xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision b96c0546)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36 
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56 
57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
58 EXPORT_PER_CPU_SYMBOL(cpu_number);
59 
60 /*
61  * as from 2.5, kernels no longer have an init_tasks structure
62  * so we need some other way of telling a new secondary core
63  * where to place its SVC stack
64  */
65 struct secondary_data secondary_data;
66 /* Number of CPUs which aren't online, but looping in kernel text. */
67 static int cpus_stuck_in_kernel;
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CPU_STOP,
73 	IPI_CPU_CRASH_STOP,
74 	IPI_TIMER,
75 	IPI_IRQ_WORK,
76 	IPI_WAKEUP,
77 	NR_IPI
78 };
79 
80 static int ipi_irq_base __read_mostly;
81 static int nr_ipi __read_mostly = NR_IPI;
82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
83 
84 static void ipi_setup(int cpu);
85 
86 #ifdef CONFIG_HOTPLUG_CPU
87 static void ipi_teardown(int cpu);
88 static int op_cpu_kill(unsigned int cpu);
89 #else
90 static inline int op_cpu_kill(unsigned int cpu)
91 {
92 	return -ENOSYS;
93 }
94 #endif
95 
96 
97 /*
98  * Boot a secondary CPU, and assign it the specified idle task.
99  * This also gives us the initial stack to use for this CPU.
100  */
101 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
102 {
103 	const struct cpu_operations *ops = get_cpu_ops(cpu);
104 
105 	if (ops->cpu_boot)
106 		return ops->cpu_boot(cpu);
107 
108 	return -EOPNOTSUPP;
109 }
110 
111 static DECLARE_COMPLETION(cpu_running);
112 
113 int __cpu_up(unsigned int cpu, struct task_struct *idle)
114 {
115 	int ret;
116 	long status;
117 
118 	/*
119 	 * We need to tell the secondary core where to find its stack and the
120 	 * page tables.
121 	 */
122 	secondary_data.task = idle;
123 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
124 	update_cpu_boot_status(CPU_MMU_OFF);
125 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
126 
127 	/* Now bring the CPU into our world */
128 	ret = boot_secondary(cpu, idle);
129 	if (ret) {
130 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
131 		return ret;
132 	}
133 
134 	/*
135 	 * CPU was successfully started, wait for it to come online or
136 	 * time out.
137 	 */
138 	wait_for_completion_timeout(&cpu_running,
139 				    msecs_to_jiffies(5000));
140 	if (cpu_online(cpu))
141 		return 0;
142 
143 	pr_crit("CPU%u: failed to come online\n", cpu);
144 	secondary_data.task = NULL;
145 	secondary_data.stack = NULL;
146 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
147 	status = READ_ONCE(secondary_data.status);
148 	if (status == CPU_MMU_OFF)
149 		status = READ_ONCE(__early_cpu_boot_status);
150 
151 	switch (status & CPU_BOOT_STATUS_MASK) {
152 	default:
153 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
154 		       cpu, status);
155 		cpus_stuck_in_kernel++;
156 		break;
157 	case CPU_KILL_ME:
158 		if (!op_cpu_kill(cpu)) {
159 			pr_crit("CPU%u: died during early boot\n", cpu);
160 			break;
161 		}
162 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
163 		fallthrough;
164 	case CPU_STUCK_IN_KERNEL:
165 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
166 		if (status & CPU_STUCK_REASON_52_BIT_VA)
167 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
168 		if (status & CPU_STUCK_REASON_NO_GRAN) {
169 			pr_crit("CPU%u: does not support %luK granule\n",
170 				cpu, PAGE_SIZE / SZ_1K);
171 		}
172 		cpus_stuck_in_kernel++;
173 		break;
174 	case CPU_PANIC_KERNEL:
175 		panic("CPU%u detected unsupported configuration\n", cpu);
176 	}
177 
178 	return -EIO;
179 }
180 
181 static void init_gic_priority_masking(void)
182 {
183 	u32 cpuflags;
184 
185 	if (WARN_ON(!gic_enable_sre()))
186 		return;
187 
188 	cpuflags = read_sysreg(daif);
189 
190 	WARN_ON(!(cpuflags & PSR_I_BIT));
191 
192 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
193 }
194 
195 /*
196  * This is the secondary CPU boot entry.  We're using this CPUs
197  * idle thread stack, but a set of temporary page tables.
