xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision b1a3e75e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kexec.h>
34 #include <linux/kvm_host.h>
35 
36 #include <asm/alternative.h>
37 #include <asm/atomic.h>
38 #include <asm/cacheflush.h>
39 #include <asm/cpu.h>
40 #include <asm/cputype.h>
41 #include <asm/cpu_ops.h>
42 #include <asm/daifflags.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/numa.h>
46 #include <asm/processor.h>
47 #include <asm/smp_plat.h>
48 #include <asm/sections.h>
49 #include <asm/tlbflush.h>
50 #include <asm/ptrace.h>
51 #include <asm/virt.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ipi.h>
55 
56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
57 EXPORT_PER_CPU_SYMBOL(cpu_number);
58 
59 /*
60  * as from 2.5, kernels no longer have an init_tasks structure
61  * so we need some other way of telling a new secondary core
62  * where to place its SVC stack
63  */
64 struct secondary_data secondary_data;
65 /* Number of CPUs which aren't online, but looping in kernel text. */
66 static int cpus_stuck_in_kernel;
67 
68 enum ipi_msg_type {
69 	IPI_RESCHEDULE,
70 	IPI_CALL_FUNC,
71 	IPI_CPU_STOP,
72 	IPI_CPU_CRASH_STOP,
73 	IPI_TIMER,
74 	IPI_IRQ_WORK,
75 	IPI_WAKEUP
76 };
77 
78 #ifdef CONFIG_HOTPLUG_CPU
79 static int op_cpu_kill(unsigned int cpu);
80 #else
81 static inline int op_cpu_kill(unsigned int cpu)
82 {
83 	return -ENOSYS;
84 }
85 #endif
86 
87 
88 /*
89  * Boot a secondary CPU, and assign it the specified idle task.
90  * This also gives us the initial stack to use for this CPU.
91  */
92 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
93 {
94 	const struct cpu_operations *ops = get_cpu_ops(cpu);
95 
96 	if (ops->cpu_boot)
97 		return ops->cpu_boot(cpu);
98 
99 	return -EOPNOTSUPP;
100 }
101 
102 static DECLARE_COMPLETION(cpu_running);
103 
104 int __cpu_up(unsigned int cpu, struct task_struct *idle)
105 {
106 	int ret;
107 	long status;
108 
109 	/*
110 	 * We need to tell the secondary core where to find its stack and the
111 	 * page tables.
112 	 */
113 	secondary_data.task = idle;
114 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
115 	update_cpu_boot_status(CPU_MMU_OFF);
116 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
117 
118 	/* Now bring the CPU into our world */
119 	ret = boot_secondary(cpu, idle);
120 	if (ret) {
121 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
122 		return ret;
123 	}
124 
125 	/*
126 	 * CPU was successfully started, wait for it to come online or
127 	 * time out.
128 	 */
129 	wait_for_completion_timeout(&cpu_running,
130 				    msecs_to_jiffies(5000));
131 	if (cpu_online(cpu))
132 		return 0;
133 
134 	pr_crit("CPU%u: failed to come online\n", cpu);
135 	secondary_data.task = NULL;
136 	secondary_data.stack = NULL;
137 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
138 	status = READ_ONCE(secondary_data.status);
139 	if (status == CPU_MMU_OFF)
140 		status = READ_ONCE(__early_cpu_boot_status);
141 
142 	switch (status & CPU_BOOT_STATUS_MASK) {
143 	default:
144 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
145 		       cpu, status);
146 		cpus_stuck_in_kernel++;
147 		break;
148 	case CPU_KILL_ME:
149 		if (!op_cpu_kill(cpu)) {
150 			pr_crit("CPU%u: died during early boot\n", cpu);
151 			break;
152 		}
153 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
154 		/* Fall through */
155 	case CPU_STUCK_IN_KERNEL:
156 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
157 		if (status & CPU_STUCK_REASON_52_BIT_VA)
158 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
159 		if (status & CPU_STUCK_REASON_NO_GRAN) {
160 			pr_crit("CPU%u: does not support %luK granule\n",
161 				cpu, PAGE_SIZE / SZ_1K);
162 		}
163 		cpus_stuck_in_kernel++;
164 		break;
165 	case CPU_PANIC_KERNEL:
166 		panic("CPU%u detected unsupported configuration\n", cpu);
167 	}
168 
169 	return -EIO;
170 }
171 
172 static void init_gic_priority_masking(void)
173 {
174 	u32 cpuflags;
175 
176 	if (WARN_ON(!gic_enable_sre()))
177 		return;
178 
179 	cpuflags = read_sysreg(daif);
180 
181 	WARN_ON(!(cpuflags & PSR_I_BIT));
182 
183 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
184 }
185 
186 /*
187  * This is the secondary CPU boot entry.  We're using this CPUs
188  * idle thread stack, but a set of temporary page tables.
