 88 89 #ifdef CONFIG_HOTPLUG_CPU 90 static int op_cpu_kill(unsigned int cpu); 91 #else 92 static inline int op_cpu_kill(unsigned int cpu) 93 { 94 return -ENOSYS; 95 } 96 #endif 97 98 99 /* 100 * Boot a secondary CPU, and assign it the specified idle task. 101 * This also gives us the initial stack to use for this CPU. 102 */ 103 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 104 { 105 if (cpu_ops[cpu]->cpu_boot) 106 return cpu_ops[cpu]->cpu_boot(cpu); 107 108 return -EOPNOTSUPP; 109 } 110 111 static DECLARE_COMPLETION(cpu_running); 112 113 int __cpu_up(unsigned int cpu, struct task_struct *idle) 114 { 115 int ret; 116 long status; 117 118 /* 119 * We need to tell the secondary core where to find its stack and the 120 * page tables. 121 */ 122 secondary_data.task = idle; 123 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 124 update_cpu_boot_status(CPU_MMU_OFF); 125 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 126 127 /* 128 * Now bring the CPU into our world. 129 */ 130 ret = boot_secondary(cpu, idle); 131 if (ret == 0) { 132 /* 133 * CPU was successfully started, wait for it to come online or 134 * time out. 135 */ 136 wait_for_completion_timeout(&cpu_running, 137 msecs_to_jiffies(1000)); 138 139 if (!cpu_online(cpu)) { 140 pr_crit("CPU%u: failed to come online\n", cpu); 141 ret = -EIO; 142 } 143 } else { 144 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 145 return ret; 146 } 147 148 secondary_data.task = NULL; 149 secondary_data.stack = NULL; 150 status = READ_ONCE(secondary_data.status); 151 if (ret && status) { 152 153 if (status == CPU_MMU_OFF) 154 status = READ_ONCE(__early_cpu_boot_status); 155 156 switch (status & CPU_BOOT_STATUS_MASK) { 157 default: 158 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 159 cpu, status); 160 break; 161 case CPU_KILL_ME: 162 if (!op_cpu_kill(cpu)) { 163 pr_crit("CPU%u: died during early boot\n", cpu); 164 break; 165 } 166 /* Fall through */ 167 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 168 case CPU_STUCK_IN_KERNEL: 169 pr_crit("CPU%u: is stuck in kernel\n", cpu); 170 if (status & CPU_STUCK_REASON_52_BIT_VA) 171 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 172 if (status & CPU_STUCK_REASON_NO_GRAN) 173 pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K); 174 cpus_stuck_in_kernel++; 175 break; 176 case CPU_PANIC_KERNEL: 177 panic("CPU%u detected unsupported configuration\n", cpu); 178 } 179 } 180 181 return ret; 182 } 183 184 static void init_gic_priority_masking(void) 185 { 186 u32 cpuflags; 187 188 if (WARN_ON(!gic_enable_sre())) 189 return; 190 191 cpuflags = read_sysreg(daif); 192 193 WARN_ON(!(cpuflags & PSR_I_BIT)); 194 195 gic_write_pmr(GIC_PRIO_IRQOFF); 196 197 /* We can only unmask PSR.I if we can take aborts */ 198 if (!(cpuflags & PSR_A_BIT)) 199 write_sysreg(cpuflags & ~PSR_I_BIT, daif); 200 } 201 202 /* 203 * This is the secondary CPU boot entry. We're using this CPUs 204 * idle thread stack, but a set of temporary page tables. 205 */ 206 asmlinkage notrace void secondary_start_kernel(void) 207 { 208 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 209 struct mm_struct *mm = &init_mm; 210 unsigned int cpu; 211 212 cpu = task_cpu(current); 213 set_my_cpu_offset(per_cpu_offset(cpu)); 214 215 /* 216 * All kernel threads share the same mm context; grab a 217 * reference and switch to it. 218 */ 219 mmgrab(mm); 220 current->active_mm = mm; 221 222 /* 223 * TTBR0 is only used for the identity mapping at this stage. Make it 224 * point to zero page to avoid speculatively fetching new entries. 