1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kexec.h> 34 #include <linux/kvm_host.h> 35 36 #include <asm/alternative.h> 37 #include <asm/atomic.h> 38 #include <asm/cacheflush.h> 39 #include <asm/cpu.h> 40 #include <asm/cputype.h> 41 #include <asm/cpu_ops.h> 42 #include <asm/daifflags.h> 43 #include <asm/kvm_mmu.h> 44 #include <asm/mmu_context.h> 45 #include <asm/numa.h> 46 #include <asm/processor.h> 47 #include <asm/smp_plat.h> 48 #include <asm/sections.h> 49 #include <asm/tlbflush.h> 50 #include <asm/ptrace.h> 51 #include <asm/virt.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ipi.h> 55 56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 57 EXPORT_PER_CPU_SYMBOL(cpu_number); 58 59 /* 60 * as from 2.5, kernels no longer have an init_tasks structure 61 * so we need some other way of telling a new secondary core 62 * where to place its SVC stack 63 */ 64 struct secondary_data secondary_data; 65 /* Number of CPUs which aren't online, but looping in kernel text. */ 66 static int cpus_stuck_in_kernel; 67 68 enum ipi_msg_type { 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CPU_STOP, 72 IPI_CPU_CRASH_STOP, 73 IPI_TIMER, 74 IPI_IRQ_WORK, 75 IPI_WAKEUP 76 }; 77 78 #ifdef CONFIG_HOTPLUG_CPU 79 static int op_cpu_kill(unsigned int cpu); 80 #else 81 static inline int op_cpu_kill(unsigned int cpu) 82 { 83 return -ENOSYS; 84 } 85 #endif 86 87 88 /* 89 * Boot a secondary CPU, and assign it the specified idle task. 90 * This also gives us the initial stack to use for this CPU. 91 */ 92 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 93 { 94 const struct cpu_operations *ops = get_cpu_ops(cpu); 95 96 if (ops->cpu_boot) 97 return ops->cpu_boot(cpu); 98 99 return -EOPNOTSUPP; 100 } 101 102 static DECLARE_COMPLETION(cpu_running); 103 104 int __cpu_up(unsigned int cpu, struct task_struct *idle) 105 { 106 int ret; 107 long status; 108 109 /* 110 * We need to tell the secondary core where to find its stack and the 111 * page tables. 112 */ 113 secondary_data.task = idle; 114 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 115 update_cpu_boot_status(CPU_MMU_OFF); 116 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 117 118 /* Now bring the CPU into our world */ 119 ret = boot_secondary(cpu, idle); 120 if (ret) { 121 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 122 return ret; 123 } 124 125 /* 126 * CPU was successfully started, wait for it to come online or 127 * time out. 128 */ 129 wait_for_completion_timeout(&cpu_running, 130 msecs_to_jiffies(5000)); 131 if (cpu_online(cpu)) 132 return 0; 133 134 pr_crit("CPU%u: failed to come online\n", cpu); 135 secondary_data.task = NULL; 136 secondary_data.stack = NULL; 137 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 138 status = READ_ONCE(secondary_data.status); 139 if (status == CPU_MMU_OFF) 140 status = READ_ONCE(__early_cpu_boot_status); 141 142 switch (status & CPU_BOOT_STATUS_MASK) { 143 default: 144 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 145 cpu, status); 146 cpus_stuck_in_kernel++; 147 break; 148 case CPU_KILL_ME: 149 if (!op_cpu_kill(cpu)) { 150 pr_crit("CPU%u: died during early boot\n", cpu); 151 break; 152 } 153 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 154 /* Fall through */ 155 case CPU_STUCK_IN_KERNEL: 156 pr_crit("CPU%u: is stuck in kernel\n", cpu); 157 if (status & CPU_STUCK_REASON_52_BIT_VA) 158 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 159 if (status & CPU_STUCK_REASON_NO_GRAN) { 160 pr_crit("CPU%u: does not support %luK granule\n", 161 cpu, PAGE_SIZE / SZ_1K); 162 } 163 cpus_stuck_in_kernel++; 164 break; 165 case CPU_PANIC_KERNEL: 166 panic("CPU%u detected unsupported configuration\n", cpu); 167 } 168 169 return -EIO; 170 } 171 172 static void init_gic_priority_masking(void) 173 { 174 u32 cpuflags; 175 176 if (WARN_ON(!gic_enable_sre())) 177 return; 178 179 cpuflags = read_sysreg(daif); 180 181 WARN_ON(!