1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kexec.h> 34 #include <linux/kvm_host.h> 35 36 #include <asm/alternative.h> 37 #include <asm/atomic.h> 38 #include <asm/cacheflush.h> 39 #include <asm/cpu.h> 40 #include <asm/cputype.h> 41 #include <asm/cpu_ops.h> 42 #include <asm/daifflags.h> 43 #include <asm/kvm_mmu.h> 44 #include <asm/mmu_context.h> 45 #include <asm/numa.h> 46 #include <asm/pgtable.h> 47 #include <asm/pgalloc.h> 48 #include <asm/processor.h> 49 #include <asm/smp_plat.h> 50 #include <asm/sections.h> 51 #include <asm/tlbflush.h> 52 #include <asm/ptrace.h> 53 #include <asm/virt.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/ipi.h> 57 58 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 59 EXPORT_PER_CPU_SYMBOL(cpu_number); 60 61 /* 62 * as from 2.5, kernels no longer have an init_tasks structure 63 * so we need some other way of telling a new secondary core 64 * where to place its SVC stack 65 */ 66 struct secondary_data secondary_data; 67 /* Number of CPUs which aren't online, but looping in kernel text. */ 68 int cpus_stuck_in_kernel; 69 70 enum ipi_msg_type { 71 IPI_RESCHEDULE, 72 IPI_CALL_FUNC, 73 IPI_CPU_STOP, 74 IPI_CPU_CRASH_STOP, 75 IPI_TIMER, 76 IPI_IRQ_WORK, 77 IPI_WAKEUP 78 }; 79 80 #ifdef CONFIG_HOTPLUG_CPU 81 static int op_cpu_kill(unsigned int cpu); 82 #else 83 static inline int op_cpu_kill(unsigned int cpu) 84 { 85 return -ENOSYS; 86 } 87 #endif 88 89 90 /* 91 * Boot a secondary CPU, and assign it the specified idle task. 92 * This also gives us the initial stack to use for this CPU. 93 */ 94 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 95 { 96 if (cpu_ops[cpu]->cpu_boot) 97 return cpu_ops[cpu]->cpu_boot(cpu); 98 99 return -EOPNOTSUPP; 100 } 101 102 static DECLARE_COMPLETION(cpu_running); 103 104 int __cpu_up(unsigned int cpu, struct task_struct *idle) 105 { 106 int ret; 107 long status; 108 109 /* 110 * We need to tell the secondary core where to find its stack and the 111 * page tables. 112 */ 113 secondary_data.task = idle; 114 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 115 update_cpu_boot_status(CPU_MMU_OFF); 116 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 117 118 /* 119 * Now bring the CPU into our world. 120 */ 121 ret = boot_secondary(cpu, idle); 122 if (ret == 0) { 123 /* 124 * CPU was successfully started, wait for it to come online or 125 * time out. 126 */ 127 wait_for_completion_timeout(&cpu_running, 128 msecs_to_jiffies(5000)); 129 130 if (!cpu_online(cpu)) { 131 pr_crit("CPU%u: failed to come online\n", cpu); 132 ret = -EIO; 133 } 134 } else { 135 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 136 return ret; 137 } 138 139 secondary_data.task = NULL; 140 secondary_data.stack = NULL; 141 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 142 status = READ_ONCE(secondary_data.status); 143 if (ret && status) { 144 145 if (status == CPU_MMU_OFF) 146 status = READ_ONCE(__early_cpu_boot_status); 147 148 switch (status & CPU_BOOT_STATUS_MASK) { 149 default: 150 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 151 cpu, status); 152 cpus_stuck_in_kernel++; 153 break; 154 case CPU_KILL_ME: 155 if (!op_cpu_kill(cpu)) { 156 pr_crit("CPU%u: died during early boot\n", cpu); 157 break; 158 } 159 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 160 /* Fall through */ 161 case CPU_STUCK_IN_KERNEL: 162 pr_crit("CPU%u: is stuck in kernel\n", cpu); 163 if (status & CPU_STUCK_REASON_52_BIT_VA) 164 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 165 if (status & CPU_STUCK_REASON_NO_GRAN) 166 pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K); 167 cpus_stuck_in_kernel++; 168 break; 169 case CPU_PANIC_KERNEL: 170 panic("CPU%u detected unsupported configuration\n", cpu); 171 } 172 } 173 174 return ret; 175 } 176 177 static void init_gic_priority_masking(void) 178 { 179 u32 cpuflags; 180 181 if (WARN_ON(!gic_enable_sre())) 182 return; 183 184 cpuflags = read_sysreg(daif); 185 186 WARN_ON(!