xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kexec.h>
34 #include <linux/kvm_host.h>
35 
36 #include <asm/alternative.h>
37 #include <asm/atomic.h>
38 #include <asm/cacheflush.h>
39 #include <asm/cpu.h>
40 #include <asm/cputype.h>
41 #include <asm/cpu_ops.h>
42 #include <asm/daifflags.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/numa.h>
46 #include <asm/pgtable.h>
47 #include <asm/pgalloc.h>
48 #include <asm/processor.h>
49 #include <asm/smp_plat.h>
50 #include <asm/sections.h>
51 #include <asm/tlbflush.h>
52 #include <asm/ptrace.h>
53 #include <asm/virt.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ipi.h>
57 
58 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
59 EXPORT_PER_CPU_SYMBOL(cpu_number);
60 
61 /*
62  * as from 2.5, kernels no longer have an init_tasks structure
63  * so we need some other way of telling a new secondary core
64  * where to place its SVC stack
65  */
66 struct secondary_data secondary_data;
67 /* Number of CPUs which aren't online, but looping in kernel text. */
68 int cpus_stuck_in_kernel;
69 
70 enum ipi_msg_type {
71 	IPI_RESCHEDULE,
72 	IPI_CALL_FUNC,
73 	IPI_CPU_STOP,
74 	IPI_CPU_CRASH_STOP,
75 	IPI_TIMER,
76 	IPI_IRQ_WORK,
77 	IPI_WAKEUP
78 };
79 
80 #ifdef CONFIG_HOTPLUG_CPU
81 static int op_cpu_kill(unsigned int cpu);
82 #else
83 static inline int op_cpu_kill(unsigned int cpu)
84 {
85 	return -ENOSYS;
86 }
87 #endif
88 
89 
90 /*
91  * Boot a secondary CPU, and assign it the specified idle task.
92  * This also gives us the initial stack to use for this CPU.
93  */
94 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
95 {
96 	const struct cpu_operations *ops = get_cpu_ops(cpu);
97 
98 	if (ops->cpu_boot)
99 		return ops->cpu_boot(cpu);
100 
101 	return -EOPNOTSUPP;
102 }
103 
104 static DECLARE_COMPLETION(cpu_running);
105 
106 int __cpu_up(unsigned int cpu, struct task_struct *idle)
107 {
108 	int ret;
109 	long status;
110 
111 	/*
112 	 * We need to tell the secondary core where to find its stack and the
113 	 * page tables.
114 	 */
115 	secondary_data.task = idle;
116 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
117 #if defined(CONFIG_ARM64_PTR_AUTH)
118 	secondary_data.ptrauth_key.apia.lo = idle->thread.keys_kernel.apia.lo;
119 	secondary_data.ptrauth_key.apia.hi = idle->thread.keys_kernel.apia.hi;
120 #endif
121 	update_cpu_boot_status(CPU_MMU_OFF);
122 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
123 
124 	/* Now bring the CPU into our world */
125 	ret = boot_secondary(cpu, idle);
126 	if (ret) {
127 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
128 		return ret;
129 	}
130 
131 	/*
132 	 * CPU was successfully started, wait for it to come online or
133 	 * time out.
