xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36 
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56 
57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
58 EXPORT_PER_CPU_SYMBOL(cpu_number);
59 
60 /*
61  * as from 2.5, kernels no longer have an init_tasks structure
62  * so we need some other way of telling a new secondary core
63  * where to place its SVC stack
64  */
65 struct secondary_data secondary_data;
66 /* Number of CPUs which aren't online, but looping in kernel text. */
67 static int cpus_stuck_in_kernel;
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CPU_STOP,
73 	IPI_CPU_CRASH_STOP,
74 	IPI_TIMER,
75 	IPI_IRQ_WORK,
76 	IPI_WAKEUP,
77 	NR_IPI
78 };
79 
80 static int ipi_irq_base __read_mostly;
81 static int nr_ipi __read_mostly = NR_IPI;
82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
83 
84 static void ipi_setup(int cpu);
85 
86 #ifdef CONFIG_HOTPLUG_CPU
87 static void ipi_teardown(int cpu);
88 static int op_cpu_kill(unsigned int cpu);
89 #else
90 static inline int op_cpu_kill(unsigned int cpu)
91 {
92 	return -ENOSYS;
93 }
94 #endif
95 
96 
97 /*
98  * Boot a secondary CPU, and assign it the specified idle task.
99  * This also gives us the initial stack to use for this CPU.
100  */
101 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
102 {
103 	const struct cpu_operations *ops = get_cpu_ops(cpu);
104 
105 	if (ops->cpu_boot)
106 		return ops->cpu_boot(cpu);
107 
108 	return -EOPNOTSUPP;
109 }
110 
111 static DECLARE_COMPLETION(cpu_running);
112 
113 int __cpu_up(unsigned int cpu, struct task_struct *idle)
114 {
115 	int ret;
116 	long status;
117 
118 	/*
119 	 * We need to tell the secondary core where to find its stack and the
120 	 * page tables.
121 	 */
122 	secondary_data.task = idle;
123 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
124 	update_cpu_boot_status(CPU_MMU_OFF);
125 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
126 
127 	/* Now bring the CPU into our world */
128 	ret = boot_secondary(cpu, idle);
129 	if (ret) {
130 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
131 		return ret;
132 	}
133 
134 	/*
135 	 * CPU was successfully started, wait for it to come online or
136 	 * time out.
137 	 */
138 	wait_for_completion_timeout(&cpu_running,
139 				    msecs_to_jiffies(5000));
140 	if (cpu_online(cpu))
141 		return 0;
142 
143 	pr_crit("CPU%u: failed to come online\n", cpu);
144 	secondary_data.task = NULL;
145 	secondary_data.stack = NULL;
146 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
147 	status = READ_ONCE(secondary_data.status);
148 	if (status == CPU_MMU_OFF)
149 		status = READ_ONCE(__early_cpu_boot_status);
150 
151 	switch (status & CPU_BOOT_STATUS_MASK) {
152 	default:
153 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
154 		       cpu, status);
155 		cpus_stuck_in_kernel++;
156 		break;
157 	case CPU_KILL_ME:
158 		if (!op_cpu_kill(cpu)) {
159 			pr_crit("CPU%u: died during early boot\n", cpu);
160 			break;
161 		}
162 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
163 		fallthrough;
164 	case CPU_STUCK_IN_KERNEL:
165 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
166 		if (status & CPU_STUCK_REASON_52_BIT_VA)
167 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
168 		if (status & CPU_STUCK_REASON_NO_GRAN) {
169 			pr_crit("CPU%u: does not support %luK granule\n",
170 				cpu, PAGE_SIZE / SZ_1K);
171 		}
172 		cpus_stuck_in_kernel++;
173 		break;
174 	case CPU_PANIC_KERNEL:
175 		panic("CPU%u detected unsupported configuration\n", cpu);
176 	}
177 
178 	return -EIO;
179 }
180 
181 static void init_gic_priority_masking(void)
182 {
183 	u32 cpuflags;
184 
185 	if (WARN_ON(!gic_enable_sre()))
186 		return;
187 
188 	cpuflags = read_sysreg(daif);
189 
190 	WARN_ON(!(cpuflags & PSR_I_BIT));
191 
192 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
193 }
194 
195 /*
196  * This is the secondary CPU boot entry.  We're using this CPUs
197  * idle thread stack, but a set of temporary page tables.