225 */ 226 cpu_uninstall_idmap(); 227 228 if (system_uses_irq_prio_masking()) 229 init_gic_priority_masking(); 230 231 preempt_disable(); 232 trace_hardirqs_off(); 233 234 /* 235 * If the system has established the capabilities, make sure 236 * this CPU ticks all of those. If it doesn't, the CPU will 237 * fail to come online. 238 */ 239 check_local_cpu_capabilities(); 240 241 if (cpu_ops[cpu]->cpu_postboot) 242 cpu_ops[cpu]->cpu_postboot(); 243 244 /* 245 * Log the CPU info before it is marked online and might get read. 246 */ 247 cpuinfo_store_cpu(); 248 249 /* 250 * Enable GIC and timers. 251 */ 252 notify_cpu_starting(cpu); 253 254 store_cpu_topology(cpu); 255 numa_add_cpu(cpu); 256 257 /* 258 * OK, now it's safe to let the boot CPU continue. Wait for 259 * the CPU migration code to notice that the CPU is online 260 * before we continue. 261 */ 262 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 263 cpu, (unsigned long)mpidr, 264 read_cpuid_id()); 265 update_cpu_boot_status(CPU_BOOT_SUCCESS); 266 set_cpu_online(cpu, true); 267 complete(&cpu_running); 268 269 local_daif_restore(DAIF_PROCCTX); 270 271 /* 272 * OK, it's off to the idle thread for us 273 */ 274 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 275 } 276 277 #ifdef CONFIG_HOTPLUG_CPU 278 static int op_cpu_disable(unsigned int cpu) 279 { 280 /* 281 * If we don't have a cpu_die method, abort before we reach the point 282 * of no return. CPU0 may not have an cpu_ops, so test for it. 283 */ 284 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 285 return -EOPNOTSUPP; 286 287 /* 288 * We may need to abort a hot unplug for some other mechanism-specific 289 * reason. 290 */ 291 if (cpu_ops[cpu]->cpu_disable) 292 return cpu_ops[cpu]->cpu_disable(cpu); 293 294 return 0; 295 } 296 297 /* 298 * __cpu_disable runs on the processor to be shutdown. 299 */ 300 int __cpu_disable(void) 301 { 302 unsigned int cpu = smp_processor_id(); 303 int ret; 304 305 ret = op_cpu_disable(cpu); 306 if (ret) 307 return ret; 308 309 remove_cpu_topology(cpu); 310 numa_remove_cpu(cpu); 311 312 /* 313 * Take this CPU offline. Once we clear this, we can't return, 314 * and we must not schedule until we're ready to give up the cpu. 315 */ 316 set_cpu_online(cpu, false); 317 318 /* 319 * OK - migrate IRQs away from this CPU 320 */ 321 irq_migrate_all_off_this_cpu(); 322 323 return 0; 324 } 325 326 static int op_cpu_kill(unsigned int cpu) 327 { 328 /* 329 * If we have no means of synchronising with the dying CPU, then assume 330 * that it is really dead. We can only wait for an arbitrary length of 331 * time and hope that it's dead, so let's skip the wait and just hope. 332 */ 333 if (!cpu_ops[cpu]->cpu_kill) 334 return 0; 335 336 return cpu_ops[cpu]->cpu_kill(cpu); 337 } 338 339 /* 340 * called on the thread which is asking for a CPU to be shutdown - 341 * waits until shutdown has completed, or it is timed out. 342 */ 343 void __cpu_die(unsigned int cpu) 344 { 345 int err; 346 347 if (!cpu_wait_death(cpu, 5)) { 348 pr_crit("CPU%u: cpu didn't die\n", cpu); 349 return; 350 } 351 pr_notice("CPU%u: shutdown\n", cpu); 352 353 /* 354 * Now that the dying CPU is beyond the point of no return w.r.t. 355 * in-kernel synchronisation, try to get the firwmare to help us to 356 * verify that it has really left the kernel before we consider 357 * clobbering anything it might still be using. 