134 	 */
135 	wait_for_completion_timeout(&cpu_running,
136 				    msecs_to_jiffies(5000));
137 	if (cpu_online(cpu))
138 		return 0;
139 
140 	pr_crit("CPU%u: failed to come online\n", cpu);
141 	secondary_data.task = NULL;
142 	secondary_data.stack = NULL;
143 #if defined(CONFIG_ARM64_PTR_AUTH)
144 	secondary_data.ptrauth_key.apia.lo = 0;
145 	secondary_data.ptrauth_key.apia.hi = 0;
146 #endif
147 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
148 	status = READ_ONCE(secondary_data.status);
149 	if (status == CPU_MMU_OFF)
150 		status = READ_ONCE(__early_cpu_boot_status);
151 
152 	switch (status & CPU_BOOT_STATUS_MASK) {
153 	default:
154 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
155 		       cpu, status);
156 		cpus_stuck_in_kernel++;
157 		break;
158 	case CPU_KILL_ME:
159 		if (!op_cpu_kill(cpu)) {
160 			pr_crit("CPU%u: died during early boot\n", cpu);
161 			break;
162 		}
163 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
164 		/* Fall through */
165 	case CPU_STUCK_IN_KERNEL:
166 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
167 		if (status & CPU_STUCK_REASON_52_BIT_VA)
168 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
169 		if (status & CPU_STUCK_REASON_NO_GRAN) {
170 			pr_crit("CPU%u: does not support %luK granule\n",
171 				cpu, PAGE_SIZE / SZ_1K);
172 		}
173 		cpus_stuck_in_kernel++;
174 		break;
175 	case CPU_PANIC_KERNEL:
176 		panic("CPU%u detected unsupported configuration\n", cpu);
177 	}
178 
179 	return ret;
180 }
181 
182 static void init_gic_priority_masking(void)
183 {
184 	u32 cpuflags;
185 
186 	if (WARN_ON(!gic_enable_sre()))
187 		return;
188 
189 	cpuflags = read_sysreg(daif);
190 
191 	WARN_ON(!(cpuflags & PSR_I_BIT));
192 
193 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
194 }
195 
196 /*
197  * This is the secondary CPU boot entry.  We're using this CPUs
198  * idle thread stack, but a set of temporary page tables.
199  */
200 asmlinkage notrace void secondary_start_kernel(void)
201 {
202 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
203 	struct mm_struct *mm = &init_mm;
204 	const struct cpu_operations *ops;
205 	unsigned int cpu;
206 
207 	cpu = task_cpu(current);
208 	set_my_cpu_offset(per_cpu_offset(cpu));
209 
210 	/*
211 	 * All kernel threads share the same mm context; grab a
212 	 * reference and switch to it.
213 	 */
214 	mmgrab(mm);
215 	current->active_mm = mm;
216 
217 	/*
218 	 * TTBR0 is only used for the identity mapping at this stage. Make it
219 	 * point to zero page to avoid speculatively fetching new entries.
220 	 */
221 	cpu_uninstall_idmap();
222 
223 	if (system_uses_irq_prio_masking())
224 		init_gic_priority_masking();
225 
226 	preempt_disable();
227 	trace_hardirqs_off();
228 
229 	/*
230 	 * If the system has established the capabilities, make sure
231 	 * this CPU ticks all of those. If it doesn't, the CPU will
232 	 * fail to come online.
233 	 */
234 	check_local_cpu_capabilities();
235 
236 	ops = get_cpu_ops(cpu);
237 	if (ops->cpu_postboot)
238 		ops->cpu_postboot();
239 
240 	/*
241 	 * Log the CPU info before it is marked online and might get read.
242 	 */
243 	cpuinfo_store_cpu();
244 
245 	/*
246 	 * Enable GIC and timers.
247 	 */
248 	notify_cpu_starting(cpu);
249 
250 	store_cpu_topology(cpu);
251 	numa_add_cpu(cpu);
252 
253 	/*
254 	 * OK, now it's safe to let the boot CPU continue.  Wait for
255 	 * the CPU migration code to notice that the CPU is online
256 	 * before we continue.
257 	 */
258 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
259 					 cpu, (unsigned long)mpidr,
260 					 read_cpuid_id());
261 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
262 	set_cpu_online(cpu, true);
263 	complete(&cpu_running);
264 
265 	local_daif_restore(DAIF_PROCCTX);
266 
267 	/*
268 	 * OK, it's off to the idle thread for us
269 	 */
270 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
271 }
272 
273 #ifdef CONFIG_HOTPLUG_CPU
274 static int op_cpu_disable(unsigned int cpu)
275 {
276 	const struct cpu_operations *ops = get_cpu_ops(cpu);
277 
278 	/*
279 	 * If we don't have a cpu_die method, abort before we reach the point
280 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
281 	 */
282 	if (!ops || !ops->cpu_die)
283 		return -EOPNOTSUPP;
284 
285 	/*
286 	 * We may need to abort a hot unplug for some other mechanism-specific
287 	 * reason.
