xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched/mm.h>
25 #include <linux/sched/hotplug.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/interrupt.h>
28 #include <linux/cache.h>
29 #include <linux/profile.h>
30 #include <linux/errno.h>
31 #include <linux/mm.h>
32 #include <linux/err.h>
33 #include <linux/cpu.h>
34 #include <linux/smp.h>
35 #include <linux/seq_file.h>
36 #include <linux/irq.h>
37 #include <linux/percpu.h>
38 #include <linux/clockchips.h>
39 #include <linux/completion.h>
40 #include <linux/of.h>
41 #include <linux/irq_work.h>
42 #include <linux/kexec.h>
43 
44 #include <asm/alternative.h>
45 #include <asm/atomic.h>
46 #include <asm/cacheflush.h>
47 #include <asm/cpu.h>
48 #include <asm/cputype.h>
49 #include <asm/cpu_ops.h>
50 #include <asm/mmu_context.h>
51 #include <asm/numa.h>
52 #include <asm/pgtable.h>
53 #include <asm/pgalloc.h>
54 #include <asm/processor.h>
55 #include <asm/smp_plat.h>
56 #include <asm/sections.h>
57 #include <asm/tlbflush.h>
58 #include <asm/ptrace.h>
59 #include <asm/virt.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/ipi.h>
63 
64 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
65 EXPORT_PER_CPU_SYMBOL(cpu_number);
66 
67 /*
68  * as from 2.5, kernels no longer have an init_tasks structure
69  * so we need some other way of telling a new secondary core
70  * where to place its SVC stack
71  */
72 struct secondary_data secondary_data;
73 /* Number of CPUs which aren't online, but looping in kernel text. */
74 int cpus_stuck_in_kernel;
75 
76 enum ipi_msg_type {
77 	IPI_RESCHEDULE,
78 	IPI_CALL_FUNC,
79 	IPI_CPU_STOP,
80 	IPI_CPU_CRASH_STOP,
81 	IPI_TIMER,
82 	IPI_IRQ_WORK,
83 	IPI_WAKEUP
84 };
85 
86 #ifdef CONFIG_ARM64_VHE
87 
88 /* Whether the boot CPU is running in HYP mode or not*/
89 static bool boot_cpu_hyp_mode;
90 
91 static inline void save_boot_cpu_run_el(void)
92 {
93 	boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
94 }
95 
96 static inline bool is_boot_cpu_in_hyp_mode(void)
97 {
98 	return boot_cpu_hyp_mode;
99 }
100 
101 /*
102  * Verify that a secondary CPU is running the kernel at the same
103  * EL as that of the boot CPU.
104  */
105 void verify_cpu_run_el(void)
106 {
107 	bool in_el2 = is_kernel_in_hyp_mode();
108 	bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
109 
110 	if (in_el2 ^ boot_cpu_el2) {
111 		pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
112 					smp_processor_id(),
113 					in_el2 ? 2 : 1,
114 					boot_cpu_el2 ? 2 : 1);
115 		cpu_panic_kernel();
116 	}
117 }
118 
119 #else
120 static inline void save_boot_cpu_run_el(void) {}
121 #endif
122 
123 #ifdef CONFIG_HOTPLUG_CPU
124 static int op_cpu_kill(unsigned int cpu);
125 #else
126 static inline int op_cpu_kill(unsigned int cpu)
127 {
128 	return -ENOSYS;
129 }
130 #endif
131 
132 
133 /*
134  * Boot a secondary CPU, and assign it the specified idle task.
135  * This also gives us the initial stack to use for this CPU.
136  */
137 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
138 {
139 	if (cpu_ops[cpu]->cpu_boot)
140 		return cpu_ops[cpu]->cpu_boot(cpu);
141 
142 	return -EOPNOTSUPP;
143 }
144 
145 static DECLARE_COMPLETION(cpu_running);
146 
147 int __cpu_up(unsigned int cpu, struct task_struct *idle)
148 {
149 	int ret;
150 	long status;
151 
152 	/*
153 	 * We need to tell the secondary core where to find its stack and the
154 	 * page tables.