198  */
199 asmlinkage notrace void secondary_start_kernel(void)
200 {
201 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
202 	struct mm_struct *mm = &init_mm;
203 	const struct cpu_operations *ops;
204 	unsigned int cpu;
205 
206 	cpu = task_cpu(current);
207 	set_my_cpu_offset(per_cpu_offset(cpu));
208 
209 	/*
210 	 * All kernel threads share the same mm context; grab a
211 	 * reference and switch to it.
212 	 */
213 	mmgrab(mm);
214 	current->active_mm = mm;
215 
216 	/*
217 	 * TTBR0 is only used for the identity mapping at this stage. Make it
218 	 * point to zero page to avoid speculatively fetching new entries.
219 	 */
220 	cpu_uninstall_idmap();
221 
222 	if (system_uses_irq_prio_masking())
223 		init_gic_priority_masking();
224 
225 	rcu_cpu_starting(cpu);
226 	preempt_disable();
227 	trace_hardirqs_off();
228 
229 	/*
230 	 * If the system has established the capabilities, make sure
231 	 * this CPU ticks all of those. If it doesn't, the CPU will
232 	 * fail to come online.
233 	 */
234 	check_local_cpu_capabilities();
235 
236 	ops = get_cpu_ops(cpu);
237 	if (ops->cpu_postboot)
238 		ops->cpu_postboot();
239 
240 	/*
241 	 * Log the CPU info before it is marked online and might get read.
242 	 */
243 	cpuinfo_store_cpu();
244 
245 	/*
246 	 * Enable GIC and timers.
247 	 */
248 	notify_cpu_starting(cpu);
249 
250 	ipi_setup(cpu);
251 
252 	store_cpu_topology(cpu);
253 	numa_add_cpu(cpu);
254 
255 	/*
256 	 * OK, now it's safe to let the boot CPU continue.  Wait for
257 	 * the CPU migration code to notice that the CPU is online
258 	 * before we continue.
259 	 */
260 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
261 					 cpu, (unsigned long)mpidr,
262 					 read_cpuid_id());
263 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
264 	set_cpu_online(cpu, true);
265 	complete(&cpu_running);
266 
267 	local_daif_restore(DAIF_PROCCTX);
268 
269 	/*
270 	 * OK, it's off to the idle thread for us
271 	 */
272 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
273 }
274 
275 #ifdef CONFIG_HOTPLUG_CPU
276 static int op_cpu_disable(unsigned int cpu)
277 {
278 	const struct cpu_operations *ops = get_cpu_ops(cpu);
279 
280 	/*
281 	 * If we don't have a cpu_die method, abort before we reach the point
282 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
283 	 */
284 	if (!ops || !ops->cpu_die)
285 		return -EOPNOTSUPP;
286 
287 	/*
288 	 * We may need to abort a hot unplug for some other mechanism-specific
289 	 * reason.
290 	 */
291 	if (ops->cpu_disable)
292 		return ops->cpu_disable(cpu);
293 
294 	return 0;
295 }
296 
297 /*
298  * __cpu_disable runs on the processor to be shutdown.
299  */
300 int __cpu_disable(void)
301 {
302 	unsigned int cpu = smp_processor_id();
303 	int ret;
304 
305 	ret = op_cpu_disable(cpu);
306 	if (ret)
307 		return ret;
308 
309 	remove_cpu_topology(cpu);
310 	numa_remove_cpu(cpu);
311 
312 	/*
313 	 * Take this CPU offline.  Once we clear this, we can't return,
314 	 * and we must not schedule until we're ready to give up the cpu.