358 */ 359 err = op_cpu_kill(cpu); 360 if (err) 361 pr_warn("CPU%d may not have shut down cleanly: %d\n", 362 cpu, err); 363 } 364 365 /* 366 * Called from the idle thread for the CPU which has been shutdown. 367 * 368 */ 369 void cpu_die(void) 370 { 371 unsigned int cpu = smp_processor_id(); 372 373 idle_task_exit(); 374 375 local_daif_mask(); 376 377 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 378 (void)cpu_report_death(); 379 380 /* 381 * Actually shutdown the CPU. This must never fail. The specific hotplug 382 * mechanism must perform all required cache maintenance to ensure that 383 * no dirty lines are lost in the process of shutting down the CPU. 384 */ 385 cpu_ops[cpu]->cpu_die(cpu); 386 387 BUG(); 388 } 389 #endif 390 391 /* 392 * Kill the calling secondary CPU, early in bringup before it is turned 393 * online. 394 */ 395 void cpu_die_early(void) 396 { 397 int cpu = smp_processor_id(); 398 399 pr_crit("CPU%d: will not boot\n", cpu); 400 401 /* Mark this CPU absent */ 402 set_cpu_present(cpu, 0); 403 404 #ifdef CONFIG_HOTPLUG_CPU 405 update_cpu_boot_status(CPU_KILL_ME); 406 /* Check if we can park ourselves */ 407 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 408 cpu_ops[cpu]->cpu_die(cpu); 409 #endif 410 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 411 412 cpu_park_loop(); 413 } 414 415 static void __init hyp_mode_check(void) 416 { 417 if (is_hyp_mode_available()) 418 pr_info("CPU: All CPU(s) started at EL2\n"); 419 else if (is_hyp_mode_mismatched()) 420 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 421 "CPU: CPUs started in inconsistent modes"); 422 else 423 pr_info("CPU: All CPU(s) started at EL1\n"); 424 } 425 426 void __init smp_cpus_done(unsigned int max_cpus) 427 { 428 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 429 setup_cpu_features(); 430 hyp_mode_check(); 431 apply_alternatives_all(); 432 mark_linear_text_alias_ro(); 433 } 434 435 void __init smp_prepare_boot_cpu(void) 436 { 437 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 438 /* 439 * Initialise the static keys early as they may be enabled by the 440 * cpufeature code. 441 */ 442 jump_label_init(); 443 cpuinfo_store_boot_cpu(); 444 445 /* 446 * We now know enough about the boot CPU to apply the 447 * alternatives that cannot wait until interrupt handling 448 * and/or scheduling is enabled. 449 */ 450 apply_boot_alternatives(); 451 452 /* Conditionally switch to GIC PMR for interrupt masking */ 453 if (system_uses_irq_prio_masking()) 454 init_gic_priority_masking(); 455 } 456 457 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 458 { 459 const __be32 *cell; 460 u64 hwid; 461 462 /* 463 * A cpu node with missing "reg" property is 464 * considered invalid to build a cpu_logical_map 465 * entry. 466 */ 467 cell = of_get_property(dn, "reg", NULL); 468 if (!cell) { 469 pr_err("%pOF: missing reg property\n", dn); 470 return INVALID_HWID; 471 } 472 473 hwid = of_read_number(cell, of_n_addr_cells(dn)); 474 /* 475 * Non affinity bits must be set to 0 in the DT 476 */ 477 if (hwid & ~MPIDR_HWID_BITMASK) { 478 pr_err("%pOF: invalid reg property\n", dn); 479 return INVALID_HWID; 480 } 481 return hwid; 482 } 483 484 /* 485 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 486 * entries and check for duplicates. If any is found just ignore the 487 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 488 * matching valid MPIDR values. 