155 	 */
156 	secondary_data.task = idle;
157 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
158 	update_cpu_boot_status(CPU_MMU_OFF);
159 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
160 
161 	/*
162 	 * Now bring the CPU into our world.
163 	 */
164 	ret = boot_secondary(cpu, idle);
165 	if (ret == 0) {
166 		/*
167 		 * CPU was successfully started, wait for it to come online or
168 		 * time out.
169 		 */
170 		wait_for_completion_timeout(&cpu_running,
171 					    msecs_to_jiffies(1000));
172 
173 		if (!cpu_online(cpu)) {
174 			pr_crit("CPU%u: failed to come online\n", cpu);
175 			ret = -EIO;
176 		}
177 	} else {
178 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
179 	}
180 
181 	secondary_data.task = NULL;
182 	secondary_data.stack = NULL;
183 	status = READ_ONCE(secondary_data.status);
184 	if (ret && status) {
185 
186 		if (status == CPU_MMU_OFF)
187 			status = READ_ONCE(__early_cpu_boot_status);
188 
189 		switch (status) {
190 		default:
191 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
192 					cpu, status);
193 			break;
194 		case CPU_KILL_ME:
195 			if (!op_cpu_kill(cpu)) {
196 				pr_crit("CPU%u: died during early boot\n", cpu);
197 				break;
198 			}
199 			/* Fall through */
200 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
201 		case CPU_STUCK_IN_KERNEL:
202 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
203 			cpus_stuck_in_kernel++;
204 			break;
205 		case CPU_PANIC_KERNEL:
206 			panic("CPU%u detected unsupported configuration\n", cpu);
207 		}
208 	}
209 
210 	return ret;
211 }
212 
213 /*
214  * This is the secondary CPU boot entry.  We're using this CPUs
215  * idle thread stack, but a set of temporary page tables.
216  */
217 asmlinkage void secondary_start_kernel(void)
218 {
219 	struct mm_struct *mm = &init_mm;
220 	unsigned int cpu;
221 
222 	cpu = task_cpu(current);
223 	set_my_cpu_offset(per_cpu_offset(cpu));
224 
225 	/*
226 	 * All kernel threads share the same mm context; grab a
227 	 * reference and switch to it.
228 	 */
229 	mmgrab(mm);
230 	current->active_mm = mm;
231 
232 	/*
233 	 * TTBR0 is only used for the identity mapping at this stage. Make it
234 	 * point to zero page to avoid speculatively fetching new entries.
235 	 */
236 	cpu_uninstall_idmap();
237 
238 	preempt_disable();
239 	trace_hardirqs_off();
240 
241 	/*
242 	 * If the system has established the capabilities, make sure
243 	 * this CPU ticks all of those. If it doesn't, the CPU will
244 	 * fail to come online.
245 	 */
246 	check_local_cpu_capabilities();
247 
248 	if (cpu_ops[cpu]->cpu_postboot)
249 		cpu_ops[cpu]->cpu_postboot();
250 
251 	/*
252 	 * Log the CPU info before it is marked online and might get read.
253 	 */
254 	cpuinfo_store_cpu();
255 
256 	/*
257 	 * Enable GIC and timers.
258 	 */
259 	notify_cpu_starting(cpu);
260 
261 	store_cpu_topology(cpu);
262 
263 	/*
264 	 * OK, now it's safe to let the boot CPU continue.  Wait for
265 	 * the CPU migration code to notice that the CPU is online
266 	 * before we continue.
267 	 */
268 	pr_info("CPU%u: Booted secondary processor [%08x]\n",
269 					 cpu, read_cpuid_id());
270 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
271 	set_cpu_online(cpu, true);
272 	complete(&cpu_running);
273 
274 	local_irq_enable();
275 	local_async_enable();
276 
277 	/*
278 	 * OK, it's off to the idle thread for us
279 	 */
280 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
281 }
282 
283 #ifdef CONFIG_HOTPLUG_CPU
284 static int op_cpu_disable(unsigned int cpu)
285 {
286 	/*
287 	 * If we don't have a cpu_die method, abort before we reach the point
288 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
289 	 */
290 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
291 		return -EOPNOTSUPP;
292 
293 	/*
294 	 * We may need to abort a hot unplug for some other mechanism-specific
295 	 * reason.