315 	 */
316 	set_cpu_online(cpu, false);
317 	ipi_teardown(cpu);
318 
319 	/*
320 	 * OK - migrate IRQs away from this CPU
321 	 */
322 	irq_migrate_all_off_this_cpu();
323 
324 	return 0;
325 }
326 
327 static int op_cpu_kill(unsigned int cpu)
328 {
329 	const struct cpu_operations *ops = get_cpu_ops(cpu);
330 
331 	/*
332 	 * If we have no means of synchronising with the dying CPU, then assume
333 	 * that it is really dead. We can only wait for an arbitrary length of
334 	 * time and hope that it's dead, so let's skip the wait and just hope.
335 	 */
336 	if (!ops->cpu_kill)
337 		return 0;
338 
339 	return ops->cpu_kill(cpu);
340 }
341 
342 /*
343  * called on the thread which is asking for a CPU to be shutdown -
344  * waits until shutdown has completed, or it is timed out.
345  */
346 void __cpu_die(unsigned int cpu)
347 {
348 	int err;
349 
350 	if (!cpu_wait_death(cpu, 5)) {
351 		pr_crit("CPU%u: cpu didn't die\n", cpu);
352 		return;
353 	}
354 	pr_notice("CPU%u: shutdown\n", cpu);
355 
356 	/*
357 	 * Now that the dying CPU is beyond the point of no return w.r.t.
358 	 * in-kernel synchronisation, try to get the firwmare to help us to
359 	 * verify that it has really left the kernel before we consider
360 	 * clobbering anything it might still be using.
361 	 */
362 	err = op_cpu_kill(cpu);
363 	if (err)
364 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
365 }
366 
367 /*
368  * Called from the idle thread for the CPU which has been shutdown.
369  *
370  */
371 void cpu_die(void)
372 {
373 	unsigned int cpu = smp_processor_id();
374 	const struct cpu_operations *ops = get_cpu_ops(cpu);
375 
376 	idle_task_exit();
377 
378 	local_daif_mask();
379 
380 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
381 	(void)cpu_report_death();
382 
383 	/*
384 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
385 	 * mechanism must perform all required cache maintenance to ensure that
386 	 * no dirty lines are lost in the process of shutting down the CPU.
387 	 */
388 	ops->cpu_die(cpu);
389 
390 	BUG();
391 }
392 #endif
393 
394 static void __cpu_try_die(int cpu)
395 {
396 #ifdef CONFIG_HOTPLUG_CPU
397 	const struct cpu_operations *ops = get_cpu_ops(cpu);
398 
399 	if (ops && ops->cpu_die)
400 		ops->cpu_die(cpu);
401 #endif
402 }
403 
404 /*
405  * Kill the calling secondary CPU, early in bringup before it is turned
406  * online.
407  */
408 void cpu_die_early(void)
409 {
410 	int cpu = smp_processor_id();
411 
412 	pr_crit("CPU%d: will not boot\n", cpu);
413 
414 	/* Mark this CPU absent */
415 	set_cpu_present(cpu, 0);
416 	rcu_report_dead(cpu);
417 
418 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
419 		update_cpu_boot_status(CPU_KILL_ME);
420 		__cpu_try_die(cpu);
421 	}
422 
423 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
424 
425 	cpu_park_loop();
426 }
427 
428 static void __init hyp_mode_check(void)
429 {
430 	if (is_hyp_mode_available())
431 		pr_info("CPU: All CPU(s) started at EL2\n");
432 	else if (is_hyp_mode_mismatched())
433 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
434 			   "CPU: CPUs started in inconsistent modes");
435 	else
436 		pr_info("CPU: All CPU(s) started at EL1\n");
437 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
438 		kvm_compute_layout();
439 		kvm_apply_hyp_relocations();
440 	}
441 }
442 
443 void __init smp_cpus_done(unsigned int max_cpus)
444 {
445 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
446 	setup_cpu_features();
447 	hyp_mode_check();
448 	apply_alternatives_all();
449 	mark_linear_text_alias_ro();
450 }
451 
452 void __init smp_prepare_boot_cpu(void)
453 {
454 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
455 	cpuinfo_store_boot_cpu();
456 
457 	/*
458 	 * We now know enough about the boot CPU to apply the
459 	 * alternatives that cannot wait until interrupt handling
460 	 * and/or scheduling is enabled.