189  */
190 asmlinkage notrace void secondary_start_kernel(void)
191 {
192 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
193 	struct mm_struct *mm = &init_mm;
194 	const struct cpu_operations *ops;
195 	unsigned int cpu;
196 
197 	cpu = task_cpu(current);
198 	set_my_cpu_offset(per_cpu_offset(cpu));
199 
200 	/*
201 	 * All kernel threads share the same mm context; grab a
202 	 * reference and switch to it.
203 	 */
204 	mmgrab(mm);
205 	current->active_mm = mm;
206 
207 	/*
208 	 * TTBR0 is only used for the identity mapping at this stage. Make it
209 	 * point to zero page to avoid speculatively fetching new entries.
210 	 */
211 	cpu_uninstall_idmap();
212 
213 	if (system_uses_irq_prio_masking())
214 		init_gic_priority_masking();
215 
216 	preempt_disable();
217 	trace_hardirqs_off();
218 
219 	/*
220 	 * If the system has established the capabilities, make sure
221 	 * this CPU ticks all of those. If it doesn't, the CPU will
222 	 * fail to come online.
223 	 */
224 	check_local_cpu_capabilities();
225 
226 	ops = get_cpu_ops(cpu);
227 	if (ops->cpu_postboot)
228 		ops->cpu_postboot();
229 
230 	/*
231 	 * Log the CPU info before it is marked online and might get read.
232 	 */
233 	cpuinfo_store_cpu();
234 
235 	/*
236 	 * Enable GIC and timers.
237 	 */
238 	notify_cpu_starting(cpu);
239 
240 	store_cpu_topology(cpu);
241 	numa_add_cpu(cpu);
242 
243 	/*
244 	 * OK, now it's safe to let the boot CPU continue.  Wait for
245 	 * the CPU migration code to notice that the CPU is online
246 	 * before we continue.
247 	 */
248 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
249 					 cpu, (unsigned long)mpidr,
250 					 read_cpuid_id());
251 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
252 	set_cpu_online(cpu, true);
253 	complete(&cpu_running);
254 
255 	local_daif_restore(DAIF_PROCCTX);
256 
257 	/*
258 	 * OK, it's off to the idle thread for us
259 	 */
260 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
261 }
262 
263 #ifdef CONFIG_HOTPLUG_CPU
264 static int op_cpu_disable(unsigned int cpu)
265 {
266 	const struct cpu_operations *ops = get_cpu_ops(cpu);
267 
268 	/*
269 	 * If we don't have a cpu_die method, abort before we reach the point
270 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
271 	 */
272 	if (!ops || !ops->cpu_die)
273 		return -EOPNOTSUPP;
274 
275 	/*
276 	 * We may need to abort a hot unplug for some other mechanism-specific
277 	 * reason.
278 	 */
279 	if (ops->cpu_disable)
280 		return ops->cpu_disable(cpu);
281 
282 	return 0;
283 }
284 
285 /*
286  * __cpu_disable runs on the processor to be shutdown.
287  */
288 int __cpu_disable(void)
289 {
290 	unsigned int cpu = smp_processor_id();
291 	int ret;
292 
293 	ret = op_cpu_disable(cpu);
294 	if (ret)
295 		return ret;
296 
297 	remove_cpu_topology(cpu);
298 	numa_remove_cpu(cpu);
299 
300 	/*
301 	 * Take this CPU offline.  Once we clear this, we can't return,
302 	 * and we must not schedule until we're ready to give up the cpu.