198  */
199 asmlinkage notrace void secondary_start_kernel(void)
200 {
201 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
202 	struct mm_struct *mm = &init_mm;
203 	const struct cpu_operations *ops;
204 	unsigned int cpu;
205 
206 	cpu = task_cpu(current);
207 	set_my_cpu_offset(per_cpu_offset(cpu));
208 
209 	/*
210 	 * All kernel threads share the same mm context; grab a
211 	 * reference and switch to it.
212 	 */
213 	mmgrab(mm);
214 	current->active_mm = mm;
215 
216 	/*
217 	 * TTBR0 is only used for the identity mapping at this stage. Make it
218 	 * point to zero page to avoid speculatively fetching new entries.
219 	 */
220 	cpu_uninstall_idmap();
221 
222 	if (system_uses_irq_prio_masking())
223 		init_gic_priority_masking();
224 
225 	preempt_disable();
226 	trace_hardirqs_off();
227 
228 	/*
229 	 * If the system has established the capabilities, make sure
230 	 * this CPU ticks all of those. If it doesn't, the CPU will
231 	 * fail to come online.
232 	 */
233 	check_local_cpu_capabilities();
234 
235 	ops = get_cpu_ops(cpu);
236 	if (ops->cpu_postboot)
237 		ops->cpu_postboot();
238 
239 	/*
240 	 * Log the CPU info before it is marked online and might get read.
241 	 */
242 	cpuinfo_store_cpu();
243 
244 	/*
245 	 * Enable GIC and timers.
246 	 */
247 	notify_cpu_starting(cpu);
248 
249 	ipi_setup(cpu);
250 
251 	store_cpu_topology(cpu);
252 	numa_add_cpu(cpu);
253 
254 	/*
255 	 * OK, now it's safe to let the boot CPU continue.  Wait for
256 	 * the CPU migration code to notice that the CPU is online
257 	 * before we continue.
258 	 */
259 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
260 					 cpu, (unsigned long)mpidr,
261 					 read_cpuid_id());
262 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
263 	set_cpu_online(cpu, true);
264 	complete(&cpu_running);
265 
266 	local_daif_restore(DAIF_PROCCTX);
267 
268 	/*
269 	 * OK, it's off to the idle thread for us
270 	 */
271 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
272 }
273 
274 #ifdef CONFIG_HOTPLUG_CPU
275 static int op_cpu_disable(unsigned int cpu)
276 {
277 	const struct cpu_operations *ops = get_cpu_ops(cpu);
278 
279 	/*
280 	 * If we don't have a cpu_die method, abort before we reach the point
281 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
282 	 */
283 	if (!ops || !ops->cpu_die)
284 		return -EOPNOTSUPP;
285 
286 	/*
287 	 * We may need to abort a hot unplug for some other mechanism-specific
288 	 * reason.
289 	 */
290 	if (ops->cpu_disable)
291 		return ops->cpu_disable(cpu);
292 
293 	return 0;
294 }
295 
296 /*
297  * __cpu_disable runs on the processor to be shutdown.
298  */
299 int __cpu_disable(void)
300 {
301 	unsigned int cpu = smp_processor_id();
302 	int ret;
303 
304 	ret = op_cpu_disable(cpu);
305 	if (ret)
306 		return ret;
307 
308 	remove_cpu_topology(cpu);
309 	numa_remove_cpu(cpu);
310 
311 	/*
312 	 * Take this CPU offline.  Once we clear this, we can't return,
313 	 * and we must not schedule until we're ready to give up the cpu.