461 	 */
462 	apply_boot_alternatives();
463 
464 	/* Conditionally switch to GIC PMR for interrupt masking */
465 	if (system_uses_irq_prio_masking())
466 		init_gic_priority_masking();
467 
468 	kasan_init_hw_tags();
469 }
470 
471 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
472 {
473 	const __be32 *cell;
474 	u64 hwid;
475 
476 	/*
477 	 * A cpu node with missing "reg" property is
478 	 * considered invalid to build a cpu_logical_map
479 	 * entry.
480 	 */
481 	cell = of_get_property(dn, "reg", NULL);
482 	if (!cell) {
483 		pr_err("%pOF: missing reg property\n", dn);
484 		return INVALID_HWID;
485 	}
486 
487 	hwid = of_read_number(cell, of_n_addr_cells(dn));
488 	/*
489 	 * Non affinity bits must be set to 0 in the DT
490 	 */
491 	if (hwid & ~MPIDR_HWID_BITMASK) {
492 		pr_err("%pOF: invalid reg property\n", dn);
493 		return INVALID_HWID;
494 	}
495 	return hwid;
496 }
497 
498 /*
499  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
500  * entries and check for duplicates. If any is found just ignore the
501  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
502  * matching valid MPIDR values.
503  */
504 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
505 {
506 	unsigned int i;
507 
508 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
509 		if (cpu_logical_map(i) == hwid)
510 			return true;
511 	return false;
512 }
513 
514 /*
515  * Initialize cpu operations for a logical cpu and
516  * set it in the possible mask on success
517  */
518 static int __init smp_cpu_setup(int cpu)
519 {
520 	const struct cpu_operations *ops;
521 
522 	if (init_cpu_ops(cpu))
523 		return -ENODEV;
524 
525 	ops = get_cpu_ops(cpu);
526 	if (ops->cpu_init(cpu))
527 		return -ENODEV;
528 
529 	set_cpu_possible(cpu, true);
530 
531 	return 0;
532 }
533 
534 static bool bootcpu_valid __initdata;
535 static unsigned int cpu_count = 1;
536 
537 #ifdef CONFIG_ACPI
538 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
539 
540 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
541 {
542 	return &cpu_madt_gicc[cpu];
543 }
544 
545 /*
546  * acpi_map_gic_cpu_interface - parse processor MADT entry
547  *
548  * Carry out sanity checks on MADT processor entry and initialize
549  * cpu_logical_map on success
550  */
551 static void __init
552 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
553 {
554 	u64 hwid = processor->arm_mpidr;
555 
556 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
557 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
558 		return;
559 	}
560 
561 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
562 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
563 		return;
564 	}
565 
566 	if (is_mpidr_duplicate(cpu_count, hwid)) {
567 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
568 		return;
569 	}
570 
571 	/* Check if GICC structure of boot CPU is available in the MADT */
572 	if (cpu_logical_map(0) == hwid) {
573 		if (bootcpu_valid) {
574 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
575 			       hwid);
576 			return;
577 		}
578 		bootcpu_valid = true;
579 		cpu_madt_gicc[0] = *processor;
580 		return;
581 	}
582 
583 	if (cpu_count >= NR_CPUS)
584 		return;
585 
586 	/* map the logical cpu id to cpu MPIDR */
587 	set_cpu_logical_map(cpu_count, hwid);
588 
589 	cpu_madt_gicc[cpu_count] = *processor;
590 
591 	/*
592 	 * Set-up the ACPI parking protocol cpu entries
593 	 * while initializing the cpu_logical_map to
594 	 * avoid parsing MADT entries multiple times for
595 	 * nothing (ie a valid cpu_logical_map entry should
596 	 * contain a valid parking protocol data set to
597 	 * initialize the cpu if the parking protocol is
598 	 * the only available enable method).