(cpuflags & PSR_I_BIT)); 187 188 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 189 } 190 191 /* 192 * This is the secondary CPU boot entry. We're using this CPUs 193 * idle thread stack, but a set of temporary page tables. 194 */ 195 asmlinkage notrace void secondary_start_kernel(void) 196 { 197 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 198 struct mm_struct *mm = &init_mm; 199 unsigned int cpu; 200 201 cpu = task_cpu(current); 202 set_my_cpu_offset(per_cpu_offset(cpu)); 203 204 /* 205 * All kernel threads share the same mm context; grab a 206 * reference and switch to it. 207 */ 208 mmgrab(mm); 209 current->active_mm = mm; 210 211 /* 212 * TTBR0 is only used for the identity mapping at this stage. Make it 213 * point to zero page to avoid speculatively fetching new entries. 214 */ 215 cpu_uninstall_idmap(); 216 217 if (system_uses_irq_prio_masking()) 218 init_gic_priority_masking(); 219 220 preempt_disable(); 221 trace_hardirqs_off(); 222 223 /* 224 * If the system has established the capabilities, make sure 225 * this CPU ticks all of those. If it doesn't, the CPU will 226 * fail to come online. 227 */ 228 check_local_cpu_capabilities(); 229 230 if (cpu_ops[cpu]->cpu_postboot) 231 cpu_ops[cpu]->cpu_postboot(); 232 233 /* 234 * Log the CPU info before it is marked online and might get read. 235 */ 236 cpuinfo_store_cpu(); 237 238 /* 239 * Enable GIC and timers. 240 */ 241 notify_cpu_starting(cpu); 242 243 store_cpu_topology(cpu); 244 numa_add_cpu(cpu); 245 246 /* 247 * OK, now it's safe to let the boot CPU continue. Wait for 248 * the CPU migration code to notice that the CPU is online 249 * before we continue. 250 */ 251 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 252 cpu, (unsigned long)mpidr, 253 read_cpuid_id()); 254 update_cpu_boot_status(CPU_BOOT_SUCCESS); 255 set_cpu_online(cpu, true); 256 complete(&cpu_running); 257 258 local_daif_restore(DAIF_PROCCTX); 259 260 /* 261 * OK, it's off to the idle thread for us 262 */ 263 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 264 } 265 266 #ifdef CONFIG_HOTPLUG_CPU 267 static int op_cpu_disable(unsigned int cpu) 268 { 269 /* 270 * If we don't have a cpu_die method, abort before we reach the point 271 * of no return. CPU0 may not have an cpu_ops, so test for it. 272 */ 273 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 274 return -EOPNOTSUPP; 275 276 /* 277 * We may need to abort a hot unplug for some other mechanism-specific 278 * reason. 279 */ 280 if (cpu_ops[cpu]->cpu_disable) 281 return cpu_ops[cpu]->cpu_disable(cpu); 282 283 return 0; 284 } 285 286 /* 287 * __cpu_disable runs on the processor to be shutdown. 288 */ 289 int __cpu_disable(void) 290 { 291 unsigned int cpu = smp_processor_id(); 292 int ret; 293 294 ret = op_cpu_disable(cpu); 295 if (ret) 296 return ret; 297 298 remove_cpu_topology(cpu); 299 numa_remove_cpu(cpu); 300 301 /* 302 * Take this CPU offline. Once we clear this, we can't return, 303 * and we must not schedule until we're ready to give up the cpu. 304 */ 305 set_cpu_online(cpu, false); 306 307 /* 308 * OK - migrate IRQs away from this CPU 309 */ 310 irq_migrate_all_off_this_cpu(); 311 312 return 0; 313 } 314 315 static int op_cpu_kill(unsigned int cpu) 316 { 317 /* 318 * If we have no means of synchronising with the dying CPU, then assume 319 * that it is really dead. We can only wait for an arbitrary length of 320 * time and hope that it's dead, so let's skip the wait and just hope. 321 */ 322 if (!cpu_ops[cpu]->cpu_kill) 323 return 0; 324 325 return cpu_ops[cpu]->cpu_kill(cpu); 326 } 327 328 /* 329 * called on the thread which is asking for a CPU to be shutdown - 330 * waits until shutdown has completed, or it is timed out. 331 */ 332 void __cpu_die(unsigned int cpu) 333 { 334 int err; 335 336 if (!cpu_wait_death(cpu, 5)) { 337 pr_crit("CPU%u: cpu didn't die\n", cpu); 338 return; 339 } 340 pr_notice("CPU%u: shutdown\n", cpu); 341 342 /* 343 * Now that the dying CPU is beyond the point of no return w.r.t. 344 * in-kernel synchronisation, try to get the firwmare to help us to 345 * verify that it has really left the kernel before we consider 346 * clobbering anything it might still be using. 347 */ 348 err = op_cpu_kill(cpu); 349 if (err) 350 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 351 } 352 353 /* 354 * Called from the idle thread for the CPU which has been shutdown. 355 * 356 */ 357 void cpu_die(void) 358 { 359 unsigned int cpu = smp_processor_id(); 360 361 idle_task_exit(); 362 363 local_daif_mask(); 364 365 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 366 (void)cpu_report_death(); 367 368 /* 369 * Actually shutdown the CPU. This must never fail. The specific hotplug 370 * mechanism must perform all required cache maintenance to ensure that 371 * no dirty lines are lost in the process of shutting down the CPU. 372 */ 373 cpu_ops[cpu]->cpu_die(cpu); 374 375 BUG(); 376 } 377 #endif 378 379 /* 380 * Kill the calling secondary CPU, early in bringup before it is turned 381 * online. 382 */ 383 void cpu_die_early(void) 384 { 385 int cpu = smp_processor_id(); 386 387 pr_crit("CPU%d: will not boot\n", cpu); 388 389 /* Mark this CPU absent */ 390 set_cpu_present(cpu, 0); 391 392 #ifdef CONFIG_HOTPLUG_CPU 393 update_cpu_boot_status(CPU_KILL_ME); 394 /* Check if we can park ourselves */ 395 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 396 cpu_ops[cpu]->cpu_die(cpu); 397 #endif 398 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 399 400 cpu_park_loop(); 401 } 402 403 static void __init hyp_mode_check(void) 404 { 405 if (is_hyp_mode_available()) 406 pr_info("CPU: All CPU(s) started at EL2\n"); 407 else if (is_hyp_mode_mismatched()) 408 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 409 "CPU: CPUs started in inconsistent modes"); 410 else 411 pr_info("CPU: All CPU(s) started at EL1\n"); 412 if (IS_ENABLED(CONFIG_KVM_ARM_HOST)) 413 kvm_compute_layout(); 414 } 415 416 void __init smp_cpus_done(unsigned int max_cpus) 417 { 418 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 419 setup_cpu_features(); 420 hyp_mode_check(); 421 apply_alternatives_all(); 422 mark_linear_text_alias_ro(); 423 } 424 425 void __init smp_prepare_boot_cpu(void) 426 { 427 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 428 cpuinfo_store_boot_cpu(); 429 430 /* 431 * We now know enough about the boot CPU to apply the 432 * alternatives that cannot wait until interrupt handling 433 * and/or scheduling is enabled. 434 */ 435 apply_boot_alternatives(); 436 437 /* Conditionally switch to GIC PMR for interrupt masking */ 438 if (system_uses_irq_prio_masking()) 439 init_gic_priority_masking(); 440 } 441 442 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 443 { 444 const __be32 *cell; 445 u64 hwid; 446 447 /* 448 * A cpu node with missing "reg" property is 449 * considered invalid to build a cpu_logical_map 450 * entry. 451 */ 452 cell = of_get_property(dn, "reg", NULL); 453 if (!cell) { 454 pr_err("%pOF: missing reg property\n", dn); 455 return INVALID_HWID; 456 } 457 458 hwid = of_read_number(cell, of_n_addr_cells(dn)); 459 /* 460 * Non affinity bits must be set to 0 in the DT 461 */ 462 if (hwid & ~MPIDR_HWID_BITMASK) { 463 pr_err("%pOF: invalid reg property\n", dn); 464 return INVALID_HWID; 465 } 466 return hwid; 467 } 468 469 /* 470 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 471 * entries and check for duplicates. If any is found just ignore the 472 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 473 * matching valid MPIDR values. 