303 	 */
304 	set_cpu_online(cpu, false);
305 
306 	/*
307 	 * OK - migrate IRQs away from this CPU
308 	 */
309 	irq_migrate_all_off_this_cpu();
310 
311 	return 0;
312 }
313 
314 static int op_cpu_kill(unsigned int cpu)
315 {
316 	const struct cpu_operations *ops = get_cpu_ops(cpu);
317 
318 	/*
319 	 * If we have no means of synchronising with the dying CPU, then assume
320 	 * that it is really dead. We can only wait for an arbitrary length of
321 	 * time and hope that it's dead, so let's skip the wait and just hope.
322 	 */
323 	if (!ops->cpu_kill)
324 		return 0;
325 
326 	return ops->cpu_kill(cpu);
327 }
328 
329 /*
330  * called on the thread which is asking for a CPU to be shutdown -
331  * waits until shutdown has completed, or it is timed out.
332  */
333 void __cpu_die(unsigned int cpu)
334 {
335 	int err;
336 
337 	if (!cpu_wait_death(cpu, 5)) {
338 		pr_crit("CPU%u: cpu didn't die\n", cpu);
339 		return;
340 	}
341 	pr_notice("CPU%u: shutdown\n", cpu);
342 
343 	/*
344 	 * Now that the dying CPU is beyond the point of no return w.r.t.
345 	 * in-kernel synchronisation, try to get the firwmare to help us to
346 	 * verify that it has really left the kernel before we consider
347 	 * clobbering anything it might still be using.
348 	 */
349 	err = op_cpu_kill(cpu);
350 	if (err)
351 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
352 }
353 
354 /*
355  * Called from the idle thread for the CPU which has been shutdown.
356  *
357  */
358 void cpu_die(void)
359 {
360 	unsigned int cpu = smp_processor_id();
361 	const struct cpu_operations *ops = get_cpu_ops(cpu);
362 
363 	idle_task_exit();
364 
365 	local_daif_mask();
366 
367 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
368 	(void)cpu_report_death();
369 
370 	/*
371 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
372 	 * mechanism must perform all required cache maintenance to ensure that
373 	 * no dirty lines are lost in the process of shutting down the CPU.
374 	 */
375 	ops->cpu_die(cpu);
376 
377 	BUG();
378 }
379 #endif
380 
381 static void __cpu_try_die(int cpu)
382 {
383 #ifdef CONFIG_HOTPLUG_CPU
384 	const struct cpu_operations *ops = get_cpu_ops(cpu);
385 
386 	if (ops && ops->cpu_die)
387 		ops->cpu_die(cpu);
388 #endif
389 }
390 
391 /*
392  * Kill the calling secondary CPU, early in bringup before it is turned
393  * online.
394  */
395 void cpu_die_early(void)
396 {
397 	int cpu = smp_processor_id();
398 
399 	pr_crit("CPU%d: will not boot\n", cpu);
400 
401 	/* Mark this CPU absent */
402 	set_cpu_present(cpu, 0);
403 
404 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
405 		update_cpu_boot_status(CPU_KILL_ME);
406 		__cpu_try_die(cpu);
407 	}
408 
409 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
410 
411 	cpu_park_loop();
412 }
413 
414 static void __init hyp_mode_check(void)
415 {
416 	if (is_hyp_mode_available())
417 		pr_info("CPU: All CPU(s) started at EL2\n");
418 	else if (is_hyp_mode_mismatched())
419 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
420 			   "CPU: CPUs started in inconsistent modes");
421 	else
422 		pr_info("CPU: All CPU(s) started at EL1\n");
423 	if (IS_ENABLED(CONFIG_KVM))
424 		kvm_compute_layout();
425 }
426 
427 void __init smp_cpus_done(unsigned int max_cpus)
428 {
429 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
430 	setup_cpu_features();
431 	hyp_mode_check();
432 	apply_alternatives_all();
433 	mark_linear_text_alias_ro();
434 }
435 
436 void __init smp_prepare_boot_cpu(void)
437 {
438 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
439 	cpuinfo_store_boot_cpu();
440 
441 	/*
442 	 * We now know enough about the boot CPU to apply the
443 	 * alternatives that cannot wait until interrupt handling
444 	 * and/or scheduling is enabled.
445 	 */
446 	apply_boot_alternatives();
447 
448 	/* Conditionally switch to GIC PMR for interrupt masking */
449 	if (system_uses_irq_prio_masking())
450 		init_gic_priority_masking();
451 }
452 
453 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
454 {
455 	const __be32 *cell;
456 	u64 hwid;
457 
458 	/*
459 	 * A cpu node with missing "reg" property is
460 	 * considered invalid to build a cpu_logical_map
461 	 * entry.