288 	 */
289 	if (ops->cpu_disable)
290 		return ops->cpu_disable(cpu);
291 
292 	return 0;
293 }
294 
295 /*
296  * __cpu_disable runs on the processor to be shutdown.
297  */
298 int __cpu_disable(void)
299 {
300 	unsigned int cpu = smp_processor_id();
301 	int ret;
302 
303 	ret = op_cpu_disable(cpu);
304 	if (ret)
305 		return ret;
306 
307 	remove_cpu_topology(cpu);
308 	numa_remove_cpu(cpu);
309 
310 	/*
311 	 * Take this CPU offline.  Once we clear this, we can't return,
312 	 * and we must not schedule until we're ready to give up the cpu.
313 	 */
314 	set_cpu_online(cpu, false);
315 
316 	/*
317 	 * OK - migrate IRQs away from this CPU
318 	 */
319 	irq_migrate_all_off_this_cpu();
320 
321 	return 0;
322 }
323 
324 static int op_cpu_kill(unsigned int cpu)
325 {
326 	const struct cpu_operations *ops = get_cpu_ops(cpu);
327 
328 	/*
329 	 * If we have no means of synchronising with the dying CPU, then assume
330 	 * that it is really dead. We can only wait for an arbitrary length of
331 	 * time and hope that it's dead, so let's skip the wait and just hope.
332 	 */
333 	if (!ops->cpu_kill)
334 		return 0;
335 
336 	return ops->cpu_kill(cpu);
337 }
338 
339 /*
340  * called on the thread which is asking for a CPU to be shutdown -
341  * waits until shutdown has completed, or it is timed out.
342  */
343 void __cpu_die(unsigned int cpu)
344 {
345 	int err;
346 
347 	if (!cpu_wait_death(cpu, 5)) {
348 		pr_crit("CPU%u: cpu didn't die\n", cpu);
349 		return;
350 	}
351 	pr_notice("CPU%u: shutdown\n", cpu);
352 
353 	/*
354 	 * Now that the dying CPU is beyond the point of no return w.r.t.
355 	 * in-kernel synchronisation, try to get the firwmare to help us to
356 	 * verify that it has really left the kernel before we consider
357 	 * clobbering anything it might still be using.
358 	 */
359 	err = op_cpu_kill(cpu);
360 	if (err)
361 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
362 }
363 
364 /*
365  * Called from the idle thread for the CPU which has been shutdown.
366  *
367  */
368 void cpu_die(void)
369 {
370 	unsigned int cpu = smp_processor_id();
371 	const struct cpu_operations *ops = get_cpu_ops(cpu);
372 
373 	idle_task_exit();
374 
375 	local_daif_mask();
376 
377 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
378 	(void)cpu_report_death();
379 
380 	/*
381 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
382 	 * mechanism must perform all required cache maintenance to ensure that
383 	 * no dirty lines are lost in the process of shutting down the CPU.
384 	 */
385 	ops->cpu_die(cpu);
386 
387 	BUG();
388 }
389 #endif
390 
391 static void __cpu_try_die(int cpu)
392 {
393 #ifdef CONFIG_HOTPLUG_CPU
394 	const struct cpu_operations *ops = get_cpu_ops(cpu);
395 
396 	if (ops && ops->cpu_die)
397 		ops->cpu_die(cpu);
398 #endif
399 }
400 
401 /*
402  * Kill the calling secondary CPU, early in bringup before it is turned
403  * online.