(cpuflags & PSR_I_BIT)); 182 183 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 184 } 185 186 /* 187 * This is the secondary CPU boot entry. We're using this CPUs 188 * idle thread stack, but a set of temporary page tables. 189 */ 190 asmlinkage notrace void secondary_start_kernel(void) 191 { 192 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 193 struct mm_struct *mm = &init_mm; 194 const struct cpu_operations *ops; 195 unsigned int cpu; 196 197 cpu = task_cpu(current); 198 set_my_cpu_offset(per_cpu_offset(cpu)); 199 200 /* 201 * All kernel threads share the same mm context; grab a 202 * reference and switch to it. 203 */ 204 mmgrab(mm); 205 current->active_mm = mm; 206 207 /* 208 * TTBR0 is only used for the identity mapping at this stage. Make it 209 * point to zero page to avoid speculatively fetching new entries. 210 */ 211 cpu_uninstall_idmap(); 212 213 if (system_uses_irq_prio_masking()) 214 init_gic_priority_masking(); 215 216 preempt_disable(); 217 trace_hardirqs_off(); 218 219 /* 220 * If the system has established the capabilities, make sure 221 * this CPU ticks all of those. If it doesn't, the CPU will 222 * fail to come online. 223 */ 224 check_local_cpu_capabilities(); 225 226 ops = get_cpu_ops(cpu); 227 if (ops->cpu_postboot) 228 ops->cpu_postboot(); 229 230 /* 231 * Log the CPU info before it is marked online and might get read. 232 */ 233 cpuinfo_store_cpu(); 234 235 /* 236 * Enable GIC and timers. 237 */ 238 notify_cpu_starting(cpu); 239 240 store_cpu_topology(cpu); 241 numa_add_cpu(cpu); 242 243 /* 244 * OK, now it's safe to let the boot CPU continue. Wait for 245 * the CPU migration code to notice that the CPU is online 246 * before we continue. 247 */ 248 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 249 cpu, (unsigned long)mpidr, 250 read_cpuid_id()); 251 update_cpu_boot_status(CPU_BOOT_SUCCESS); 252 set_cpu_online(cpu, true); 253 complete(&cpu_running); 254 255 local_daif_restore(DAIF_PROCCTX); 256 257 /* 258 * OK, it's off to the idle thread for us 259 */ 260 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 261 } 262 263 #ifdef CONFIG_HOTPLUG_CPU 264 static int op_cpu_disable(unsigned int cpu) 265 { 266 const struct cpu_operations *ops = get_cpu_ops(cpu); 267 268 /* 269 * If we don't have a cpu_die method, abort before we reach the point 270 * of no return. CPU0 may not have an cpu_ops, so test for it. 271 */ 272 if (!ops || !ops->cpu_die) 273 return -EOPNOTSUPP; 274 275 /* 276 * We may need to abort a hot unplug for some other mechanism-specific 277 * reason. 278 */ 279 if (ops->cpu_disable) 280 return ops->cpu_disable(cpu); 281 282 return 0; 283 } 284 285 /* 286 * __cpu_disable runs on the processor to be shutdown. 287 */ 288 int __cpu_disable(void) 289 { 290 unsigned int cpu = smp_processor_id(); 291 int ret; 292 293 ret = op_cpu_disable(cpu); 294 if (ret) 295 return ret; 296 297 remove_cpu_topology(cpu); 298 numa_remove_cpu(cpu); 299 300 /* 301 * Take this CPU offline. Once we clear this, we can't return, 302 * and we must not schedule until we're ready to give up the cpu. 303 */ 304 set_cpu_online(cpu, false); 305 306 /* 307 * OK - migrate IRQs away from this CPU 308 */ 309 irq_migrate_all_off_this_cpu(); 310 311 return 0; 312 } 313 314 static int op_cpu_kill(unsigned int cpu) 315 { 316 const struct cpu_operations *ops = get_cpu_ops(cpu); 317 318 /* 319 * If we have no means of synchronising with the dying CPU, then assume 320 * that it is really dead. We can only wait for an arbitrary length of 321 * time and hope that it's dead, so let's skip the wait and just hope. 322 */ 323 if (!ops->cpu_kill) 324 return 0; 325 326 return ops->cpu_kill(cpu); 327 } 328 329 /* 330 * called on the thread which is asking for a CPU to be shutdown - 331 * waits until shutdown has completed, or it is timed out. 332 */ 333 void __cpu_die(unsigned int cpu) 334 { 335 int err; 336 337 if (!cpu_wait_death(cpu, 5)) { 338 pr_crit("CPU%u: cpu didn't die\n", cpu); 339 return; 340 } 341 pr_notice("CPU%u: shutdown\n", cpu); 342 343 /* 344 * Now that the dying CPU is beyond the point of no return w.r.t. 345 * in-kernel synchronisation, try to get the firwmare to help us to 346 * verify that it has really left the kernel before we consider 347 * clobbering anything it might still be using. 