462 	 */
463 	cell = of_get_property(dn, "reg", NULL);
464 	if (!cell) {
465 		pr_err("%pOF: missing reg property\n", dn);
466 		return INVALID_HWID;
467 	}
468 
469 	hwid = of_read_number(cell, of_n_addr_cells(dn));
470 	/*
471 	 * Non affinity bits must be set to 0 in the DT
472 	 */
473 	if (hwid & ~MPIDR_HWID_BITMASK) {
474 		pr_err("%pOF: invalid reg property\n", dn);
475 		return INVALID_HWID;
476 	}
477 	return hwid;
478 }
479 
480 /*
481  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
482  * entries and check for duplicates. If any is found just ignore the
483  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
484  * matching valid MPIDR values.
485  */
486 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
487 {
488 	unsigned int i;
489 
490 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
491 		if (cpu_logical_map(i) == hwid)
492 			return true;
493 	return false;
494 }
495 
496 /*
497  * Initialize cpu operations for a logical cpu and
498  * set it in the possible mask on success
499  */
500 static int __init smp_cpu_setup(int cpu)
501 {
502 	const struct cpu_operations *ops;
503 
504 	if (init_cpu_ops(cpu))
505 		return -ENODEV;
506 
507 	ops = get_cpu_ops(cpu);
508 	if (ops->cpu_init(cpu))
509 		return -ENODEV;
510 
511 	set_cpu_possible(cpu, true);
512 
513 	return 0;
514 }
515 
516 static bool bootcpu_valid __initdata;
517 static unsigned int cpu_count = 1;
518 
519 #ifdef CONFIG_ACPI
520 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
521 
522 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
523 {
524 	return &cpu_madt_gicc[cpu];
525 }
526 
527 /*
528  * acpi_map_gic_cpu_interface - parse processor MADT entry
529  *
530  * Carry out sanity checks on MADT processor entry and initialize
531  * cpu_logical_map on success
532  */
533 static void __init
534 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
535 {
536 	u64 hwid = processor->arm_mpidr;
537 
538 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
539 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
540 		return;
541 	}
542 
543 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
544 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
545 		return;
546 	}
547 
548 	if (is_mpidr_duplicate(cpu_count, hwid)) {
549 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
550 		return;
551 	}
552 
553 	/* Check if GICC structure of boot CPU is available in the MADT */
554 	if (cpu_logical_map(0) == hwid) {
555 		if (bootcpu_valid) {
556 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
557 			       hwid);
558 			return;
559 		}
560 		bootcpu_valid = true;
561 		cpu_madt_gicc[0] = *processor;
562 		return;
563 	}
564 
565 	if (cpu_count >= NR_CPUS)
566 		return;
567 
568 	/* map the logical cpu id to cpu MPIDR */
569 	set_cpu_logical_map(cpu_count, hwid);
570 
571 	cpu_madt_gicc[cpu_count] = *processor;
572 
573 	/*
574 	 * Set-up the ACPI parking protocol cpu entries
575 	 * while initializing the cpu_logical_map to
576 	 * avoid parsing MADT entries multiple times for
577 	 * nothing (ie a valid cpu_logical_map entry should
578 	 * contain a valid parking protocol data set to
579 	 * initialize the cpu if the parking protocol is
580 	 * the only available enable method).
581 	 */
582 	acpi_set_mailbox_entry(cpu_count, processor);
583 
584 	cpu_count++;
585 }
586 
587 static int __init
588 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
589 			     const unsigned long end)
590 {
591 	struct acpi_madt_generic_interrupt *processor;
592 
593 	processor = (struct acpi_madt_generic_interrupt *)header;
594 	if (BAD_MADT_GICC_ENTRY(processor, end))
595 		return -EINVAL;
596 
597 	acpi_table_print_madt_entry(&header->common);
598 
599 	acpi_map_gic_cpu_interface(processor);
600 
601 	return 0;
602 }
603 
604 static void __init acpi_parse_and_init_cpus(void)
605 {
606 	int i;
607 
608 	/*
609 	 * do a walk of MADT to determine how many CPUs
610 	 * we have including disabled CPUs, and get information
611 	 * we need for SMP init.