489 */ 490 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 491 { 492 unsigned int i; 493 494 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 495 if (cpu_logical_map(i) == hwid) 496 return true; 497 return false; 498 } 499 500 /* 501 * Initialize cpu operations for a logical cpu and 502 * set it in the possible mask on success 503 */ 504 static int __init smp_cpu_setup(int cpu) 505 { 506 if (cpu_read_ops(cpu)) 507 return -ENODEV; 508 509 if (cpu_ops[cpu]->cpu_init(cpu)) 510 return -ENODEV; 511 512 set_cpu_possible(cpu, true); 513 514 return 0; 515 } 516 517 static bool bootcpu_valid __initdata; 518 static unsigned int cpu_count = 1; 519 520 #ifdef CONFIG_ACPI 521 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 522 523 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 524 { 525 return &cpu_madt_gicc[cpu]; 526 } 527 528 /* 529 * acpi_map_gic_cpu_interface - parse processor MADT entry 530 * 531 * Carry out sanity checks on MADT processor entry and initialize 532 * cpu_logical_map on success 533 */ 534 static void __init 535 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 536 { 537 u64 hwid = processor->arm_mpidr; 538 539 if (!(processor->flags & ACPI_MADT_ENABLED)) { 540 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 541 return; 542 } 543 544 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 545 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 546 return; 547 } 548 549 if (is_mpidr_duplicate(cpu_count, hwid)) { 550 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 551 return; 552 } 553 554 /* Check if GICC structure of boot CPU is available in the MADT */ 555 if (cpu_logical_map(0) == hwid) { 556 if (bootcpu_valid) { 557 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 558 hwid); 559 return; 560 } 561 bootcpu_valid = true; 562 cpu_madt_gicc[0] = *processor; 563 return; 564 } 565 566 if (cpu_count >= NR_CPUS) 567 return; 568 569 /* map the logical cpu id to cpu MPIDR */ 570 cpu_logical_map(cpu_count) = hwid; 571 572 cpu_madt_gicc[cpu_count] = *processor; 573 574 /* 575 * Set-up the ACPI parking protocol cpu entries 576 * while initializing the cpu_logical_map to 577 * avoid parsing MADT entries multiple times for 578 * nothing (ie a valid cpu_logical_map entry should 579 * contain a valid parking protocol data set to 580 * initialize the cpu if the parking protocol is 581 * the only available enable method). 582 */ 583 acpi_set_mailbox_entry(cpu_count, processor); 584 585 cpu_count++; 586 } 587 588 static int __init 589 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, 590 const unsigned long end) 591 { 592 struct acpi_madt_generic_interrupt *processor; 593 594 processor = (struct acpi_madt_generic_interrupt *)header; 595 if (BAD_MADT_GICC_ENTRY(processor, end)) 596 return -EINVAL; 597 598 acpi_table_print_madt_entry(header); 599 600 acpi_map_gic_cpu_interface(processor); 601 602 return 0; 603 } 604 605 static void __init acpi_parse_and_init_cpus(void) 606 { 607 int i; 608 609 /* 610 * do a walk of MADT to determine how many CPUs 611 * we have including disabled CPUs, and get information 612 * we need for SMP init. 613 */ 614 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 615 acpi_parse_gic_cpu_interface, 0); 616 617 /* 618 * In ACPI, SMP and CPU NUMA information is provided in separate 619 * static tables, namely the MADT and the SRAT. 620 * 621 * Thus, it is simpler to first create the cpu logical map through 622 * an MADT walk and then map the logical cpus to their node ids 623 * as separate steps. 