348 */ 349 err = op_cpu_kill(cpu); 350 if (err) 351 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 352 } 353 354 /* 355 * Called from the idle thread for the CPU which has been shutdown. 356 * 357 */ 358 void cpu_die(void) 359 { 360 unsigned int cpu = smp_processor_id(); 361 const struct cpu_operations *ops = get_cpu_ops(cpu); 362 363 idle_task_exit(); 364 365 local_daif_mask(); 366 367 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 368 (void)cpu_report_death(); 369 370 /* 371 * Actually shutdown the CPU. This must never fail. The specific hotplug 372 * mechanism must perform all required cache maintenance to ensure that 373 * no dirty lines are lost in the process of shutting down the CPU. 374 */ 375 ops->cpu_die(cpu); 376 377 BUG(); 378 } 379 #endif 380 381 static void __cpu_try_die(int cpu) 382 { 383 #ifdef CONFIG_HOTPLUG_CPU 384 const struct cpu_operations *ops = get_cpu_ops(cpu); 385 386 if (ops && ops->cpu_die) 387 ops->cpu_die(cpu); 388 #endif 389 } 390 391 /* 392 * Kill the calling secondary CPU, early in bringup before it is turned 393 * online. 394 */ 395 void cpu_die_early(void) 396 { 397 int cpu = smp_processor_id(); 398 399 pr_crit("CPU%d: will not boot\n", cpu); 400 401 /* Mark this CPU absent */ 402 set_cpu_present(cpu, 0); 403 404 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 405 update_cpu_boot_status(CPU_KILL_ME); 406 __cpu_try_die(cpu); 407 } 408 409 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 410 411 cpu_park_loop(); 412 } 413 414 static void __init hyp_mode_check(void) 415 { 416 if (is_hyp_mode_available()) 417 pr_info("CPU: All CPU(s) started at EL2\n"); 418 else if (is_hyp_mode_mismatched()) 419 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 420 "CPU: CPUs started in inconsistent modes"); 421 else 422 pr_info("CPU: All CPU(s) started at EL1\n"); 423 if (IS_ENABLED(CONFIG_KVM)) 424 kvm_compute_layout(); 425 } 426 427 void __init smp_cpus_done(unsigned int max_cpus) 428 { 429 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 430 setup_cpu_features(); 431 hyp_mode_check(); 432 apply_alternatives_all(); 433 mark_linear_text_alias_ro(); 434 } 435 436 void __init smp_prepare_boot_cpu(void) 437 { 438 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 439 cpuinfo_store_boot_cpu(); 440 441 /* 442 * We now know enough about the boot CPU to apply the 443 * alternatives that cannot wait until interrupt handling 444 * and/or scheduling is enabled. 445 */ 446 apply_boot_alternatives(); 447 448 /* Conditionally switch to GIC PMR for interrupt masking */ 449 if (system_uses_irq_prio_masking()) 450 init_gic_priority_masking(); 451 } 452 453 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 454 { 455 const __be32 *cell; 456 u64 hwid; 457 458 /* 459 * A cpu node with missing "reg" property is 460 * considered invalid to build a cpu_logical_map 461 * entry. 462 */ 463 cell = of_get_property(dn, "reg", NULL); 464 if (!cell) { 465 pr_err("%pOF: missing reg property\n", dn); 466 return INVALID_HWID; 467 } 468 469 hwid = of_read_number(cell, of_n_addr_cells(dn)); 470 /* 471 * Non affinity bits must be set to 0 in the DT 472 */ 473 if (hwid & ~MPIDR_HWID_BITMASK) { 474 pr_err("%pOF: invalid reg property\n", dn); 475 return INVALID_HWID; 476 } 477 return hwid; 478 } 479 480 /* 481 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 482 * entries and check for duplicates. If any is found just ignore the 483 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 484 * matching valid MPIDR values. 