314 	 */
315 	set_cpu_online(cpu, false);
316 	ipi_teardown(cpu);
317 
318 	/*
319 	 * OK - migrate IRQs away from this CPU
320 	 */
321 	irq_migrate_all_off_this_cpu();
322 
323 	return 0;
324 }
325 
326 static int op_cpu_kill(unsigned int cpu)
327 {
328 	const struct cpu_operations *ops = get_cpu_ops(cpu);
329 
330 	/*
331 	 * If we have no means of synchronising with the dying CPU, then assume
332 	 * that it is really dead. We can only wait for an arbitrary length of
333 	 * time and hope that it's dead, so let's skip the wait and just hope.
334 	 */
335 	if (!ops->cpu_kill)
336 		return 0;
337 
338 	return ops->cpu_kill(cpu);
339 }
340 
341 /*
342  * called on the thread which is asking for a CPU to be shutdown -
343  * waits until shutdown has completed, or it is timed out.
344  */
345 void __cpu_die(unsigned int cpu)
346 {
347 	int err;
348 
349 	if (!cpu_wait_death(cpu, 5)) {
350 		pr_crit("CPU%u: cpu didn't die\n", cpu);
351 		return;
352 	}
353 	pr_notice("CPU%u: shutdown\n", cpu);
354 
355 	/*
356 	 * Now that the dying CPU is beyond the point of no return w.r.t.
357 	 * in-kernel synchronisation, try to get the firwmare to help us to
358 	 * verify that it has really left the kernel before we consider
359 	 * clobbering anything it might still be using.
360 	 */
361 	err = op_cpu_kill(cpu);
362 	if (err)
363 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
364 }
365 
366 /*
367  * Called from the idle thread for the CPU which has been shutdown.
368  *
369  */
370 void cpu_die(void)
371 {
372 	unsigned int cpu = smp_processor_id();
373 	const struct cpu_operations *ops = get_cpu_ops(cpu);
374 
375 	idle_task_exit();
376 
377 	local_daif_mask();
378 
379 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
380 	(void)cpu_report_death();
381 
382 	/*
383 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
384 	 * mechanism must perform all required cache maintenance to ensure that
385 	 * no dirty lines are lost in the process of shutting down the CPU.
386 	 */
387 	ops->cpu_die(cpu);
388 
389 	BUG();
390 }
391 #endif
392 
393 static void __cpu_try_die(int cpu)
394 {
395 #ifdef CONFIG_HOTPLUG_CPU
396 	const struct cpu_operations *ops = get_cpu_ops(cpu);
397 
398 	if (ops && ops->cpu_die)
399 		ops->cpu_die(cpu);
400 #endif
401 }
402 
403 /*
404  * Kill the calling secondary CPU, early in bringup before it is turned
405  * online.
406  */
407 void cpu_die_early(void)
408 {
409 	int cpu = smp_processor_id();
410 
411 	pr_crit("CPU%d: will not boot\n", cpu);
412 
413 	/* Mark this CPU absent */
414 	set_cpu_present(cpu, 0);
415 
416 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
417 		update_cpu_boot_status(CPU_KILL_ME);
418 		__cpu_try_die(cpu);
419 	}
420 
421 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
422 
423 	cpu_park_loop();
424 }
425 
426 static void __init hyp_mode_check(void)
427 {
428 	if (is_hyp_mode_available())
429 		pr_info("CPU: All CPU(s) started at EL2\n");
430 	else if (is_hyp_mode_mismatched())
431 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
432 			   "CPU: CPUs started in inconsistent modes");
433 	else
434 		pr_info("CPU: All CPU(s) started at EL1\n");
435 	if (IS_ENABLED(CONFIG_KVM))
436 		kvm_compute_layout();
437 }
438 
439 void __init smp_cpus_done(unsigned int max_cpus)
440 {
441 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
442 	setup_cpu_features();
443 	hyp_mode_check();
444 	apply_alternatives_all();
445 	mark_linear_text_alias_ro();
446 }
447 
448 void __init smp_prepare_boot_cpu(void)
449 {
450 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
451 	cpuinfo_store_boot_cpu();
452 
453 	/*
454 	 * We now know enough about the boot CPU to apply the
455 	 * alternatives that cannot wait until interrupt handling
456 	 * and/or scheduling is enabled.