624 */ 625 acpi_map_cpus_to_nodes(); 626 627 for (i = 0; i < nr_cpu_ids; i++) 628 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 629 } 630 #else 631 #define acpi_parse_and_init_cpus(...) do { } while (0) 632 #endif 633 634 /* 635 * Enumerate the possible CPU set from the device tree and build the 636 * cpu logical map array containing MPIDR values related to logical 637 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 638 */ 639 static void __init of_parse_and_init_cpus(void) 640 { 641 struct device_node *dn; 642 643 for_each_of_cpu_node(dn) { 644 u64 hwid = of_get_cpu_mpidr(dn); 645 646 if (hwid == INVALID_HWID) 647 goto next; 648 649 if (is_mpidr_duplicate(cpu_count, hwid)) { 650 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 651 dn); 652 goto next; 653 } 654 655 /* 656 * The numbering scheme requires that the boot CPU 657 * must be assigned logical id 0. Record it so that 658 * the logical map built from DT is validated and can 659 * be used. 660 */ 661 if (hwid == cpu_logical_map(0)) { 662 if (bootcpu_valid) { 663 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 664 dn); 665 goto next; 666 } 667 668 bootcpu_valid = true; 669 early_map_cpu_to_node(0, of_node_to_nid(dn)); 670 671 /* 672 * cpu_logical_map has already been 673 * initialized and the boot cpu doesn't need 674 * the enable-method so continue without 675 * incrementing cpu. 676 */ 677 continue; 678 } 679 680 if (cpu_count >= NR_CPUS) 681 goto next; 682 683 pr_debug("cpu logical map 0x%llx\n", hwid); 684 cpu_logical_map(cpu_count) = hwid; 685 686 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 687 next: 688 cpu_count++; 689 } 690 } 691 692 /* 693 * Enumerate the possible CPU set from the device tree or ACPI and build the 694 * cpu logical map array containing MPIDR values related to logical 695 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 696 */ 697 void __init smp_init_cpus(void) 698 { 699 int i; 700 701 if (acpi_disabled) 702 of_parse_and_init_cpus(); 703 else 704 acpi_parse_and_init_cpus(); 705 706 if (cpu_count > nr_cpu_ids) 707 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 708 cpu_count, nr_cpu_ids); 709 710 if (!bootcpu_valid) { 711 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 712 return; 713 } 714 715 /* 716 * We need to set the cpu_logical_map entries before enabling 717 * the cpus so that cpu processor description entries (DT cpu nodes 718 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 719 * with entries in cpu_logical_map while initializing the cpus. 720 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 721 */ 722 for (i = 1; i < nr_cpu_ids; i++) { 723 if (cpu_logical_map(i) != INVALID_HWID) { 724 if (smp_cpu_setup(i)) 725 cpu_logical_map(i) = INVALID_HWID; 726 } 727 } 728 } 729 730 void __init smp_prepare_cpus(unsigned int max_cpus) 731 { 732 int err; 733 unsigned int cpu; 734 unsigned int this_cpu; 735 736 init_cpu_topology(); 737 738 this_cpu = smp_processor_id(); 739 store_cpu_topology(this_cpu); 740 numa_store_cpu_info(this_cpu); 741 numa_add_cpu(this_cpu); 742 743 /* 744 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 745 * secondary CPUs present. 746 */ 747 if (max_cpus == 0) 748 return; 749 750 /* 751 * Initialise the present map (which describes the set of CPUs 752 * actually populated at the present time) and release the 753 * secondaries from the bootloader. 