474 */ 475 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 476 { 477 unsigned int i; 478 479 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 480 if (cpu_logical_map(i) == hwid) 481 return true; 482 return false; 483 } 484 485 /* 486 * Initialize cpu operations for a logical cpu and 487 * set it in the possible mask on success 488 */ 489 static int __init smp_cpu_setup(int cpu) 490 { 491 if (cpu_read_ops(cpu)) 492 return -ENODEV; 493 494 if (cpu_ops[cpu]->cpu_init(cpu)) 495 return -ENODEV; 496 497 set_cpu_possible(cpu, true); 498 499 return 0; 500 } 501 502 static bool bootcpu_valid __initdata; 503 static unsigned int cpu_count = 1; 504 505 #ifdef CONFIG_ACPI 506 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 507 508 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 509 { 510 return &cpu_madt_gicc[cpu]; 511 } 512 513 /* 514 * acpi_map_gic_cpu_interface - parse processor MADT entry 515 * 516 * Carry out sanity checks on MADT processor entry and initialize 517 * cpu_logical_map on success 518 */ 519 static void __init 520 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 521 { 522 u64 hwid = processor->arm_mpidr; 523 524 if (!(processor->flags & ACPI_MADT_ENABLED)) { 525 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 526 return; 527 } 528 529 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 530 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 531 return; 532 } 533 534 if (is_mpidr_duplicate(cpu_count, hwid)) { 535 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 536 return; 537 } 538 539 /* Check if GICC structure of boot CPU is available in the MADT */ 540 if (cpu_logical_map(0) == hwid) { 541 if (bootcpu_valid) { 542 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 543 hwid); 544 return; 545 } 546 bootcpu_valid = true; 547 cpu_madt_gicc[0] = *processor; 548 return; 549 } 550 551 if (cpu_count >= NR_CPUS) 552 return; 553 554 /* map the logical cpu id to cpu MPIDR */ 555 cpu_logical_map(cpu_count) = hwid; 556 557 cpu_madt_gicc[cpu_count] = *processor; 558 559 /* 560 * Set-up the ACPI parking protocol cpu entries 561 * while initializing the cpu_logical_map to 562 * avoid parsing MADT entries multiple times for 563 * nothing (ie a valid cpu_logical_map entry should 564 * contain a valid parking protocol data set to 565 * initialize the cpu if the parking protocol is 566 * the only available enable method). 567 */ 568 acpi_set_mailbox_entry(cpu_count, processor); 569 570 cpu_count++; 571 } 572 573 static int __init 574 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 575 const unsigned long end) 576 { 577 struct acpi_madt_generic_interrupt *processor; 578 579 processor = (struct acpi_madt_generic_interrupt *)header; 580 if (BAD_MADT_GICC_ENTRY(processor, end)) 581 return -EINVAL; 582 583 acpi_table_print_madt_entry(&header->common); 584 585 acpi_map_gic_cpu_interface(processor); 586 587 return 0; 588 } 589 590 static void __init acpi_parse_and_init_cpus(void) 591 { 592 int i; 593 594 /* 595 * do a walk of MADT to determine how many CPUs 596 * we have including disabled CPUs, and get information 597 * we need for SMP init. 598 */ 599 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 600 acpi_parse_gic_cpu_interface, 0); 601 602 /* 603 * In ACPI, SMP and CPU NUMA information is provided in separate 604 * static tables, namely the MADT and the SRAT. 605 * 606 * Thus, it is simpler to first create the cpu logical map through 607 * an MADT walk and then map the logical cpus to their node ids 608 * as separate steps. 