296 	 */
297 	if (cpu_ops[cpu]->cpu_disable)
298 		return cpu_ops[cpu]->cpu_disable(cpu);
299 
300 	return 0;
301 }
302 
303 /*
304  * __cpu_disable runs on the processor to be shutdown.
305  */
306 int __cpu_disable(void)
307 {
308 	unsigned int cpu = smp_processor_id();
309 	int ret;
310 
311 	ret = op_cpu_disable(cpu);
312 	if (ret)
313 		return ret;
314 
315 	/*
316 	 * Take this CPU offline.  Once we clear this, we can't return,
317 	 * and we must not schedule until we're ready to give up the cpu.
318 	 */
319 	set_cpu_online(cpu, false);
320 
321 	/*
322 	 * OK - migrate IRQs away from this CPU
323 	 */
324 	irq_migrate_all_off_this_cpu();
325 
326 	return 0;
327 }
328 
329 static int op_cpu_kill(unsigned int cpu)
330 {
331 	/*
332 	 * If we have no means of synchronising with the dying CPU, then assume
333 	 * that it is really dead. We can only wait for an arbitrary length of
334 	 * time and hope that it's dead, so let's skip the wait and just hope.
335 	 */
336 	if (!cpu_ops[cpu]->cpu_kill)
337 		return 0;
338 
339 	return cpu_ops[cpu]->cpu_kill(cpu);
340 }
341 
342 /*
343  * called on the thread which is asking for a CPU to be shutdown -
344  * waits until shutdown has completed, or it is timed out.
345  */
346 void __cpu_die(unsigned int cpu)
347 {
348 	int err;
349 
350 	if (!cpu_wait_death(cpu, 5)) {
351 		pr_crit("CPU%u: cpu didn't die\n", cpu);
352 		return;
353 	}
354 	pr_notice("CPU%u: shutdown\n", cpu);
355 
356 	/*
357 	 * Now that the dying CPU is beyond the point of no return w.r.t.
358 	 * in-kernel synchronisation, try to get the firwmare to help us to
359 	 * verify that it has really left the kernel before we consider
360 	 * clobbering anything it might still be using.
361 	 */
362 	err = op_cpu_kill(cpu);
363 	if (err)
364 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
365 			cpu, err);
366 }
367 
368 /*
369  * Called from the idle thread for the CPU which has been shutdown.
370  *
371  * Note that we disable IRQs here, but do not re-enable them
372  * before returning to the caller. This is also the behaviour
373  * of the other hotplug-cpu capable cores, so presumably coming
374  * out of idle fixes this.
375  */
376 void cpu_die(void)
377 {
378 	unsigned int cpu = smp_processor_id();
379 
380 	idle_task_exit();
381 
382 	local_irq_disable();
383 
384 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
385 	(void)cpu_report_death();
386 
387 	/*
388 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
389 	 * mechanism must perform all required cache maintenance to ensure that
390 	 * no dirty lines are lost in the process of shutting down the CPU.
391 	 */
392 	cpu_ops[cpu]->cpu_die(cpu);
393 
394 	BUG();
395 }
396 #endif
397 
398 /*
399  * Kill the calling secondary CPU, early in bringup before it is turned
400  * online.
401  */
402 void cpu_die_early(void)
403 {
404 	int cpu = smp_processor_id();
405 
406 	pr_crit("CPU%d: will not boot\n", cpu);
407 
408 	/* Mark this CPU absent */
409 	set_cpu_present(cpu, 0);
410 
411 #ifdef CONFIG_HOTPLUG_CPU
412 	update_cpu_boot_status(CPU_KILL_ME);
413 	/* Check if we can park ourselves */
414 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
415 		cpu_ops[cpu]->cpu_die(cpu);
416 #endif
417 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
418 
419 	cpu_park_loop();
420 }
421 
422 static void __init hyp_mode_check(void)
423 {
424 	if (is_hyp_mode_available())
425 		pr_info("CPU: All CPU(s) started at EL2\n");
426 	else if (is_hyp_mode_mismatched())
427 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
428 			   "CPU: CPUs started in inconsistent modes");
429 	else
430 		pr_info("CPU: All CPU(s) started at EL1\n");
431 }
432 
433 void __init smp_cpus_done(unsigned int max_cpus)
434 {
435 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
436 	setup_cpu_features();
437 	hyp_mode_check();
438 	apply_alternatives_all();
439 	mark_linear_text_alias_ro();
440 }
441 
442 void __init smp_prepare_boot_cpu(void)
443 {
444 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
445 	/*
446 	 * Initialise the static keys early as they may be enabled by the
447 	 * cpufeature code.