457 	 */
458 	apply_boot_alternatives();
459 
460 	/* Conditionally switch to GIC PMR for interrupt masking */
461 	if (system_uses_irq_prio_masking())
462 		init_gic_priority_masking();
463 }
464 
465 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
466 {
467 	const __be32 *cell;
468 	u64 hwid;
469 
470 	/*
471 	 * A cpu node with missing "reg" property is
472 	 * considered invalid to build a cpu_logical_map
473 	 * entry.
474 	 */
475 	cell = of_get_property(dn, "reg", NULL);
476 	if (!cell) {
477 		pr_err("%pOF: missing reg property\n", dn);
478 		return INVALID_HWID;
479 	}
480 
481 	hwid = of_read_number(cell, of_n_addr_cells(dn));
482 	/*
483 	 * Non affinity bits must be set to 0 in the DT
484 	 */
485 	if (hwid & ~MPIDR_HWID_BITMASK) {
486 		pr_err("%pOF: invalid reg property\n", dn);
487 		return INVALID_HWID;
488 	}
489 	return hwid;
490 }
491 
492 /*
493  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
494  * entries and check for duplicates. If any is found just ignore the
495  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
496  * matching valid MPIDR values.
497  */
498 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
499 {
500 	unsigned int i;
501 
502 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
503 		if (cpu_logical_map(i) == hwid)
504 			return true;
505 	return false;
506 }
507 
508 /*
509  * Initialize cpu operations for a logical cpu and
510  * set it in the possible mask on success
511  */
512 static int __init smp_cpu_setup(int cpu)
513 {
514 	const struct cpu_operations *ops;
515 
516 	if (init_cpu_ops(cpu))
517 		return -ENODEV;
518 
519 	ops = get_cpu_ops(cpu);
520 	if (ops->cpu_init(cpu))
521 		return -ENODEV;
522 
523 	set_cpu_possible(cpu, true);
524 
525 	return 0;
526 }
527 
528 static bool bootcpu_valid __initdata;
529 static unsigned int cpu_count = 1;
530 
531 #ifdef CONFIG_ACPI
532 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
533 
534 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
535 {
536 	return &cpu_madt_gicc[cpu];
537 }
538 
539 /*
540  * acpi_map_gic_cpu_interface - parse processor MADT entry
541  *
542  * Carry out sanity checks on MADT processor entry and initialize
543  * cpu_logical_map on success
544  */
545 static void __init
546 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
547 {
548 	u64 hwid = processor->arm_mpidr;
549 
550 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
551 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
552 		return;
553 	}
554 
555 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
556 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
557 		return;
558 	}
559 
560 	if (is_mpidr_duplicate(cpu_count, hwid)) {
561 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
562 		return;
563 	}
564 
565 	/* Check if GICC structure of boot CPU is available in the MADT */
566 	if (cpu_logical_map(0) == hwid) {
567 		if (bootcpu_valid) {
568 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
569 			       hwid);
570 			return;
571 		}
572 		bootcpu_valid = true;
573 		cpu_madt_gicc[0] = *processor;
574 		return;
575 	}
576 
577 	if (cpu_count >= NR_CPUS)
578 		return;
579 
580 	/* map the logical cpu id to cpu MPIDR */
581 	set_cpu_logical_map(cpu_count, hwid);
582 
583 	cpu_madt_gicc[cpu_count] = *processor;
584 
585 	/*
586 	 * Set-up the ACPI parking protocol cpu entries
587 	 * while initializing the cpu_logical_map to
588 	 * avoid parsing MADT entries multiple times for
589 	 * nothing (ie a valid cpu_logical_map entry should
590 	 * contain a valid parking protocol data set to
591 	 * initialize the cpu if the parking protocol is
592 	 * the only available enable method).