609 */ 610 acpi_map_cpus_to_nodes(); 611 612 for (i = 0; i < nr_cpu_ids; i++) 613 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 614 } 615 #else 616 #define acpi_parse_and_init_cpus(...) do { } while (0) 617 #endif 618 619 /* 620 * Enumerate the possible CPU set from the device tree and build the 621 * cpu logical map array containing MPIDR values related to logical 622 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 623 */ 624 static void __init of_parse_and_init_cpus(void) 625 { 626 struct device_node *dn; 627 628 for_each_of_cpu_node(dn) { 629 u64 hwid = of_get_cpu_mpidr(dn); 630 631 if (hwid == INVALID_HWID) 632 goto next; 633 634 if (is_mpidr_duplicate(cpu_count, hwid)) { 635 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 636 dn); 637 goto next; 638 } 639 640 /* 641 * The numbering scheme requires that the boot CPU 642 * must be assigned logical id 0. Record it so that 643 * the logical map built from DT is validated and can 644 * be used. 645 */ 646 if (hwid == cpu_logical_map(0)) { 647 if (bootcpu_valid) { 648 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 649 dn); 650 goto next; 651 } 652 653 bootcpu_valid = true; 654 early_map_cpu_to_node(0, of_node_to_nid(dn)); 655 656 /* 657 * cpu_logical_map has already been 658 * initialized and the boot cpu doesn't need 659 * the enable-method so continue without 660 * incrementing cpu. 661 */ 662 continue; 663 } 664 665 if (cpu_count >= NR_CPUS) 666 goto next; 667 668 pr_debug("cpu logical map 0x%llx\n", hwid); 669 cpu_logical_map(cpu_count) = hwid; 670 671 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 672 next: 673 cpu_count++; 674 } 675 } 676 677 /* 678 * Enumerate the possible CPU set from the device tree or ACPI and build the 679 * cpu logical map array containing MPIDR values related to logical 680 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 681 */ 682 void __init smp_init_cpus(void) 683 { 684 int i; 685 686 if (acpi_disabled) 687 of_parse_and_init_cpus(); 688 else 689 acpi_parse_and_init_cpus(); 690 691 if (cpu_count > nr_cpu_ids) 692 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 693 cpu_count, nr_cpu_ids); 694 695 if (!bootcpu_valid) { 696 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 697 return; 698 } 699 700 /* 701 * We need to set the cpu_logical_map entries before enabling 702 * the cpus so that cpu processor description entries (DT cpu nodes 703 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 704 * with entries in cpu_logical_map while initializing the cpus. 705 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 706 */ 707 for (i = 1; i < nr_cpu_ids; i++) { 708 if (cpu_logical_map(i) != INVALID_HWID) { 709 if (smp_cpu_setup(i)) 710 cpu_logical_map(i) = INVALID_HWID; 711 } 712 } 713 } 714 715 void __init smp_prepare_cpus(unsigned int max_cpus) 716 { 717 int err; 718 unsigned int cpu; 719 unsigned int this_cpu; 720 721 init_cpu_topology(); 722 723 this_cpu = smp_processor_id(); 724 store_cpu_topology(this_cpu); 725 numa_store_cpu_info(this_cpu); 726 numa_add_cpu(this_cpu); 727 728 /* 729 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 730 * secondary CPUs present. 731 */ 732 if (max_cpus == 0) 733 return; 734 735 /* 736 * Initialise the present map (which describes the set of CPUs 737 * actually populated at the present time) and release the 738 * secondaries from the bootloader. 