448 	 */
449 	jump_label_init();
450 	cpuinfo_store_boot_cpu();
451 	save_boot_cpu_run_el();
452 	/*
453 	 * Run the errata work around checks on the boot CPU, once we have
454 	 * initialised the cpu feature infrastructure from
455 	 * cpuinfo_store_boot_cpu() above.
456 	 */
457 	update_cpu_errata_workarounds();
458 }
459 
460 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
461 {
462 	const __be32 *cell;
463 	u64 hwid;
464 
465 	/*
466 	 * A cpu node with missing "reg" property is
467 	 * considered invalid to build a cpu_logical_map
468 	 * entry.
469 	 */
470 	cell = of_get_property(dn, "reg", NULL);
471 	if (!cell) {
472 		pr_err("%pOF: missing reg property\n", dn);
473 		return INVALID_HWID;
474 	}
475 
476 	hwid = of_read_number(cell, of_n_addr_cells(dn));
477 	/*
478 	 * Non affinity bits must be set to 0 in the DT
479 	 */
480 	if (hwid & ~MPIDR_HWID_BITMASK) {
481 		pr_err("%pOF: invalid reg property\n", dn);
482 		return INVALID_HWID;
483 	}
484 	return hwid;
485 }
486 
487 /*
488  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
489  * entries and check for duplicates. If any is found just ignore the
490  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
491  * matching valid MPIDR values.
492  */
493 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
494 {
495 	unsigned int i;
496 
497 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
498 		if (cpu_logical_map(i) == hwid)
499 			return true;
500 	return false;
501 }
502 
503 /*
504  * Initialize cpu operations for a logical cpu and
505  * set it in the possible mask on success
506  */
507 static int __init smp_cpu_setup(int cpu)
508 {
509 	if (cpu_read_ops(cpu))
510 		return -ENODEV;
511 
512 	if (cpu_ops[cpu]->cpu_init(cpu))
513 		return -ENODEV;
514 
515 	set_cpu_possible(cpu, true);
516 
517 	return 0;
518 }
519 
520 static bool bootcpu_valid __initdata;
521 static unsigned int cpu_count = 1;
522 
523 #ifdef CONFIG_ACPI
524 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
525 
526 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
527 {
528 	return &cpu_madt_gicc[cpu];
529 }
530 
531 /*
532  * acpi_map_gic_cpu_interface - parse processor MADT entry
533  *
534  * Carry out sanity checks on MADT processor entry and initialize
535  * cpu_logical_map on success
536  */
537 static void __init
538 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
539 {
540 	u64 hwid = processor->arm_mpidr;
541 
542 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
543 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
544 		return;
545 	}
546 
547 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
548 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
549 		return;
550 	}
551 
552 	if (is_mpidr_duplicate(cpu_count, hwid)) {
553 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
554 		return;
555 	}
556 
557 	/* Check if GICC structure of boot CPU is available in the MADT */
558 	if (cpu_logical_map(0) == hwid) {
559 		if (bootcpu_valid) {
560 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
561 			       hwid);
562 			return;
563 		}
564 		bootcpu_valid = true;
565 		cpu_madt_gicc[0] = *processor;
566 		early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid));
567 		return;
568 	}
569 
570 	if (cpu_count >= NR_CPUS)
571 		return;
572 
573 	/* map the logical cpu id to cpu MPIDR */
574 	cpu_logical_map(cpu_count) = hwid;
575 
576 	cpu_madt_gicc[cpu_count] = *processor;
577 
578 	/*
579 	 * Set-up the ACPI parking protocol cpu entries
580 	 * while initializing the cpu_logical_map to
581 	 * avoid parsing MADT entries multiple times for
582 	 * nothing (ie a valid cpu_logical_map entry should
583 	 * contain a valid parking protocol data set to
584 	 * initialize the cpu if the parking protocol is
585 	 * the only available enable method).