404  */
405 void cpu_die_early(void)
406 {
407 	int cpu = smp_processor_id();
408 
409 	pr_crit("CPU%d: will not boot\n", cpu);
410 
411 	/* Mark this CPU absent */
412 	set_cpu_present(cpu, 0);
413 
414 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
415 		update_cpu_boot_status(CPU_KILL_ME);
416 		__cpu_try_die(cpu);
417 	}
418 
419 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
420 
421 	cpu_park_loop();
422 }
423 
424 static void __init hyp_mode_check(void)
425 {
426 	if (is_hyp_mode_available())
427 		pr_info("CPU: All CPU(s) started at EL2\n");
428 	else if (is_hyp_mode_mismatched())
429 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
430 			   "CPU: CPUs started in inconsistent modes");
431 	else
432 		pr_info("CPU: All CPU(s) started at EL1\n");
433 	if (IS_ENABLED(CONFIG_KVM_ARM_HOST))
434 		kvm_compute_layout();
435 }
436 
437 void __init smp_cpus_done(unsigned int max_cpus)
438 {
439 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
440 	setup_cpu_features();
441 	hyp_mode_check();
442 	apply_alternatives_all();
443 	mark_linear_text_alias_ro();
444 }
445 
446 void __init smp_prepare_boot_cpu(void)
447 {
448 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
449 	cpuinfo_store_boot_cpu();
450 
451 	/*
452 	 * We now know enough about the boot CPU to apply the
453 	 * alternatives that cannot wait until interrupt handling
454 	 * and/or scheduling is enabled.
455 	 */
456 	apply_boot_alternatives();
457 
458 	/* Conditionally switch to GIC PMR for interrupt masking */
459 	if (system_uses_irq_prio_masking())
460 		init_gic_priority_masking();
461 }
462 
463 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
464 {
465 	const __be32 *cell;
466 	u64 hwid;
467 
468 	/*
469 	 * A cpu node with missing "reg" property is
470 	 * considered invalid to build a cpu_logical_map
471 	 * entry.
472 	 */
473 	cell = of_get_property(dn, "reg", NULL);
474 	if (!cell) {
475 		pr_err("%pOF: missing reg property\n", dn);
476 		return INVALID_HWID;
477 	}
478 
479 	hwid = of_read_number(cell, of_n_addr_cells(dn));
480 	/*
481 	 * Non affinity bits must be set to 0 in the DT
482 	 */
483 	if (hwid & ~MPIDR_HWID_BITMASK) {
484 		pr_err("%pOF: invalid reg property\n", dn);
485 		return INVALID_HWID;
486 	}
487 	return hwid;
488 }
489 
490 /*
491  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
492  * entries and check for duplicates. If any is found just ignore the
493  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
494  * matching valid MPIDR values.
495  */
496 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
497 {
498 	unsigned int i;
499 
500 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
501 		if (cpu_logical_map(i) == hwid)
502 			return true;
503 	return false;
504 }
505 
506 /*
507  * Initialize cpu operations for a logical cpu and
508  * set it in the possible mask on success
509  */
510 static int __init smp_cpu_setup(int cpu)
511 {
512 	const struct cpu_operations *ops;
513 
514 	if (init_cpu_ops(cpu))
515 		return -ENODEV;
516 
517 	ops = get_cpu_ops(cpu);
518 	if (ops->cpu_init(cpu))
519 		return -ENODEV;
520 
521 	set_cpu_possible(cpu, true);
522 
523 	return 0;
524 }
525 
526 static bool bootcpu_valid __initdata;
527 static unsigned int cpu_count = 1;
528 
529 #ifdef CONFIG_ACPI
530 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
531 
532 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
533 {
534 	return &cpu_madt_gicc[cpu];
535 }
536 
537 /*
538  * acpi_map_gic_cpu_interface - parse processor MADT entry
539  *
540  * Carry out sanity checks on MADT processor entry and initialize
541  * cpu_logical_map on success
542  */
543 static void __init
544 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
545 {
546 	u64 hwid = processor->arm_mpidr;
547 
548 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
549 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
550 		return;
551 	}
552 
553 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
554 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
555 		return;
556 	}
557 
558 	if (is_mpidr_duplicate(cpu_count, hwid)) {
559 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
560 		return;
561 	}
562 
563 	/* Check if GICC structure of boot CPU is available in the MADT */
564 	if (cpu_logical_map(0) == hwid) {
565 		if (bootcpu_valid) {
566 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
567 			       hwid);
568 			return;
569 		}
570 		bootcpu_valid = true;
571 		cpu_madt_gicc[0] = *processor;
572 		return;
573 	}
574 
575 	if (cpu_count >= NR_CPUS)
576 		return;
577 
578 	/* map the logical cpu id to cpu MPIDR */
579 	cpu_logical_map(cpu_count) = hwid;
580 
581 	cpu_madt_gicc[cpu_count] = *processor;
582 
583 	/*
584 	 * Set-up the ACPI parking protocol cpu entries
585 	 * while initializing the cpu_logical_map to
586 	 * avoid parsing MADT entries multiple times for
587 	 * nothing (ie a valid cpu_logical_map entry should
588 	 * contain a valid parking protocol data set to
589 	 * initialize the cpu if the parking protocol is
590 	 * the only available enable method).