739 */ 740 for_each_possible_cpu(cpu) { 741 742 per_cpu(cpu_number, cpu) = cpu; 743 744 if (cpu == smp_processor_id()) 745 continue; 746 747 if (!cpu_ops[cpu]) 748 continue; 749 750 err = cpu_ops[cpu]->cpu_prepare(cpu); 751 if (err) 752 continue; 753 754 set_cpu_present(cpu, true); 755 numa_store_cpu_info(cpu); 756 } 757 } 758 759 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 760 761 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 762 { 763 __smp_cross_call = fn; 764 } 765 766 static const char *ipi_types[NR_IPI] __tracepoint_string = { 767 #define S(x,s) [x] = s 768 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 769 S(IPI_CALL_FUNC, "Function call interrupts"), 770 S(IPI_CPU_STOP, "CPU stop interrupts"), 771 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 772 S(IPI_TIMER, "Timer broadcast interrupts"), 773 S(IPI_IRQ_WORK, "IRQ work interrupts"), 774 S(IPI_WAKEUP, "CPU wake-up interrupts"), 775 }; 776 777 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 778 { 779 trace_ipi_raise(target, ipi_types[ipinr]); 780 __smp_cross_call(target, ipinr); 781 } 782 783 void show_ipi_list(struct seq_file *p, int prec) 784 { 785 unsigned int cpu, i; 786 787 for (i = 0; i < NR_IPI; i++) { 788 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 789 prec >= 4 ? " " : ""); 790 for_each_online_cpu(cpu) 791 seq_printf(p, "%10u ", 792 __get_irq_stat(cpu, ipi_irqs[i])); 793 seq_printf(p, " %s\n", ipi_types[i]); 794 } 795 } 796 797 u64 smp_irq_stat_cpu(unsigned int cpu) 798 { 799 u64 sum = 0; 800 int i; 801 802 for (i = 0; i < NR_IPI; i++) 803 sum += __get_irq_stat(cpu, ipi_irqs[i]); 804 805 return sum; 806 } 807 808 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 809 { 810 smp_cross_call(mask, IPI_CALL_FUNC); 811 } 812 813 void arch_send_call_function_single_ipi(int cpu) 814 { 815 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 816 } 817 818 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 819 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 820 { 821 smp_cross_call(mask, IPI_WAKEUP); 822 } 823 #endif 824 825 #ifdef CONFIG_IRQ_WORK 826 void arch_irq_work_raise(void) 827 { 828 if (__smp_cross_call) 829 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 830 } 831 #endif 832 833 static void local_cpu_stop(void) 834 { 835 set_cpu_online(smp_processor_id(), false); 836 837 local_daif_mask(); 838 sdei_mask_local_cpu(); 839 cpu_park_loop(); 840 } 841 842 /* 843 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 844 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 845 * CPUs that have already stopped themselves. 846 */ 847 void panic_smp_self_stop(void) 848 { 849 local_cpu_stop(); 850 } 851 852 #ifdef CONFIG_KEXEC_CORE 853 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 854 #endif 855 856 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 857 { 858 #ifdef CONFIG_KEXEC_CORE 859 crash_save_cpu(regs, cpu); 860 861 atomic_dec(&waiting_for_crash_ipi); 862 863 local_irq_disable(); 864 sdei_mask_local_cpu(); 865 866 #ifdef CONFIG_HOTPLUG_CPU 867 if (cpu_ops[cpu]->cpu_die) 868 cpu_ops[cpu]->cpu_die(cpu); 869 #endif 870 871 /* just in case */ 872 cpu_park_loop(); 873 #endif 874 } 875 876 /* 877 * Main handler for inter-processor interrupts 878 */ 879 void handle_IPI(int ipinr, struct pt_regs *regs) 880 { 881 unsigned int cpu = smp_processor_id(); 882 struct pt_regs *old_regs = set_irq_regs(regs); 883 884 if ((unsigned)ipinr < NR_IPI) { 885 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 886 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 887 } 888 889 switch (ipinr) { 890 case IPI_RESCHEDULE: 891 scheduler_ipi(); 892 break; 893 894 case IPI_CALL_FUNC: 895 irq_enter(); 896 generic_smp_call_function_interrupt(); 897 irq_exit(); 898 break; 899 900 case IPI_CPU_STOP: 901 irq_enter(); 902 local_cpu_stop(); 903 irq_exit(); 904 break; 905 906 case IPI_CPU_CRASH_STOP: 907 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 908 irq_enter(); 909 ipi_cpu_crash_stop(cpu, regs); 910 911 unreachable(); 912 } 913 break; 914 915 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 916 case IPI_TIMER: 917 irq_enter(); 918 tick_receive_broadcast(); 919 irq_exit(); 920 break; 921 #endif 922 923 #ifdef CONFIG_IRQ_WORK 