485 */ 486 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 487 { 488 unsigned int i; 489 490 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 491 if (cpu_logical_map(i) == hwid) 492 return true; 493 return false; 494 } 495 496 /* 497 * Initialize cpu operations for a logical cpu and 498 * set it in the possible mask on success 499 */ 500 static int __init smp_cpu_setup(int cpu) 501 { 502 const struct cpu_operations *ops; 503 504 if (init_cpu_ops(cpu)) 505 return -ENODEV; 506 507 ops = get_cpu_ops(cpu); 508 if (ops->cpu_init(cpu)) 509 return -ENODEV; 510 511 set_cpu_possible(cpu, true); 512 513 return 0; 514 } 515 516 static bool bootcpu_valid __initdata; 517 static unsigned int cpu_count = 1; 518 519 #ifdef CONFIG_ACPI 520 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 521 522 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 523 { 524 return &cpu_madt_gicc[cpu]; 525 } 526 527 /* 528 * acpi_map_gic_cpu_interface - parse processor MADT entry 529 * 530 * Carry out sanity checks on MADT processor entry and initialize 531 * cpu_logical_map on success 532 */ 533 static void __init 534 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 535 { 536 u64 hwid = processor->arm_mpidr; 537 538 if (!(processor->flags & ACPI_MADT_ENABLED)) { 539 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 540 return; 541 } 542 543 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 544 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 545 return; 546 } 547 548 if (is_mpidr_duplicate(cpu_count, hwid)) { 549 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 550 return; 551 } 552 553 /* Check if GICC structure of boot CPU is available in the MADT */ 554 if (cpu_logical_map(0) == hwid) { 555 if (bootcpu_valid) { 556 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 557 hwid); 558 return; 559 } 560 bootcpu_valid = true; 561 cpu_madt_gicc[0] = *processor; 562 return; 563 } 564 565 if (cpu_count >= NR_CPUS) 566 return; 567 568 /* map the logical cpu id to cpu MPIDR */ 569 set_cpu_logical_map(cpu_count, hwid); 570 571 cpu_madt_gicc[cpu_count] = *processor; 572 573 /* 574 * Set-up the ACPI parking protocol cpu entries 575 * while initializing the cpu_logical_map to 576 * avoid parsing MADT entries multiple times for 577 * nothing (ie a valid cpu_logical_map entry should 578 * contain a valid parking protocol data set to 579 * initialize the cpu if the parking protocol is 580 * the only available enable method). 581 */ 582 acpi_set_mailbox_entry(cpu_count, processor); 583 584 cpu_count++; 585 } 586 587 static int __init 588 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 589 const unsigned long end) 590 { 591 struct acpi_madt_generic_interrupt *processor; 592 593 processor = (struct acpi_madt_generic_interrupt *)header; 594 if (BAD_MADT_GICC_ENTRY(processor, end)) 595 return -EINVAL; 596 597 acpi_table_print_madt_entry(&header->common); 598 599 acpi_map_gic_cpu_interface(processor); 600 601 return 0; 602 } 603 604 static void __init acpi_parse_and_init_cpus(void) 605 { 606 int i; 607 608 /* 609 * do a walk of MADT to determine how many CPUs 610 * we have including disabled CPUs, and get information 611 * we need for SMP init. 612 */ 613 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 614 acpi_parse_gic_cpu_interface, 0); 615 616 /* 617 * In ACPI, SMP and CPU NUMA information is provided in separate 618 * static tables, namely the MADT and the SRAT. 619 * 620 * Thus, it is simpler to first create the cpu logical map through 621 * an MADT walk and then map the logical cpus to their node ids 622 * as separate steps. 