586 	 */
587 	acpi_set_mailbox_entry(cpu_count, processor);
588 
589 	early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
590 
591 	cpu_count++;
592 }
593 
594 static int __init
595 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
596 			     const unsigned long end)
597 {
598 	struct acpi_madt_generic_interrupt *processor;
599 
600 	processor = (struct acpi_madt_generic_interrupt *)header;
601 	if (BAD_MADT_GICC_ENTRY(processor, end))
602 		return -EINVAL;
603 
604 	acpi_table_print_madt_entry(header);
605 
606 	acpi_map_gic_cpu_interface(processor);
607 
608 	return 0;
609 }
610 #else
611 #define acpi_table_parse_madt(...)	do { } while (0)
612 #endif
613 
614 /*
615  * Enumerate the possible CPU set from the device tree and build the
616  * cpu logical map array containing MPIDR values related to logical
617  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
618  */
619 static void __init of_parse_and_init_cpus(void)
620 {
621 	struct device_node *dn;
622 
623 	for_each_node_by_type(dn, "cpu") {
624 		u64 hwid = of_get_cpu_mpidr(dn);
625 
626 		if (hwid == INVALID_HWID)
627 			goto next;
628 
629 		if (is_mpidr_duplicate(cpu_count, hwid)) {
630 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
631 				dn);
632 			goto next;
633 		}
634 
635 		/*
636 		 * The numbering scheme requires that the boot CPU
637 		 * must be assigned logical id 0. Record it so that
638 		 * the logical map built from DT is validated and can
639 		 * be used.
640 		 */
641 		if (hwid == cpu_logical_map(0)) {
642 			if (bootcpu_valid) {
643 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
644 					dn);
645 				goto next;
646 			}
647 
648 			bootcpu_valid = true;
649 			early_map_cpu_to_node(0, of_node_to_nid(dn));
650 
651 			/*
652 			 * cpu_logical_map has already been
653 			 * initialized and the boot cpu doesn't need
654 			 * the enable-method so continue without
655 			 * incrementing cpu.
656 			 */
657 			continue;
658 		}
659 
660 		if (cpu_count >= NR_CPUS)
661 			goto next;
662 
663 		pr_debug("cpu logical map 0x%llx\n", hwid);
664 		cpu_logical_map(cpu_count) = hwid;
665 
666 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
667 next:
668 		cpu_count++;
669 	}
670 }
671 
672 /*
673  * Enumerate the possible CPU set from the device tree or ACPI and build the
674  * cpu logical map array containing MPIDR values related to logical
675  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
676  */
677 void __init smp_init_cpus(void)
678 {
679 	int i;
680 
681 	if (acpi_disabled)
682 		of_parse_and_init_cpus();
683 	else
684 		/*
685 		 * do a walk of MADT to determine how many CPUs
686 		 * we have including disabled CPUs, and get information
687 		 * we need for SMP init
688 		 */
689 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
690 				      acpi_parse_gic_cpu_interface, 0);
691 
692 	if (cpu_count > nr_cpu_ids)
693 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
694 			cpu_count, nr_cpu_ids);
695 
696 	if (!bootcpu_valid) {
697 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
698 		return;
699 	}
700 
701 	/*
702 	 * We need to set the cpu_logical_map entries before enabling
703 	 * the cpus so that cpu processor description entries (DT cpu nodes
704 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
705 	 * with entries in cpu_logical_map while initializing the cpus.
706 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
707 	 */
708 	for (i = 1; i < nr_cpu_ids; i++) {
709 		if (cpu_logical_map(i) != INVALID_HWID) {
710 			if (smp_cpu_setup(i))
711 				cpu_logical_map(i) = INVALID_HWID;
712 		}
713 	}
714 }
715 
716 void __init smp_prepare_cpus(unsigned int max_cpus)
717 {
718 	int err;
719 	unsigned int cpu;
720 	unsigned int this_cpu;
721 
722 	init_cpu_topology();
723 
724 	this_cpu = smp_processor_id();
725 	store_cpu_topology(this_cpu);
726 	numa_store_cpu_info(this_cpu);
727 
728 	/*
729 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
730 	 * secondary CPUs present.