924 case IPI_IRQ_WORK: 925 irq_enter(); 926 irq_work_run(); 927 irq_exit(); 928 break; 929 #endif 930 931 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 932 case IPI_WAKEUP: 933 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 934 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 935 cpu); 936 break; 937 #endif 938 939 default: 940 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 941 break; 942 } 943 944 if ((unsigned)ipinr < NR_IPI) 945 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 946 set_irq_regs(old_regs); 947 } 948 949 void smp_send_reschedule(int cpu) 950 { 951 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 952 } 953 954 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 955 void tick_broadcast(const struct cpumask *mask) 956 { 957 smp_cross_call(mask, IPI_TIMER); 958 } 959 #endif 960 961 /* 962 * The number of CPUs online, not counting this CPU (which may not be 963 * fully online and so not counted in num_online_cpus()). 964 */ 965 static inline unsigned int num_other_online_cpus(void) 966 { 967 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 968 969 return num_online_cpus() - this_cpu_online; 970 } 971 972 void smp_send_stop(void) 973 { 974 unsigned long timeout; 975 976 if (num_other_online_cpus()) { 977 cpumask_t mask; 978 979 cpumask_copy(&mask, cpu_online_mask); 980 cpumask_clear_cpu(smp_processor_id(), &mask); 981 982 if (system_state <= SYSTEM_RUNNING) 983 pr_crit("SMP: stopping secondary CPUs\n"); 984 smp_cross_call(&mask, IPI_CPU_STOP); 985 } 986 987 /* Wait up to one second for other CPUs to stop */ 988 timeout = USEC_PER_SEC; 989 while (num_other_online_cpus() && timeout--) 990 udelay(1); 991 992 if (num_other_online_cpus()) 993 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 994 cpumask_pr_args(cpu_online_mask)); 995 996 sdei_mask_local_cpu(); 997 } 998 999 #ifdef CONFIG_KEXEC_CORE 1000 void crash_smp_send_stop(void) 1001 { 1002 static int cpus_stopped; 1003 cpumask_t mask; 1004 unsigned long timeout; 1005 1006 /* 1007 * This function can be called twice in panic path, but obviously 1008 * we execute this only once. 1009 */ 1010 if (cpus_stopped) 1011 return; 1012 1013 cpus_stopped = 1; 1014 1015 /* 1016 * If this cpu is the only one alive at this point in time, online or 1017 * not, there are no stop messages to be sent around, so just back out. 1018 */ 1019 if (num_other_online_cpus() == 0) { 1020 sdei_mask_local_cpu(); 1021 return; 1022 } 1023 1024 cpumask_copy(&mask, cpu_online_mask); 1025 cpumask_clear_cpu(smp_processor_id(), &mask); 1026 1027 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1028 1029 pr_crit("SMP: stopping secondary CPUs\n"); 1030 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1031 1032 /* Wait up to one second for other CPUs to stop */ 1033 timeout = USEC_PER_SEC; 1034 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1035 udelay(1); 1036 1037 if (atomic_read(&waiting_for_crash_ipi) > 0) 1038 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1039 cpumask_pr_args(&mask)); 1040 1041 sdei_mask_local_cpu(); 1042 } 1043 1044 bool smp_crash_stop_failed(void) 1045 { 1046 return (atomic_read(&waiting_for_crash_ipi) > 0); 1047 } 1048 #endif 1049 1050 /* 1051 * not supported here 1052 */ 1053 int setup_profiling_timer(unsigned int multiplier) 1054 { 1055 return -EINVAL; 1056 } 1057 1058 static bool have_cpu_die(void) 1059 { 1060 #ifdef CONFIG_HOTPLUG_CPU 1061 int any_cpu = raw_smp_processor_id(); 1062 1063 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) 1064 return true; 1065 #endif 1066 return false; 1067 } 1068 1069 bool cpus_are_stuck_in_kernel(void) 1070 { 1071 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1072 1073 return !!cpus_stuck_in_kernel || smp_spin_tables; 1074 } 1075