754 */ 755 for_each_possible_cpu(cpu) { 756 757 per_cpu(cpu_number, cpu) = cpu; 758 759 if (cpu == smp_processor_id()) 760 continue; 761 762 if (!cpu_ops[cpu]) 763 continue; 764 765 err = cpu_ops[cpu]->cpu_prepare(cpu); 766 if (err) 767 continue; 768 769 set_cpu_present(cpu, true); 770 numa_store_cpu_info(cpu); 771 } 772 } 773 774 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 775 776 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 777 { 778 __smp_cross_call = fn; 779 } 780 781 static const char *ipi_types[NR_IPI] __tracepoint_string = { 782 #define S(x,s) [x] = s 783 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 784 S(IPI_CALL_FUNC, "Function call interrupts"), 785 S(IPI_CPU_STOP, "CPU stop interrupts"), 786 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 787 S(IPI_TIMER, "Timer broadcast interrupts"), 788 S(IPI_IRQ_WORK, "IRQ work interrupts"), 789 S(IPI_WAKEUP, "CPU wake-up interrupts"), 790 }; 791 792 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 793 { 794 trace_ipi_raise(target, ipi_types[ipinr]); 795 __smp_cross_call(target, ipinr); 796 } 797 798 void show_ipi_list(struct seq_file *p, int prec) 799 { 800 unsigned int cpu, i; 801 802 for (i = 0; i < NR_IPI; i++) { 803 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 804 prec >= 4 ? " " : ""); 805 for_each_online_cpu(cpu) 806 seq_printf(p, "%10u ", 807 __get_irq_stat(cpu, ipi_irqs[i])); 808 seq_printf(p, " %s\n", ipi_types[i]); 809 } 810 } 811 812 u64 smp_irq_stat_cpu(unsigned int cpu) 813 { 814 u64 sum = 0; 815 int i; 816 817 for (i = 0; i < NR_IPI; i++) 818 sum += __get_irq_stat(cpu, ipi_irqs[i]); 819 820 return sum; 821 } 822 823 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 824 { 825 smp_cross_call(mask, IPI_CALL_FUNC); 826 } 827 828 void arch_send_call_function_single_ipi(int cpu) 829 { 830 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 831 } 832 833 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 834 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 835 { 836 smp_cross_call(mask, IPI_WAKEUP); 837 } 838 #endif 839 840 #ifdef CONFIG_IRQ_WORK 841 void arch_irq_work_raise(void) 842 { 843 if (__smp_cross_call) 844 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 845 } 846 #endif 847 848 /* 849 * ipi_cpu_stop - handle IPI from smp_send_stop() 850 */ 851 static void ipi_cpu_stop(unsigned int cpu) 852 { 853 set_cpu_online(cpu, false); 854 855 local_daif_mask(); 856 sdei_mask_local_cpu(); 857 858 while (1) 859 cpu_relax(); 860 } 861 862 #ifdef CONFIG_KEXEC_CORE 863 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 864 #endif 865 866 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 867 { 868 #ifdef CONFIG_KEXEC_CORE 869 crash_save_cpu(regs, cpu); 870 871 atomic_dec(&waiting_for_crash_ipi); 872 873 local_irq_disable(); 874 sdei_mask_local_cpu(); 875 876 #ifdef CONFIG_HOTPLUG_CPU 877 if (cpu_ops[cpu]->cpu_die) 878 cpu_ops[cpu]->cpu_die(cpu); 879 #endif 880 881 /* just in case */ 882 cpu_park_loop(); 883 #endif 884 } 885 886 /* 887 * Main handler for inter-processor interrupts 888 */ 889 void handle_IPI(int ipinr, struct pt_regs *regs) 890 { 891 unsigned int cpu = smp_processor_id(); 892 struct pt_regs *old_regs = set_irq_regs(regs); 893 894 if ((unsigned)ipinr < NR_IPI) { 895 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 896 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 897 } 898 899 switch (ipinr) { 900 case IPI_RESCHEDULE: 901 scheduler_ipi(); 902 break; 903 904 case IPI_CALL_FUNC: 905 irq_enter(); 906 generic_smp_call_function_interrupt(); 907 irq_exit(); 908 break; 909 910 case IPI_CPU_STOP: 911 irq_enter(); 912 ipi_cpu_stop(cpu); 913 irq_exit(); 914 break; 915 916 case IPI_CPU_CRASH_STOP: 917 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 918 irq_enter(); 919 