623 */ 624 acpi_map_cpus_to_nodes(); 625 626 for (i = 0; i < nr_cpu_ids; i++) 627 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 628 } 629 #else 630 #define acpi_parse_and_init_cpus(...) do { } while (0) 631 #endif 632 633 /* 634 * Enumerate the possible CPU set from the device tree and build the 635 * cpu logical map array containing MPIDR values related to logical 636 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 637 */ 638 static void __init of_parse_and_init_cpus(void) 639 { 640 struct device_node *dn; 641 642 for_each_of_cpu_node(dn) { 643 u64 hwid = of_get_cpu_mpidr(dn); 644 645 if (hwid == INVALID_HWID) 646 goto next; 647 648 if (is_mpidr_duplicate(cpu_count, hwid)) { 649 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 650 dn); 651 goto next; 652 } 653 654 /* 655 * The numbering scheme requires that the boot CPU 656 * must be assigned logical id 0. Record it so that 657 * the logical map built from DT is validated and can 658 * be used. 659 */ 660 if (hwid == cpu_logical_map(0)) { 661 if (bootcpu_valid) { 662 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 663 dn); 664 goto next; 665 } 666 667 bootcpu_valid = true; 668 early_map_cpu_to_node(0, of_node_to_nid(dn)); 669 670 /* 671 * cpu_logical_map has already been 672 * initialized and the boot cpu doesn't need 673 * the enable-method so continue without 674 * incrementing cpu. 675 */ 676 continue; 677 } 678 679 if (cpu_count >= NR_CPUS) 680 goto next; 681 682 pr_debug("cpu logical map 0x%llx\n", hwid); 683 set_cpu_logical_map(cpu_count, hwid); 684 685 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 686 next: 687 cpu_count++; 688 } 689 } 690 691 /* 692 * Enumerate the possible CPU set from the device tree or ACPI and build the 693 * cpu logical map array containing MPIDR values related to logical 694 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 695 */ 696 void __init smp_init_cpus(void) 697 { 698 int i; 699 700 if (acpi_disabled) 701 of_parse_and_init_cpus(); 702 else 703 acpi_parse_and_init_cpus(); 704 705 if (cpu_count > nr_cpu_ids) 706 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 707 cpu_count, nr_cpu_ids); 708 709 if (!bootcpu_valid) { 710 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 711 return; 712 } 713 714 /* 715 * We need to set the cpu_logical_map entries before enabling 716 * the cpus so that cpu processor description entries (DT cpu nodes 717 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 718 * with entries in cpu_logical_map while initializing the cpus. 719 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 720 */ 721 for (i = 1; i < nr_cpu_ids; i++) { 722 if (cpu_logical_map(i) != INVALID_HWID) { 723 if (smp_cpu_setup(i)) 724 set_cpu_logical_map(i, INVALID_HWID); 725 } 726 } 727 } 728 729 void __init smp_prepare_cpus(unsigned int max_cpus) 730 { 731 const struct cpu_operations *ops; 732 int err; 733 unsigned int cpu; 734 unsigned int this_cpu; 735 736 init_cpu_topology(); 737 738 this_cpu = smp_processor_id(); 739 store_cpu_topology(this_cpu); 740 numa_store_cpu_info(this_cpu); 741 numa_add_cpu(this_cpu); 742 743 /* 744 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 745 * secondary CPUs present. 746 */ 747 if (max_cpus == 0) 748 return; 749 750 /* 751 * Initialise the present map (which describes the set of CPUs 752 * actually populated at the present time) and release the 753 * secondaries from the bootloader. 