612 	 */
613 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
614 				      acpi_parse_gic_cpu_interface, 0);
615 
616 	/*
617 	 * In ACPI, SMP and CPU NUMA information is provided in separate
618 	 * static tables, namely the MADT and the SRAT.
619 	 *
620 	 * Thus, it is simpler to first create the cpu logical map through
621 	 * an MADT walk and then map the logical cpus to their node ids
622 	 * as separate steps.
623 	 */
624 	acpi_map_cpus_to_nodes();
625 
626 	for (i = 0; i < nr_cpu_ids; i++)
627 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
628 }
629 #else
630 #define acpi_parse_and_init_cpus(...)	do { } while (0)
631 #endif
632 
633 /*
634  * Enumerate the possible CPU set from the device tree and build the
635  * cpu logical map array containing MPIDR values related to logical
636  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
637  */
638 static void __init of_parse_and_init_cpus(void)
639 {
640 	struct device_node *dn;
641 
642 	for_each_of_cpu_node(dn) {
643 		u64 hwid = of_get_cpu_mpidr(dn);
644 
645 		if (hwid == INVALID_HWID)
646 			goto next;
647 
648 		if (is_mpidr_duplicate(cpu_count, hwid)) {
649 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
650 				dn);
651 			goto next;
652 		}
653 
654 		/*
655 		 * The numbering scheme requires that the boot CPU
656 		 * must be assigned logical id 0. Record it so that
657 		 * the logical map built from DT is validated and can
658 		 * be used.
659 		 */
660 		if (hwid == cpu_logical_map(0)) {
661 			if (bootcpu_valid) {
662 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
663 					dn);
664 				goto next;
665 			}
666 
667 			bootcpu_valid = true;
668 			early_map_cpu_to_node(0, of_node_to_nid(dn));
669 
670 			/*
671 			 * cpu_logical_map has already been
672 			 * initialized and the boot cpu doesn't need
673 			 * the enable-method so continue without
674 			 * incrementing cpu.
675 			 */
676 			continue;
677 		}
678 
679 		if (cpu_count >= NR_CPUS)
680 			goto next;
681 
682 		pr_debug("cpu logical map 0x%llx\n", hwid);
683 		set_cpu_logical_map(cpu_count, hwid);
684 
685 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
686 next:
687 		cpu_count++;
688 	}
689 }
690 
691 /*
692  * Enumerate the possible CPU set from the device tree or ACPI and build the
693  * cpu logical map array containing MPIDR values related to logical
694  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
695  */
696 void __init smp_init_cpus(void)
697 {
698 	int i;
699 
700 	if (acpi_disabled)
701 		of_parse_and_init_cpus();
702 	else
703 		acpi_parse_and_init_cpus();
704 
705 	if (cpu_count > nr_cpu_ids)
706 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
707 			cpu_count, nr_cpu_ids);
708 
709 	if (!bootcpu_valid) {
710 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
711 		return;
712 	}
713 
714 	/*
715 	 * We need to set the cpu_logical_map entries before enabling
716 	 * the cpus so that cpu processor description entries (DT cpu nodes
717 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
718 	 * with entries in cpu_logical_map while initializing the cpus.
719 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
720 	 */
721 	for (i = 1; i < nr_cpu_ids; i++) {
722 		if (cpu_logical_map(i) != INVALID_HWID) {
723 			if (smp_cpu_setup(i))
724 				set_cpu_logical_map(i, INVALID_HWID);
725 		}
726 	}
727 }
728 
729 void __init smp_prepare_cpus(unsigned int max_cpus)
730 {
731 	const struct cpu_operations *ops;
732 	int err;
733 	unsigned int cpu;
734 	unsigned int this_cpu;
735 
736 	init_cpu_topology();
737 
738 	this_cpu = smp_processor_id();
739 	store_cpu_topology(this_cpu);
740 	numa_store_cpu_info(this_cpu);
741 	numa_add_cpu(this_cpu);
742 
743 	/*
744 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
745 	 * secondary CPUs present.
746 	 */
747 	if (max_cpus == 0)
748 		return;
749 
750 	/*
751 	 * Initialise the present map (which describes the set of CPUs
752 	 * actually populated at the present time) and release the
753 	 * secondaries from the bootloader.