599 	 */
600 	acpi_set_mailbox_entry(cpu_count, processor);
601 
602 	cpu_count++;
603 }
604 
605 static int __init
606 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
607 			     const unsigned long end)
608 {
609 	struct acpi_madt_generic_interrupt *processor;
610 
611 	processor = (struct acpi_madt_generic_interrupt *)header;
612 	if (BAD_MADT_GICC_ENTRY(processor, end))
613 		return -EINVAL;
614 
615 	acpi_table_print_madt_entry(&header->common);
616 
617 	acpi_map_gic_cpu_interface(processor);
618 
619 	return 0;
620 }
621 
622 static void __init acpi_parse_and_init_cpus(void)
623 {
624 	int i;
625 
626 	/*
627 	 * do a walk of MADT to determine how many CPUs
628 	 * we have including disabled CPUs, and get information
629 	 * we need for SMP init.
630 	 */
631 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
632 				      acpi_parse_gic_cpu_interface, 0);
633 
634 	/*
635 	 * In ACPI, SMP and CPU NUMA information is provided in separate
636 	 * static tables, namely the MADT and the SRAT.
637 	 *
638 	 * Thus, it is simpler to first create the cpu logical map through
639 	 * an MADT walk and then map the logical cpus to their node ids
640 	 * as separate steps.
641 	 */
642 	acpi_map_cpus_to_nodes();
643 
644 	for (i = 0; i < nr_cpu_ids; i++)
645 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
646 }
647 #else
648 #define acpi_parse_and_init_cpus(...)	do { } while (0)
649 #endif
650 
651 /*
652  * Enumerate the possible CPU set from the device tree and build the
653  * cpu logical map array containing MPIDR values related to logical
654  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
655  */
656 static void __init of_parse_and_init_cpus(void)
657 {
658 	struct device_node *dn;
659 
660 	for_each_of_cpu_node(dn) {
661 		u64 hwid = of_get_cpu_mpidr(dn);
662 
663 		if (hwid == INVALID_HWID)
664 			goto next;
665 
666 		if (is_mpidr_duplicate(cpu_count, hwid)) {
667 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
668 				dn);
669 			goto next;
670 		}
671 
672 		/*
673 		 * The numbering scheme requires that the boot CPU
674 		 * must be assigned logical id 0. Record it so that
675 		 * the logical map built from DT is validated and can
676 		 * be used.
677 		 */
678 		if (hwid == cpu_logical_map(0)) {
679 			if (bootcpu_valid) {
680 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
681 					dn);
682 				goto next;
683 			}
684 
685 			bootcpu_valid = true;
686 			early_map_cpu_to_node(0, of_node_to_nid(dn));
687 
688 			/*
689 			 * cpu_logical_map has already been
690 			 * initialized and the boot cpu doesn't need
691 			 * the enable-method so continue without
692 			 * incrementing cpu.