ipi_cpu_crash_stop(cpu, regs); 920 921 unreachable(); 922 } 923 break; 924 925 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 926 case IPI_TIMER: 927 irq_enter(); 928 tick_receive_broadcast(); 929 irq_exit(); 930 break; 931 #endif 932 933 #ifdef CONFIG_IRQ_WORK 934 case IPI_IRQ_WORK: 935 irq_enter(); 936 irq_work_run(); 937 irq_exit(); 938 break; 939 #endif 940 941 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 942 case IPI_WAKEUP: 943 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 944 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 945 cpu); 946 break; 947 #endif 948 949 default: 950 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 951 break; 952 } 953 954 if ((unsigned)ipinr < NR_IPI) 955 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 956 set_irq_regs(old_regs); 957 } 958 959 void smp_send_reschedule(int cpu) 960 { 961 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 962 } 963 964 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 965 void tick_broadcast(const struct cpumask *mask) 966 { 967 smp_cross_call(mask, IPI_TIMER); 968 } 969 #endif 970 971 void smp_send_stop(void) 972 { 973 unsigned long timeout; 974 975 if (num_online_cpus() > 1) { 976 cpumask_t mask; 977 978 cpumask_copy(&mask, cpu_online_mask); 979 cpumask_clear_cpu(smp_processor_id(), &mask); 980 981 if (system_state <= SYSTEM_RUNNING) 982 pr_crit("SMP: stopping secondary CPUs\n"); 983 smp_cross_call(&mask, IPI_CPU_STOP); 984 } 985 986 /* Wait up to one second for other CPUs to stop */ 987 timeout = USEC_PER_SEC; 988 while (num_online_cpus() > 1 && timeout--) 989 udelay(1); 990 991 if (num_online_cpus() > 1) 992 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 993 cpumask_pr_args(cpu_online_mask)); 994 995 sdei_mask_local_cpu(); 996 } 997 998 #ifdef CONFIG_KEXEC_CORE 999 void crash_smp_send_stop(void) 1000 { 1001 static int cpus_stopped; 1002 cpumask_t mask; 1003 unsigned long timeout; 1004 1005 /* 1006 * This function can be called twice in panic path, but obviously 1007 * we execute this only once. 1008 */ 1009 if (cpus_stopped) 1010 return; 1011 1012 cpus_stopped = 1; 1013 1014 if (num_online_cpus() == 1) { 1015 sdei_mask_local_cpu(); 1016 return; 1017 } 1018 1019 cpumask_copy(&mask, cpu_online_mask); 1020 cpumask_clear_cpu(smp_processor_id(), &mask); 1021 1022 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); 1023 1024 pr_crit("SMP: stopping secondary CPUs\n"); 1025 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1026 1027 /* Wait up to one second for other CPUs to stop */ 1028 timeout = USEC_PER_SEC; 1029 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1030 udelay(1); 1031 1032 if (atomic_read(&waiting_for_crash_ipi) > 0) 1033 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 1034 cpumask_pr_args(&mask)); 1035 1036 sdei_mask_local_cpu(); 1037 } 1038 1039 bool smp_crash_stop_failed(void) 1040 { 1041 return (atomic_read(&waiting_for_crash_ipi) > 0); 1042 } 1043 #endif 1044 1045 /* 1046 * not supported here 1047 */ 1048 int setup_profiling_timer(unsigned int multiplier) 1049 { 1050 return -EINVAL; 1051 } 1052 1053 static bool have_cpu_die(void) 1054 { 1055 #ifdef CONFIG_HOTPLUG_CPU 1056 int any_cpu = raw_smp_processor_id(); 1057 1058 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) 1059 return true; 1060 #endif 1061 return false; 1062 } 1063 1064 bool cpus_are_stuck_in_kernel(void) 1065 { 1066 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1067 1068 return !!cpus_stuck_in_kernel || smp_spin_tables; 1069 } 1070