754 	 */
755 	for_each_possible_cpu(cpu) {
756 
757 		per_cpu(cpu_number, cpu) = cpu;
758 
759 		if (cpu == smp_processor_id())
760 			continue;
761 
762 		ops = get_cpu_ops(cpu);
763 		if (!ops)
764 			continue;
765 
766 		err = ops->cpu_prepare(cpu);
767 		if (err)
768 			continue;
769 
770 		set_cpu_present(cpu, true);
771 		numa_store_cpu_info(cpu);
772 	}
773 }
774 
775 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
776 
777 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
778 {
779 	__smp_cross_call = fn;
780 }
781 
782 static const char *ipi_types[NR_IPI] __tracepoint_string = {
783 #define S(x,s)	[x] = s
784 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
785 	S(IPI_CALL_FUNC, "Function call interrupts"),
786 	S(IPI_CPU_STOP, "CPU stop interrupts"),
787 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
788 	S(IPI_TIMER, "Timer broadcast interrupts"),
789 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
790 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
791 };
792 
793 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
794 {
795 	trace_ipi_raise(target, ipi_types[ipinr]);
796 	__smp_cross_call(target, ipinr);
797 }
798 
799 void show_ipi_list(struct seq_file *p, int prec)
800 {
801 	unsigned int cpu, i;
802 
803 	for (i = 0; i < NR_IPI; i++) {
804 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
805 			   prec >= 4 ? " " : "");
806 		for_each_online_cpu(cpu)
807 			seq_printf(p, "%10u ",
808 				   __get_irq_stat(cpu, ipi_irqs[i]));
809 		seq_printf(p, "      %s\n", ipi_types[i]);
810 	}
811 }
812 
813 u64 smp_irq_stat_cpu(unsigned int cpu)
814 {
815 	u64 sum = 0;
816 	int i;
817 
818 	for (i = 0; i < NR_IPI; i++)
819 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
820 
821 	return sum;
822 }
823 
824 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
825 {
826 	smp_cross_call(mask, IPI_CALL_FUNC);
827 }
828 
829 void arch_send_call_function_single_ipi(int cpu)
830 {
831 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
832 }
833 
834 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
835 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
836 {
837 	smp_cross_call(mask, IPI_WAKEUP);
838 }
839 #endif
840 
841 #ifdef CONFIG_IRQ_WORK
842 void arch_irq_work_raise(void)
843 {
844 	if (__smp_cross_call)
845 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
846 }
847 #endif
848 
849 static void local_cpu_stop(void)
850 {
851 	set_cpu_online(smp_processor_id(), false);
852 
853 	local_daif_mask();
854 	sdei_mask_local_cpu();
855 	cpu_park_loop();
856 }
857 
858 /*
859  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
860  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
861  * CPUs that have already stopped themselves.
862  */
863 void panic_smp_self_stop(void)
864 {
865 	local_cpu_stop();
866 }
867 
868 #ifdef CONFIG_KEXEC_CORE
869 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
870 #endif
871 
872 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
873 {
874 #ifdef CONFIG_KEXEC_CORE
875 	crash_save_cpu(regs, cpu);
876 
877 	atomic_dec(&waiting_for_crash_ipi);
878 
879 	local_irq_disable();
880 	sdei_mask_local_cpu();
881 
882 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
883 		__cpu_try_die(cpu);
884 
885 	/* just in case */
886 	cpu_park_loop();
887 #endif
888 }
889 
890 /*
891  * Main handler for inter-processor interrupts
892  */
893 void handle_IPI(int ipinr, struct pt_regs *regs)
894 {
895 	unsigned int cpu = smp_processor_id();
896 	struct pt_regs *old_regs = set_irq_regs(regs);
897 
898 	if ((unsigned)ipinr < NR_IPI) {
899 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
900 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
901 	}
902 
903 	switch (ipinr) {
904 	case IPI_RESCHEDULE:
905 		scheduler_ipi();
906 		break;
907 
908 	case IPI_CALL_FUNC:
909 		irq_enter();
910 		generic_smp_call_function_interrupt();
911 		irq_exit();
912 		break;
913 
914 	case IPI_CPU_STOP:
915 		irq_enter();
916 		local_cpu_stop();
917 		irq_exit();
918 		break;
919 
920 	case IPI_CPU_CRASH_STOP:
921 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
922 			irq_enter();
923 			ipi_cpu_crash_stop(cpu, regs);
924 
925 			unreachable();
926 		}
927 		break;
928 
929 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
930 	case IPI_TIMER:
931 		irq_enter();
932 		tick_receive_broadcast();
933 		irq_exit();
934 		break;
935 #endif
936 
937 #ifdef CONFIG_IRQ_WORK
938 	case IPI_IRQ_WORK:
939 		irq_enter();
940 		irq_work_run();
941 		irq_exit();
942 		break;
943 #endif
944 
945 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
946 	case IPI_WAKEUP:
947 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
948 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
949 			  cpu);
950 		break;
951 #endif
952 
953 	default:
954 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
955 		break;
956 	}
957 
958 	if ((unsigned)ipinr < NR_IPI)
959 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
960 	set_irq_regs(old_regs);
961 }
962 
963 void smp_send_reschedule(int cpu)
964 {
965 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
966 }
967 
968 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
969 void tick_broadcast(const struct cpumask *mask)
970 {
971 	smp_cross_call(mask, IPI_TIMER);
972 }
973 #endif
974 
975 /*
976  * The number of CPUs online, not counting this CPU (which may not be
977  * fully online and so not counted in num_online_cpus()).