693 			 */
694 			continue;
695 		}
696 
697 		if (cpu_count >= NR_CPUS)
698 			goto next;
699 
700 		pr_debug("cpu logical map 0x%llx\n", hwid);
701 		set_cpu_logical_map(cpu_count, hwid);
702 
703 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
704 next:
705 		cpu_count++;
706 	}
707 }
708 
709 /*
710  * Enumerate the possible CPU set from the device tree or ACPI and build the
711  * cpu logical map array containing MPIDR values related to logical
712  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
713  */
714 void __init smp_init_cpus(void)
715 {
716 	int i;
717 
718 	if (acpi_disabled)
719 		of_parse_and_init_cpus();
720 	else
721 		acpi_parse_and_init_cpus();
722 
723 	if (cpu_count > nr_cpu_ids)
724 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
725 			cpu_count, nr_cpu_ids);
726 
727 	if (!bootcpu_valid) {
728 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
729 		return;
730 	}
731 
732 	/*
733 	 * We need to set the cpu_logical_map entries before enabling
734 	 * the cpus so that cpu processor description entries (DT cpu nodes
735 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
736 	 * with entries in cpu_logical_map while initializing the cpus.
737 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
738 	 */
739 	for (i = 1; i < nr_cpu_ids; i++) {
740 		if (cpu_logical_map(i) != INVALID_HWID) {
741 			if (smp_cpu_setup(i))
742 				set_cpu_logical_map(i, INVALID_HWID);
743 		}
744 	}
745 }
746 
747 void __init smp_prepare_cpus(unsigned int max_cpus)
748 {
749 	const struct cpu_operations *ops;
750 	int err;
751 	unsigned int cpu;
752 	unsigned int this_cpu;
753 
754 	init_cpu_topology();
755 
756 	this_cpu = smp_processor_id();
757 	store_cpu_topology(this_cpu);
758 	numa_store_cpu_info(this_cpu);
759 	numa_add_cpu(this_cpu);
760 
761 	/*
762 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
763 	 * secondary CPUs present.
764 	 */
765 	if (max_cpus == 0)
766 		return;
767 
768 	/*
769 	 * Initialise the present map (which describes the set of CPUs
770 	 * actually populated at the present time) and release the
771 	 * secondaries from the bootloader.
772 	 */
773 	for_each_possible_cpu(cpu) {
774 
775 		per_cpu(cpu_number, cpu) = cpu;
776 
777 		if (cpu == smp_processor_id())
778 			continue;
779 
780 		ops = get_cpu_ops(cpu);
781 		if (!ops)
782 			continue;
783 
784 		err = ops->cpu_prepare(cpu);
785 		if (err)
786 			continue;
787 
788 		set_cpu_present(cpu, true);
789 		numa_store_cpu_info(cpu);
790 	}
791 }
792 
793 static const char *ipi_types[NR_IPI] __tracepoint_string = {
794 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
795 	[IPI_CALL_FUNC]		= "Function call interrupts",
796 	[IPI_CPU_STOP]		= "CPU stop interrupts",
797 	[IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts",
798 	[IPI_TIMER]		= "Timer broadcast interrupts",
799 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
800 	[IPI_WAKEUP]		= "CPU wake-up interrupts",
801 };
802 
803 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
804 
805 unsigned long irq_err_count;
806 
807 int arch_show_interrupts(struct seq_file *p, int prec)
808 {
809 	unsigned int cpu, i;
810 
811 	for (i = 0; i < NR_IPI; i++) {
812 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
813 			   prec >= 4 ? " " : "");
814 		for_each_online_cpu(cpu)
815 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
816 		seq_printf(p, "      %s\n", ipi_types[i]);
817 	}
818 
819 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
820 	return 0;
821 }
822 
823 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
824 {
825 	smp_cross_call(mask, IPI_CALL_FUNC);
826 }
827 
828 void arch_send_call_function_single_ipi(int cpu)
829 {
830 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
831 }
832 
833 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
834 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
835 {
836 	smp_cross_call(mask, IPI_WAKEUP);
837 }
838 #endif
839 
840 #ifdef CONFIG_IRQ_WORK
841 void arch_irq_work_raise(void)
842 {
843 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
844 }
845 #endif
846 
847 static void local_cpu_stop(void)
848 {
849 	set_cpu_online(smp_processor_id(), false);
850 
851 	local_daif_mask();
852 	sdei_mask_local_cpu();
853 	cpu_park_loop();
854 }
855 
856 /*
857  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
858  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
859  * CPUs that have already stopped themselves.