593 	 */
594 	acpi_set_mailbox_entry(cpu_count, processor);
595 
596 	cpu_count++;
597 }
598 
599 static int __init
600 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
601 			     const unsigned long end)
602 {
603 	struct acpi_madt_generic_interrupt *processor;
604 
605 	processor = (struct acpi_madt_generic_interrupt *)header;
606 	if (BAD_MADT_GICC_ENTRY(processor, end))
607 		return -EINVAL;
608 
609 	acpi_table_print_madt_entry(&header->common);
610 
611 	acpi_map_gic_cpu_interface(processor);
612 
613 	return 0;
614 }
615 
616 static void __init acpi_parse_and_init_cpus(void)
617 {
618 	int i;
619 
620 	/*
621 	 * do a walk of MADT to determine how many CPUs
622 	 * we have including disabled CPUs, and get information
623 	 * we need for SMP init.
624 	 */
625 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
626 				      acpi_parse_gic_cpu_interface, 0);
627 
628 	/*
629 	 * In ACPI, SMP and CPU NUMA information is provided in separate
630 	 * static tables, namely the MADT and the SRAT.
631 	 *
632 	 * Thus, it is simpler to first create the cpu logical map through
633 	 * an MADT walk and then map the logical cpus to their node ids
634 	 * as separate steps.
635 	 */
636 	acpi_map_cpus_to_nodes();
637 
638 	for (i = 0; i < nr_cpu_ids; i++)
639 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
640 }
641 #else
642 #define acpi_parse_and_init_cpus(...)	do { } while (0)
643 #endif
644 
645 /*
646  * Enumerate the possible CPU set from the device tree and build the
647  * cpu logical map array containing MPIDR values related to logical
648  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
649  */
650 static void __init of_parse_and_init_cpus(void)
651 {
652 	struct device_node *dn;
653 
654 	for_each_of_cpu_node(dn) {
655 		u64 hwid = of_get_cpu_mpidr(dn);
656 
657 		if (hwid == INVALID_HWID)
658 			goto next;
659 
660 		if (is_mpidr_duplicate(cpu_count, hwid)) {
661 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
662 				dn);
663 			goto next;
664 		}
665 
666 		/*
667 		 * The numbering scheme requires that the boot CPU
668 		 * must be assigned logical id 0. Record it so that
669 		 * the logical map built from DT is validated and can
670 		 * be used.
671 		 */
672 		if (hwid == cpu_logical_map(0)) {
673 			if (bootcpu_valid) {
674 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
675 					dn);
676 				goto next;
677 			}
678 
679 			bootcpu_valid = true;
680 			early_map_cpu_to_node(0, of_node_to_nid(dn));
681 
682 			/*
683 			 * cpu_logical_map has already been
684 			 * initialized and the boot cpu doesn't need
685 			 * the enable-method so continue without
686 			 * incrementing cpu.