978  */
979 static inline unsigned int num_other_online_cpus(void)
980 {
981 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
982 
983 	return num_online_cpus() - this_cpu_online;
984 }
985 
986 void smp_send_stop(void)
987 {
988 	unsigned long timeout;
989 
990 	if (num_other_online_cpus()) {
991 		cpumask_t mask;
992 
993 		cpumask_copy(&mask, cpu_online_mask);
994 		cpumask_clear_cpu(smp_processor_id(), &mask);
995 
996 		if (system_state <= SYSTEM_RUNNING)
997 			pr_crit("SMP: stopping secondary CPUs\n");
998 		smp_cross_call(&mask, IPI_CPU_STOP);
999 	}
1000 
1001 	/* Wait up to one second for other CPUs to stop */
1002 	timeout = USEC_PER_SEC;
1003 	while (num_other_online_cpus() && timeout--)
1004 		udelay(1);
1005 
1006 	if (num_other_online_cpus())
1007 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1008 			cpumask_pr_args(cpu_online_mask));
1009 
1010 	sdei_mask_local_cpu();
1011 }
1012 
1013 #ifdef CONFIG_KEXEC_CORE
1014 void crash_smp_send_stop(void)
1015 {
1016 	static int cpus_stopped;
1017 	cpumask_t mask;
1018 	unsigned long timeout;
1019 
1020 	/*
1021 	 * This function can be called twice in panic path, but obviously
1022 	 * we execute this only once.
1023 	 */
1024 	if (cpus_stopped)
1025 		return;
1026 
1027 	cpus_stopped = 1;
1028 
1029 	/*
1030 	 * If this cpu is the only one alive at this point in time, online or
1031 	 * not, there are no stop messages to be sent around, so just back out.
1032 	 */
1033 	if (num_other_online_cpus() == 0) {
1034 		sdei_mask_local_cpu();
1035 		return;
1036 	}
1037 
1038 	cpumask_copy(&mask, cpu_online_mask);
1039 	cpumask_clear_cpu(smp_processor_id(), &mask);
1040 
1041 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1042 
1043 	pr_crit("SMP: stopping secondary CPUs\n");
1044 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1045 
1046 	/* Wait up to one second for other CPUs to stop */
1047 	timeout = USEC_PER_SEC;
1048 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1049 		udelay(1);
1050 
1051 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1052 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1053 			cpumask_pr_args(&mask));
1054 
1055 	sdei_mask_local_cpu();
1056 }
1057 
1058 bool smp_crash_stop_failed(void)
1059 {
1060 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1061 }
1062 #endif
1063 
1064 /*
1065  * not supported here
1066  */
1067 int setup_profiling_timer(unsigned int multiplier)
1068 {
1069 	return -EINVAL;
1070 }
1071 
1072 static bool have_cpu_die(void)
1073 {
1074 #ifdef CONFIG_HOTPLUG_CPU
1075 	int any_cpu = raw_smp_processor_id();
1076 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1077 
1078 	if (ops && ops->cpu_die)
1079 		return true;
1080 #endif
1081 	return false;
1082 }
1083 
1084 bool cpus_are_stuck_in_kernel(void)
1085 {
1086 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1087 
1088 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1089 }
1090