591 	 */
592 	acpi_set_mailbox_entry(cpu_count, processor);
593 
594 	cpu_count++;
595 }
596 
597 static int __init
598 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
599 			     const unsigned long end)
600 {
601 	struct acpi_madt_generic_interrupt *processor;
602 
603 	processor = (struct acpi_madt_generic_interrupt *)header;
604 	if (BAD_MADT_GICC_ENTRY(processor, end))
605 		return -EINVAL;
606 
607 	acpi_table_print_madt_entry(&header->common);
608 
609 	acpi_map_gic_cpu_interface(processor);
610 
611 	return 0;
612 }
613 
614 static void __init acpi_parse_and_init_cpus(void)
615 {
616 	int i;
617 
618 	/*
619 	 * do a walk of MADT to determine how many CPUs
620 	 * we have including disabled CPUs, and get information
621 	 * we need for SMP init.
622 	 */
623 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
624 				      acpi_parse_gic_cpu_interface, 0);
625 
626 	/*
627 	 * In ACPI, SMP and CPU NUMA information is provided in separate
628 	 * static tables, namely the MADT and the SRAT.
629 	 *
630 	 * Thus, it is simpler to first create the cpu logical map through
631 	 * an MADT walk and then map the logical cpus to their node ids
632 	 * as separate steps.
633 	 */
634 	acpi_map_cpus_to_nodes();
635 
636 	for (i = 0; i < nr_cpu_ids; i++)
637 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
638 }
639 #else
640 #define acpi_parse_and_init_cpus(...)	do { } while (0)
641 #endif
642 
643 /*
644  * Enumerate the possible CPU set from the device tree and build the
645  * cpu logical map array containing MPIDR values related to logical
646  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
647  */
648 static void __init of_parse_and_init_cpus(void)
649 {
650 	struct device_node *dn;
651 
652 	for_each_of_cpu_node(dn) {
653 		u64 hwid = of_get_cpu_mpidr(dn);
654 
655 		if (hwid == INVALID_HWID)
656 			goto next;
657 
658 		if (is_mpidr_duplicate(cpu_count, hwid)) {
659 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
660 				dn);
661 			goto next;
662 		}
663 
664 		/*
665 		 * The numbering scheme requires that the boot CPU
666 		 * must be assigned logical id 0. Record it so that
667 		 * the logical map built from DT is validated and can
668 		 * be used.
669 		 */
670 		if (hwid == cpu_logical_map(0)) {
671 			if (bootcpu_valid) {
672 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
673 					dn);
674 				goto next;
675 			}
676 
677 			bootcpu_valid = true;
678 			early_map_cpu_to_node(0, of_node_to_nid(dn));
679 
680 			/*
681 			 * cpu_logical_map has already been
682 			 * initialized and the boot cpu doesn't need
683 			 * the enable-method so continue without
684 			 * incrementing cpu.
685 			 */
686 			continue;
687 		}
688 
689 		if (cpu_count >= NR_CPUS)
690 			goto next;
691 
692 		pr_debug("cpu logical map 0x%llx\n", hwid);
693 		cpu_logical_map(cpu_count) = hwid;
694 
695 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
696 next:
697 		cpu_count++;
698 	}
699 }
700 
701 /*
702  * Enumerate the possible CPU set from the device tree or ACPI and build the
703  * cpu logical map array containing MPIDR values related to logical
704  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
705  */
706 void __init smp_init_cpus(void)
707 {
708 	int i;
709 
710 	if (acpi_disabled)
711 		of_parse_and_init_cpus();
712 	else
713 		acpi_parse_and_init_cpus();
714 
715 	if (cpu_count > nr_cpu_ids)
716 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
717 			cpu_count, nr_cpu_ids);
718 
719 	if (!bootcpu_valid) {
720 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
721 		return;
722 	}
723 
724 	/*
725 	 * We need to set the cpu_logical_map entries before enabling
726 	 * the cpus so that cpu processor description entries (DT cpu nodes
727 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
728 	 * with entries in cpu_logical_map while initializing the cpus.