687 			 */
688 			continue;
689 		}
690 
691 		if (cpu_count >= NR_CPUS)
692 			goto next;
693 
694 		pr_debug("cpu logical map 0x%llx\n", hwid);
695 		set_cpu_logical_map(cpu_count, hwid);
696 
697 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
698 next:
699 		cpu_count++;
700 	}
701 }
702 
703 /*
704  * Enumerate the possible CPU set from the device tree or ACPI and build the
705  * cpu logical map array containing MPIDR values related to logical
706  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
707  */
708 void __init smp_init_cpus(void)
709 {
710 	int i;
711 
712 	if (acpi_disabled)
713 		of_parse_and_init_cpus();
714 	else
715 		acpi_parse_and_init_cpus();
716 
717 	if (cpu_count > nr_cpu_ids)
718 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
719 			cpu_count, nr_cpu_ids);
720 
721 	if (!bootcpu_valid) {
722 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
723 		return;
724 	}
725 
726 	/*
727 	 * We need to set the cpu_logical_map entries before enabling
728 	 * the cpus so that cpu processor description entries (DT cpu nodes
729 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
730 	 * with entries in cpu_logical_map while initializing the cpus.
731 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
732 	 */
733 	for (i = 1; i < nr_cpu_ids; i++) {
734 		if (cpu_logical_map(i) != INVALID_HWID) {
735 			if (smp_cpu_setup(i))
736 				set_cpu_logical_map(i, INVALID_HWID);
737 		}
738 	}
739 }
740 
741 void __init smp_prepare_cpus(unsigned int max_cpus)
742 {
743 	const struct cpu_operations *ops;
744 	int err;
745 	unsigned int cpu;
746 	unsigned int this_cpu;
747 
748 	init_cpu_topology();
749 
750 	this_cpu = smp_processor_id();
751 	store_cpu_topology(this_cpu);
752 	numa_store_cpu_info(this_cpu);
753 	numa_add_cpu(this_cpu);
754 
755 	/*
756 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
757 	 * secondary CPUs present.
758 	 */
759 	if (max_cpus == 0)
760 		return;
761 
762 	/*
763 	 * Initialise the present map (which describes the set of CPUs
764 	 * actually populated at the present time) and release the
765 	 * secondaries from the bootloader.
766 	 */
767 	for_each_possible_cpu(cpu) {
768 
769 		per_cpu(cpu_number, cpu) = cpu;
770 
771 		if (cpu == smp_processor_id())
772 			continue;
773 
774 		ops = get_cpu_ops(cpu);
775 		if (!ops)
776 			continue;
777 
778 		err = ops->cpu_prepare(cpu);
779 		if (err)
780 			continue;
781 
782 		set_cpu_present(cpu, true);
783 		numa_store_cpu_info(cpu);
784 	}
785 }
786 
787 static const char *ipi_types[NR_IPI] __tracepoint_string = {
788 #define S(x,s)	[x] = s
789 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
790 	S(IPI_CALL_FUNC, "Function call interrupts"),
791 	S(IPI_CPU_STOP, "CPU stop interrupts"),
792 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
793 	S(IPI_TIMER, "Timer broadcast interrupts"),
794 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
795 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
796 };
797 
798 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
799 
800 unsigned long irq_err_count;
801 
802 int arch_show_interrupts(struct seq_file *p, int prec)
803 {
804 	unsigned int cpu, i;
805 
806 	for (i = 0; i < NR_IPI; i++) {
807 		unsigned int irq = irq_desc_get_irq(ipi_desc[i]);
808 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
809 			   prec >= 4 ? " " : "");
810 		for_each_online_cpu(cpu)
811 			seq_printf(p, "%10u ", kstat_irqs_cpu(irq, cpu));
812 		seq_printf(p, "      %s\n", ipi_types[i]);
813 	}
814 
815 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
816 	return 0;
817 }
818 
819 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
820 {
821 	smp_cross_call(mask, IPI_CALL_FUNC);
822 }
823 
824 void arch_send_call_function_single_ipi(int cpu)
825 {
826 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
827 }
828 
829 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
830 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
831 {
832 	smp_cross_call(mask, IPI_WAKEUP);
833 }
834 #endif
835 
836 #ifdef CONFIG_IRQ_WORK
837 void arch_irq_work_raise(void)
838 {
839 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
840 }
841 #endif
842 
843 static void local_cpu_stop(void)
844 {
845 	set_cpu_online(smp_processor_id(), false);
846 
847 	local_daif_mask();
848 	sdei_mask_local_cpu();
849 	cpu_park_loop();
850 }
851 
852 /*
853  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
854  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
855  * CPUs that have already stopped themselves.