754 */ 755 for_each_possible_cpu(cpu) { 756 757 per_cpu(cpu_number, cpu) = cpu; 758 759 if (cpu == smp_processor_id()) 760 continue; 761 762 ops = get_cpu_ops(cpu); 763 if (!ops) 764 continue; 765 766 err = ops->cpu_prepare(cpu); 767 if (err) 768 continue; 769 770 set_cpu_present(cpu, true); 771 numa_store_cpu_info(cpu); 772 } 773 } 774 775 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 776 777 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 778 { 779 __smp_cross_call = fn; 780 } 781 782 static const char *ipi_types[NR_IPI] __tracepoint_string = { 783 #define S(x,s) [x] = s 784 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 785 S(IPI_CALL_FUNC, "Function call interrupts"), 786 S(IPI_CPU_STOP, "CPU stop interrupts"), 787 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 788 S(IPI_TIMER, "Timer broadcast interrupts"), 789 S(IPI_IRQ_WORK, "IRQ work interrupts"), 790 S(IPI_WAKEUP, "CPU wake-up interrupts"), 791 }; 792 793 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 794 { 795 trace_ipi_raise(target, ipi_types[ipinr]); 796 __smp_cross_call(target, ipinr); 797 } 798 799 void show_ipi_list(struct seq_file *p, int prec) 800 { 801 unsigned int cpu, i; 802 803 for (i = 0; i < NR_IPI; i++) { 804 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 805 prec >= 4 ? " " : ""); 806 for_each_online_cpu(cpu) 807 seq_printf(p, "%10u ", 808 __get_irq_stat(cpu, ipi_irqs[i])); 809 seq_printf(p, " %s\n", ipi_types[i]); 810 } 811 } 812 813 u64 smp_irq_stat_cpu(unsigned int cpu) 814 { 815 u64 sum = 0; 816 int i; 817 818 for (i = 0; i < NR_IPI; i++) 819 sum += __get_irq_stat(cpu, ipi_irqs[i]); 820 821 return sum; 822 } 823 824 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 825 { 826 smp_cross_call(mask, IPI_CALL_FUNC); 827 } 828 829 void arch_send_call_function_single_ipi(int cpu) 830 { 831 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 832 } 833 834 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 835 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 836 { 837 smp_cross_call(mask, IPI_WAKEUP); 838 } 839 #endif 840 841 #ifdef CONFIG_IRQ_WORK 842 void arch_irq_work_raise(void) 843 { 844 if (__smp_cross_call) 845 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 846 } 847 #endif 848 849 static void local_cpu_stop(void) 850 { 851 set_cpu_online(smp_processor_id(), false); 852 853 local_daif_mask(); 854 sdei_mask_local_cpu(); 855 cpu_park_loop(); 856 } 857 858 /* 859 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 860 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 861 * CPUs that have already stopped themselves. 862 */ 863 void panic_smp_self_stop(void) 864 { 865 local_cpu_stop(); 866 } 867 868 #ifdef CONFIG_KEXEC_CORE 869 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 870 #endif 871 872 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 873 { 874 #ifdef CONFIG_KEXEC_CORE 875 crash_save_cpu(regs, cpu); 876 877 atomic_dec(&waiting_for_crash_ipi); 878 879 local_irq_disable(); 880 sdei_mask_local_cpu(); 881 882 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 883 __cpu_try_die(cpu); 884 885 /* just in case */ 886 cpu_park_loop(); 887 #endif 888 } 889 890 /* 891 * Main handler for inter-processor interrupts 892 */ 893 void handle_IPI(int ipinr, struct pt_regs *regs) 894 { 895 unsigned int cpu = smp_processor_id(); 896 struct pt_regs *old_regs = set_irq_regs(regs); 897 898 if ((unsigned)ipinr < NR_IPI) { 899 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 900 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 901 } 902 903 switch (ipinr) { 904 case IPI_RESCHEDULE: 905 scheduler_ipi(); 906 break; 907 908 case IPI_CALL_FUNC: 909 irq_enter(); 910 generic_smp_call_function_interrupt(); 911 irq_exit(); 912 break; 913 914 case IPI_CPU_STOP: 915 irq_enter(); 916 local_cpu_stop(); 917 irq_exit(); 918 break; 919 920 case IPI_CPU_CRASH_STOP: 921 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 922 irq_enter(); 923 ipi_cpu_crash_stop(cpu, regs); 924 925 unreachable(); 926 } 927 break; 928 929 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 930 case IPI_TIMER: 931 irq_enter(); 932 tick_receive_broadcast(); 933 irq_exit(); 934 break; 935 #endif 936 937 #ifdef