731 	 */
732 	if (max_cpus == 0)
733 		return;
734 
735 	/*
736 	 * Initialise the present map (which describes the set of CPUs
737 	 * actually populated at the present time) and release the
738 	 * secondaries from the bootloader.
739 	 */
740 	for_each_possible_cpu(cpu) {
741 
742 		per_cpu(cpu_number, cpu) = cpu;
743 
744 		if (cpu == smp_processor_id())
745 			continue;
746 
747 		if (!cpu_ops[cpu])
748 			continue;
749 
750 		err = cpu_ops[cpu]->cpu_prepare(cpu);
751 		if (err)
752 			continue;
753 
754 		set_cpu_present(cpu, true);
755 		numa_store_cpu_info(cpu);
756 	}
757 }
758 
759 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
760 
761 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
762 {
763 	__smp_cross_call = fn;
764 }
765 
766 static const char *ipi_types[NR_IPI] __tracepoint_string = {
767 #define S(x,s)	[x] = s
768 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
769 	S(IPI_CALL_FUNC, "Function call interrupts"),
770 	S(IPI_CPU_STOP, "CPU stop interrupts"),
771 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
772 	S(IPI_TIMER, "Timer broadcast interrupts"),
773 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
774 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
775 };
776 
777 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
778 {
779 	trace_ipi_raise(target, ipi_types[ipinr]);
780 	__smp_cross_call(target, ipinr);
781 }
782 
783 void show_ipi_list(struct seq_file *p, int prec)
784 {
785 	unsigned int cpu, i;
786 
787 	for (i = 0; i < NR_IPI; i++) {
788 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
789 			   prec >= 4 ? " " : "");
790 		for_each_online_cpu(cpu)
791 			seq_printf(p, "%10u ",
792 				   __get_irq_stat(cpu, ipi_irqs[i]));
793 		seq_printf(p, "      %s\n", ipi_types[i]);
794 	}
795 }
796 
797 u64 smp_irq_stat_cpu(unsigned int cpu)
798 {
799 	u64 sum = 0;
800 	int i;
801 
802 	for (i = 0; i < NR_IPI; i++)
803 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
804 
805 	return sum;
806 }
807 
808 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
809 {
810 	smp_cross_call(mask, IPI_CALL_FUNC);
811 }
812 
813 void arch_send_call_function_single_ipi(int cpu)
814 {
815 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
816 }
817 
818 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
819 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
820 {
821 	smp_cross_call(mask, IPI_WAKEUP);
822 }
823 #endif
824 
825 #ifdef CONFIG_IRQ_WORK
826 void arch_irq_work_raise(void)
827 {
828 	if (__smp_cross_call)
829 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
830 }
831 #endif
832 
833 /*
834  * ipi_cpu_stop - handle IPI from smp_send_stop()
835  */
836 static void ipi_cpu_stop(unsigned int cpu)
837 {
838 	set_cpu_online(cpu, false);
839 
840 	local_irq_disable();
841 
842 	while (1)
843 		cpu_relax();
844 }
845 
846 #ifdef CONFIG_KEXEC_CORE
847 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
848 #endif
849 
850 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
851 {
852 #ifdef CONFIG_KEXEC_CORE
853 	crash_save_cpu(regs, cpu);
854 
855 	atomic_dec(&waiting_for_crash_ipi);
856 
857 	local_irq_disable();
858 
859 #ifdef CONFIG_HOTPLUG_CPU
860 	if (cpu_ops[cpu]->cpu_die)
861 		cpu_ops[cpu]->cpu_die(cpu);
862 #endif
863 
864 	/* just in case */
865 	cpu_park_loop();
866 #endif
867 }
868 
869 /*
870  * Main handler for inter-processor interrupts
871  */
872 void handle_IPI(int ipinr, struct pt_regs *regs)
873 {
874 	unsigned int cpu = smp_processor_id();
875 	struct pt_regs *old_regs = set_irq_regs(regs);
876 
877 	if ((unsigned)ipinr < NR_IPI) {
878 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
879 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
880 	}
881 
882 	switch (ipinr) {
883 	case IPI_RESCHEDULE:
884 		scheduler_ipi();
885 		break;
886 
887 	case IPI_CALL_FUNC:
888 		irq_enter();