860  */
861 void panic_smp_self_stop(void)
862 {
863 	local_cpu_stop();
864 }
865 
866 #ifdef CONFIG_KEXEC_CORE
867 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
868 #endif
869 
870 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
871 {
872 #ifdef CONFIG_KEXEC_CORE
873 	crash_save_cpu(regs, cpu);
874 
875 	atomic_dec(&waiting_for_crash_ipi);
876 
877 	local_irq_disable();
878 	sdei_mask_local_cpu();
879 
880 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
881 		__cpu_try_die(cpu);
882 
883 	/* just in case */
884 	cpu_park_loop();
885 #endif
886 }
887 
888 /*
889  * Main handler for inter-processor interrupts
890  */
891 static void do_handle_IPI(int ipinr)
892 {
893 	unsigned int cpu = smp_processor_id();
894 
895 	if ((unsigned)ipinr < NR_IPI)
896 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
897 
898 	switch (ipinr) {
899 	case IPI_RESCHEDULE:
900 		scheduler_ipi();
901 		break;
902 
903 	case IPI_CALL_FUNC:
904 		generic_smp_call_function_interrupt();
905 		break;
906 
907 	case IPI_CPU_STOP:
908 		local_cpu_stop();
909 		break;
910 
911 	case IPI_CPU_CRASH_STOP:
912 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
913 			ipi_cpu_crash_stop(cpu, get_irq_regs());
914 
915 			unreachable();
916 		}
917 		break;
918 
919 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
920 	case IPI_TIMER:
921 		tick_receive_broadcast();
922 		break;
923 #endif
924 
925 #ifdef CONFIG_IRQ_WORK
926 	case IPI_IRQ_WORK:
927 		irq_work_run();
928 		break;
929 #endif
930 
931 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
932 	case IPI_WAKEUP:
933 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
934 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
935 			  cpu);
936 		break;
937 #endif
938 
939 	default:
940 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
941 		break;
942 	}
943 
944 	if ((unsigned)ipinr < NR_IPI)
945 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
946 }
947 
948 static irqreturn_t ipi_handler(int irq, void *data)
949 {
950 	do_handle_IPI(irq - ipi_irq_base);
951 	return IRQ_HANDLED;
952 }
953 
954 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
955 {
956 	trace_ipi_raise(target, ipi_types[ipinr]);
957 	__ipi_send_mask(ipi_desc[ipinr], target);
958 }
959 
960 static void ipi_setup(int cpu)
961 {
962 	int i;
963 
964 	if (WARN_ON_ONCE(!ipi_irq_base))
965 		return;
966 
967 	for (i = 0; i < nr_ipi; i++)
968 		enable_percpu_irq(ipi_irq_base + i, 0);
969 }
970 
971 #ifdef CONFIG_HOTPLUG_CPU
972 static void ipi_teardown(int cpu)
973 {
974 	int i;
975 
976 	if (WARN_ON_ONCE(!ipi_irq_base))
977 		return;
978 
979 	for (i = 0; i < nr_ipi; i++)
980 		disable_percpu_irq(ipi_irq_base + i);
981 }
982 #endif
983 
984 void __init set_smp_ipi_range(int ipi_base, int n)
985 {
986 	int i;
987 
988 	WARN_ON(n < NR_IPI);
989 	nr_ipi = min(n, NR_IPI);
990 
991 	for (i = 0; i < nr_ipi; i++) {
992 		int err;
993 
994 		err = request_percpu_irq(ipi_base + i, ipi_handler,
995 					 "IPI", &cpu_number);
996 		WARN_ON(err);
997 
998 		ipi_desc[i] = irq_to_desc(ipi_base + i);
999 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1000 	}
1001 
1002 	ipi_irq_base = ipi_base;
1003 
1004 	/* Setup the boot CPU immediately */
1005 	ipi_setup(smp_processor_id());
1006 }
1007 
1008 void smp_send_reschedule(int cpu)
1009 {
1010 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1011 }
1012 
1013 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1014 void tick_broadcast(const struct cpumask *mask)
1015 {
1016 	smp_cross_call(mask, IPI_TIMER);
1017 }
1018 #endif
1019 
1020 /*
1021  * The number of CPUs online, not counting this CPU (which may not be
1022  * fully online and so not counted in num_online_cpus()).