856  */
857 void panic_smp_self_stop(void)
858 {
859 	local_cpu_stop();
860 }
861 
862 #ifdef CONFIG_KEXEC_CORE
863 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
864 #endif
865 
866 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
867 {
868 #ifdef CONFIG_KEXEC_CORE
869 	crash_save_cpu(regs, cpu);
870 
871 	atomic_dec(&waiting_for_crash_ipi);
872 
873 	local_irq_disable();
874 	sdei_mask_local_cpu();
875 
876 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
877 		__cpu_try_die(cpu);
878 
879 	/* just in case */
880 	cpu_park_loop();
881 #endif
882 }
883 
884 /*
885  * Main handler for inter-processor interrupts
886  */
887 static void do_handle_IPI(int ipinr)
888 {
889 	unsigned int cpu = smp_processor_id();
890 
891 	if ((unsigned)ipinr < NR_IPI)
892 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
893 
894 	switch (ipinr) {
895 	case IPI_RESCHEDULE:
896 		scheduler_ipi();
897 		break;
898 
899 	case IPI_CALL_FUNC:
900 		generic_smp_call_function_interrupt();
901 		break;
902 
903 	case IPI_CPU_STOP:
904 		local_cpu_stop();
905 		break;
906 
907 	case IPI_CPU_CRASH_STOP:
908 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
909 			ipi_cpu_crash_stop(cpu, get_irq_regs());
910 
911 			unreachable();
912 		}
913 		break;
914 
915 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
916 	case IPI_TIMER:
917 		tick_receive_broadcast();
918 		break;
919 #endif
920 
921 #ifdef CONFIG_IRQ_WORK
922 	case IPI_IRQ_WORK:
923 		irq_work_run();
924 		break;
925 #endif
926 
927 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
928 	case IPI_WAKEUP:
929 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
930 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
931 			  cpu);
932 		break;
933 #endif
934 
935 	default:
936 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
937 		break;
938 	}
939 
940 	if ((unsigned)ipinr < NR_IPI)
941 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
942 }
943 
944 static irqreturn_t ipi_handler(int irq, void *data)
945 {
946 	do_handle_IPI(irq - ipi_irq_base);
947 	return IRQ_HANDLED;
948 }
949 
950 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
951 {
952 	trace_ipi_raise(target, ipi_types[ipinr]);
953 	__ipi_send_mask(ipi_desc[ipinr], target);
954 }
955 
956 static void ipi_setup(int cpu)
957 {
958 	int i;
959 
960 	if (WARN_ON_ONCE(!ipi_irq_base))
961 		return;
962 
963 	for (i = 0; i < nr_ipi; i++)
964 		enable_percpu_irq(ipi_irq_base + i, 0);
965 }
966 
967 #ifdef CONFIG_HOTPLUG_CPU
968 static void ipi_teardown(int cpu)
969 {
970 	int i;
971 
972 	if (WARN_ON_ONCE(!ipi_irq_base))
973 		return;
974 
975 	for (i = 0; i < nr_ipi; i++)
976 		disable_percpu_irq(ipi_irq_base + i);
977 }
978 #endif
979 
980 void __init set_smp_ipi_range(int ipi_base, int n)
981 {
982 	int i;
983 
984 	WARN_ON(n < NR_IPI);
985 	nr_ipi = min(n, NR_IPI);
986 
987 	for (i = 0; i < nr_ipi; i++) {
988 		int err;
989 
990 		err = request_percpu_irq(ipi_base + i, ipi_handler,
991 					 "IPI", &cpu_number);
992 		WARN_ON(err);
993 
994 		ipi_desc[i] = irq_to_desc(ipi_base + i);
995 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
996 	}
997 
998 	ipi_irq_base = ipi_base;
999 
1000 	/* Setup the boot CPU immediately */
1001 	ipi_setup(smp_processor_id());
1002 }
1003 
1004 void smp_send_reschedule(int cpu)
1005 {
1006 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1007 }
1008 
1009 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1010 void tick_broadcast(const struct cpumask *mask)
1011 {
1012 	smp_cross_call(mask, IPI_TIMER);
1013 }
1014 #endif
1015 
1016 /*
1017  * The number of CPUs online, not counting this CPU (which may not be
1018  * fully online and so not counted in num_online_cpus()).