CONFIG_IRQ_WORK 938 case IPI_IRQ_WORK: 939 irq_enter(); 940 irq_work_run(); 941 irq_exit(); 942 break; 943 #endif 944 945 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 946 case IPI_WAKEUP: 947 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 948 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 949 cpu); 950 break; 951 #endif 952 953 default: 954 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 955 break; 956 } 957 958 if ((unsigned)ipinr < NR_IPI) 959 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 960 set_irq_regs(old_regs); 961 } 962 963 void smp_send_reschedule(int cpu) 964 { 965 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 966 } 967 968 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 969 void tick_broadcast(const struct cpumask *mask) 970 { 971 smp_cross_call(mask, IPI_TIMER); 972 } 973 #endif 974 975 /* 976 * The number of CPUs online, not counting this CPU (which may not be 977 * fully online and so not counted in num_online_cpus()). 978 */ 979 static inline unsigned int num_other_online_cpus(void) 980 { 981 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 982 983 return num_online_cpus() - this_cpu_online; 984 } 985 986 void smp_send_stop(void) 987 { 988 unsigned long timeout; 989 990 if (num_other_online_cpus()) { 991 cpumask_t mask; 992 993 cpumask_copy(&mask, cpu_online_mask); 994 cpumask_clear_cpu(smp_processor_id(), &mask); 995 996 if (system_state <= SYSTEM_RUNNING) 997 pr_crit("SMP: stopping secondary CPUs\n"); 998 smp_cross_call(&mask, IPI_CPU_STOP); 999 } 1000 1001 /* Wait up to one second for other CPUs to stop */ 1002 timeout = USEC_PER_SEC; 1003 while (num_other_online_cpus() && timeout--) 1004 udelay(1); 1005 1006 if (num_other_online_cpus()) 1007 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1008 cpumask_pr_args(cpu_online_mask)); 1009 1010 sdei_mask_local_cpu(); 1011 } 1012 1013 #ifdef CONFIG_KEXEC_CORE 1014 void crash_smp_send_stop(void) 1015 { 1016 static int cpus_stopped; 1017 cpumask_t mask; 1018 unsigned long timeout; 1019 1020 /* 1021 * This function can be called twice in panic path, but obviously 1022 * we execute this only once. 1023 */ 1024 if (cpus_stopped) 1025 return; 1026 1027 cpus_stopped = 1; 1028 1029 /* 1030 * If this cpu is the only one alive at this point in time, online or 1031 * not, there are no stop messages to be sent around, so just back out. 1032 */ 1033 if (num_other_online_cpus() == 0) { 1034 sdei_mask_local_cpu(); 1035 return; 1036 } 1037 1038 cpumask_copy(&mask, cpu_online_mask); 1039 cpumask_clear_cpu(smp_processor_id(), &mask); 1040 1041 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1042 1043 pr_crit("SMP: stopping secondary CPUs\n"); 1044 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1045 1046 /* Wait up to one second for other CPUs to stop */ 1047 timeout = USEC_PER_SEC; 1048 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1049 udelay(1); 1050 1051 if (atomic_read(&waiting_for_crash_ipi) > 0) 1052 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1053 cpumask_pr_args(&mask)); 1054 1055 sdei_mask_local_cpu(); 1056 } 1057 1058 bool smp_crash_stop_failed(void) 1059 { 1060 return (atomic_read(&waiting_for_crash_ipi) > 0); 1061 } 1062 #endif 1063 1064 /* 1065 * not supported here 1066 */ 1067 int setup_profiling_timer(unsigned int multiplier) 1068 { 1069 return -EINVAL; 1070 } 1071 1072 static bool have_cpu_die(void) 1073 { 1074 #ifdef CONFIG_HOTPLUG_CPU 1075 int any_cpu = raw_smp_processor_id(); 1076 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1077 1078 if (ops && ops->cpu_die) 1079 return true; 1080 #endif 1081 return false; 1082 } 1083 1084 bool cpus_are_stuck_in_kernel(void) 1085 { 1086 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1087 1088 return !!cpus_stuck_in_kernel || smp_spin_tables; 1089 } 1090