1023  */
1024 static inline unsigned int num_other_online_cpus(void)
1025 {
1026 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1027 
1028 	return num_online_cpus() - this_cpu_online;
1029 }
1030 
1031 void smp_send_stop(void)
1032 {
1033 	unsigned long timeout;
1034 
1035 	if (num_other_online_cpus()) {
1036 		cpumask_t mask;
1037 
1038 		cpumask_copy(&mask, cpu_online_mask);
1039 		cpumask_clear_cpu(smp_processor_id(), &mask);
1040 
1041 		if (system_state <= SYSTEM_RUNNING)
1042 			pr_crit("SMP: stopping secondary CPUs\n");
1043 		smp_cross_call(&mask, IPI_CPU_STOP);
1044 	}
1045 
1046 	/* Wait up to one second for other CPUs to stop */
1047 	timeout = USEC_PER_SEC;
1048 	while (num_other_online_cpus() && timeout--)
1049 		udelay(1);
1050 
1051 	if (num_other_online_cpus())
1052 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1053 			cpumask_pr_args(cpu_online_mask));
1054 
1055 	sdei_mask_local_cpu();
1056 }
1057 
1058 #ifdef CONFIG_KEXEC_CORE
1059 void crash_smp_send_stop(void)
1060 {
1061 	static int cpus_stopped;
1062 	cpumask_t mask;
1063 	unsigned long timeout;
1064 
1065 	/*
1066 	 * This function can be called twice in panic path, but obviously
1067 	 * we execute this only once.
1068 	 */
1069 	if (cpus_stopped)
1070 		return;
1071 
1072 	cpus_stopped = 1;
1073 
1074 	/*
1075 	 * If this cpu is the only one alive at this point in time, online or
1076 	 * not, there are no stop messages to be sent around, so just back out.
1077 	 */
1078 	if (num_other_online_cpus() == 0) {
1079 		sdei_mask_local_cpu();
1080 		return;
1081 	}
1082 
1083 	cpumask_copy(&mask, cpu_online_mask);
1084 	cpumask_clear_cpu(smp_processor_id(), &mask);
1085 
1086 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1087 
1088 	pr_crit("SMP: stopping secondary CPUs\n");
1089 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1090 
1091 	/* Wait up to one second for other CPUs to stop */
1092 	timeout = USEC_PER_SEC;
1093 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1094 		udelay(1);
1095 
1096 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1097 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1098 			cpumask_pr_args(&mask));
1099 
1100 	sdei_mask_local_cpu();
1101 }
1102 
1103 bool smp_crash_stop_failed(void)
1104 {
1105 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1106 }
1107 #endif
1108 
1109 /*
1110  * not supported here
1111  */
1112 int setup_profiling_timer(unsigned int multiplier)
1113 {
1114 	return -EINVAL;
1115 }
1116 
1117 static bool have_cpu_die(void)
1118 {
1119 #ifdef CONFIG_HOTPLUG_CPU
1120 	int any_cpu = raw_smp_processor_id();
1121 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1122 
1123 	if (ops && ops->cpu_die)
1124 		return true;
1125 #endif
1126 	return false;
1127 }
1128 
1129 bool cpus_are_stuck_in_kernel(void)
1130 {
1131 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1132 
1133 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1134 }
1135