1019  */
1020 static inline unsigned int num_other_online_cpus(void)
1021 {
1022 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1023 
1024 	return num_online_cpus() - this_cpu_online;
1025 }
1026 
1027 void smp_send_stop(void)
1028 {
1029 	unsigned long timeout;
1030 
1031 	if (num_other_online_cpus()) {
1032 		cpumask_t mask;
1033 
1034 		cpumask_copy(&mask, cpu_online_mask);
1035 		cpumask_clear_cpu(smp_processor_id(), &mask);
1036 
1037 		if (system_state <= SYSTEM_RUNNING)
1038 			pr_crit("SMP: stopping secondary CPUs\n");
1039 		smp_cross_call(&mask, IPI_CPU_STOP);
1040 	}
1041 
1042 	/* Wait up to one second for other CPUs to stop */
1043 	timeout = USEC_PER_SEC;
1044 	while (num_other_online_cpus() && timeout--)
1045 		udelay(1);
1046 
1047 	if (num_other_online_cpus())
1048 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1049 			cpumask_pr_args(cpu_online_mask));
1050 
1051 	sdei_mask_local_cpu();
1052 }
1053 
1054 #ifdef CONFIG_KEXEC_CORE
1055 void crash_smp_send_stop(void)
1056 {
1057 	static int cpus_stopped;
1058 	cpumask_t mask;
1059 	unsigned long timeout;
1060 
1061 	/*
1062 	 * This function can be called twice in panic path, but obviously
1063 	 * we execute this only once.
1064 	 */
1065 	if (cpus_stopped)
1066 		return;
1067 
1068 	cpus_stopped = 1;
1069 
1070 	/*
1071 	 * If this cpu is the only one alive at this point in time, online or
1072 	 * not, there are no stop messages to be sent around, so just back out.
1073 	 */
1074 	if (num_other_online_cpus() == 0) {
1075 		sdei_mask_local_cpu();
1076 		return;
1077 	}
1078 
1079 	cpumask_copy(&mask, cpu_online_mask);
1080 	cpumask_clear_cpu(smp_processor_id(), &mask);
1081 
1082 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1083 
1084 	pr_crit("SMP: stopping secondary CPUs\n");
1085 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1086 
1087 	/* Wait up to one second for other CPUs to stop */
1088 	timeout = USEC_PER_SEC;
1089 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1090 		udelay(1);
1091 
1092 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1093 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1094 			cpumask_pr_args(&mask));
1095 
1096 	sdei_mask_local_cpu();
1097 }
1098 
1099 bool smp_crash_stop_failed(void)
1100 {
1101 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1102 }
1103 #endif
1104 
1105 /*
1106  * not supported here
1107  */
1108 int setup_profiling_timer(unsigned int multiplier)
1109 {
1110 	return -EINVAL;
1111 }
1112 
1113 static bool have_cpu_die(void)
1114 {
1115 #ifdef CONFIG_HOTPLUG_CPU
1116 	int any_cpu = raw_smp_processor_id();
1117 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1118 
1119 	if (ops && ops->cpu_die)
1120 		return true;
1121 #endif
1122 	return false;
1123 }
1124 
1125 bool cpus_are_stuck_in_kernel(void)
1126 {
1127 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1128 
1129 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1130 }
1131