889 		generic_smp_call_function_interrupt();
890 		irq_exit();
891 		break;
892 
893 	case IPI_CPU_STOP:
894 		irq_enter();
895 		ipi_cpu_stop(cpu);
896 		irq_exit();
897 		break;
898 
899 	case IPI_CPU_CRASH_STOP:
900 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
901 			irq_enter();
902 			ipi_cpu_crash_stop(cpu, regs);
903 
904 			unreachable();
905 		}
906 		break;
907 
908 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
909 	case IPI_TIMER:
910 		irq_enter();
911 		tick_receive_broadcast();
912 		irq_exit();
913 		break;
914 #endif
915 
916 #ifdef CONFIG_IRQ_WORK
917 	case IPI_IRQ_WORK:
918 		irq_enter();
919 		irq_work_run();
920 		irq_exit();
921 		break;
922 #endif
923 
924 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
925 	case IPI_WAKEUP:
926 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
927 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
928 			  cpu);
929 		break;
930 #endif
931 
932 	default:
933 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
934 		break;
935 	}
936 
937 	if ((unsigned)ipinr < NR_IPI)
938 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
939 	set_irq_regs(old_regs);
940 }
941 
942 void smp_send_reschedule(int cpu)
943 {
944 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
945 }
946 
947 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
948 void tick_broadcast(const struct cpumask *mask)
949 {
950 	smp_cross_call(mask, IPI_TIMER);
951 }
952 #endif
953 
954 void smp_send_stop(void)
955 {
956 	unsigned long timeout;
957 
958 	if (num_online_cpus() > 1) {
959 		cpumask_t mask;
960 
961 		cpumask_copy(&mask, cpu_online_mask);
962 		cpumask_clear_cpu(smp_processor_id(), &mask);
963 
964 		if (system_state <= SYSTEM_RUNNING)
965 			pr_crit("SMP: stopping secondary CPUs\n");
966 		smp_cross_call(&mask, IPI_CPU_STOP);
967 	}
968 
969 	/* Wait up to one second for other CPUs to stop */
970 	timeout = USEC_PER_SEC;
971 	while (num_online_cpus() > 1 && timeout--)
972 		udelay(1);
973 
974 	if (num_online_cpus() > 1)
975 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
976 			   cpumask_pr_args(cpu_online_mask));
977 }
978 
979 #ifdef CONFIG_KEXEC_CORE
980 void crash_smp_send_stop(void)
981 {
982 	static int cpus_stopped;
983 	cpumask_t mask;
984 	unsigned long timeout;
985 
986 	/*
987 	 * This function can be called twice in panic path, but obviously
988 	 * we execute this only once.
989 	 */
990 	if (cpus_stopped)
991 		return;
992 
993 	cpus_stopped = 1;
994 
995 	if (num_online_cpus() == 1)
996 		return;
997 
998 	cpumask_copy(&mask, cpu_online_mask);
999 	cpumask_clear_cpu(smp_processor_id(), &mask);
1000 
1001 	atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1002 
1003 	pr_crit("SMP: stopping secondary CPUs\n");
1004 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1005 
1006 	/* Wait up to one second for other CPUs to stop */
1007 	timeout = USEC_PER_SEC;
1008 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1009 		udelay(1);
1010 
1011 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1012 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1013 			   cpumask_pr_args(&mask));
1014 }
1015 
1016 bool smp_crash_stop_failed(void)
1017 {
1018 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1019 }
1020 #endif
1021 
1022 /*
1023  * not supported here
1024  */
1025 int setup_profiling_timer(unsigned int multiplier)
1026 {
1027 	return -EINVAL;
1028 }
1029 
1030 static bool have_cpu_die(void)
1031 {
1032 #ifdef CONFIG_HOTPLUG_CPU
1033 	int any_cpu = raw_smp_processor_id();
1034 
1035 	if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1036 		return true;
1037 #endif
1038 	return false;
1039 }
1040 
1041 bool cpus_are_stuck_in_kernel(void)
1042 {
1043 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1044 
1045 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1046 }
1047