729 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
730 	 */
731 	for (i = 1; i < nr_cpu_ids; i++) {
732 		if (cpu_logical_map(i) != INVALID_HWID) {
733 			if (smp_cpu_setup(i))
734 				cpu_logical_map(i) = INVALID_HWID;
735 		}
736 	}
737 }
738 
739 void __init smp_prepare_cpus(unsigned int max_cpus)
740 {
741 	const struct cpu_operations *ops;
742 	int err;
743 	unsigned int cpu;
744 	unsigned int this_cpu;
745 
746 	init_cpu_topology();
747 
748 	this_cpu = smp_processor_id();
749 	store_cpu_topology(this_cpu);
750 	numa_store_cpu_info(this_cpu);
751 	numa_add_cpu(this_cpu);
752 
753 	/*
754 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
755 	 * secondary CPUs present.
756 	 */
757 	if (max_cpus == 0)
758 		return;
759 
760 	/*
761 	 * Initialise the present map (which describes the set of CPUs
762 	 * actually populated at the present time) and release the
763 	 * secondaries from the bootloader.
764 	 */
765 	for_each_possible_cpu(cpu) {
766 
767 		per_cpu(cpu_number, cpu) = cpu;
768 
769 		if (cpu == smp_processor_id())
770 			continue;
771 
772 		ops = get_cpu_ops(cpu);
773 		if (!ops)
774 			continue;
775 
776 		err = ops->cpu_prepare(cpu);
777 		if (err)
778 			continue;
779 
780 		set_cpu_present(cpu, true);
781 		numa_store_cpu_info(cpu);
782 	}
783 }
784 
785 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
786 
787 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
788 {
789 	__smp_cross_call = fn;
790 }
791 
792 static const char *ipi_types[NR_IPI] __tracepoint_string = {
793 #define S(x,s)	[x] = s
794 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
795 	S(IPI_CALL_FUNC, "Function call interrupts"),
796 	S(IPI_CPU_STOP, "CPU stop interrupts"),
797 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
798 	S(IPI_TIMER, "Timer broadcast interrupts"),
799 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
800 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
801 };
802 
803 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
804 {
805 	trace_ipi_raise(target, ipi_types[ipinr]);
806 	__smp_cross_call(target, ipinr);
807 }
808 
809 void show_ipi_list(struct seq_file *p, int prec)
810 {
811 	unsigned int cpu, i;
812 
813 	for (i = 0; i < NR_IPI; i++) {
814 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
815 			   prec >= 4 ? " " : "");
816 		for_each_online_cpu(cpu)
817 			seq_printf(p, "%10u ",
818 				   __get_irq_stat(cpu, ipi_irqs[i]));
819 		seq_printf(p, "      %s\n", ipi_types[i]);
820 	}
821 }
822 
823 u64 smp_irq_stat_cpu(unsigned int cpu)
824 {
825 	u64 sum = 0;
826 	int i;
827 
828 	for (i = 0; i < NR_IPI; i++)
829 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
830 
831 	return sum;
832 }
833 
834 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
835 {
836 	smp_cross_call(mask, IPI_CALL_FUNC);
837 }
838 
839 void arch_send_call_function_single_ipi(int cpu)
840 {
841 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
842 }
843 
844 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
845 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
846 {
847 	smp_cross_call(mask, IPI_WAKEUP);
848 }
849 #endif
850 
851 #ifdef CONFIG_IRQ_WORK
852 void arch_irq_work_raise(void)
853 {
854 	if (__smp_cross_call)
855 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
856 }
857 #endif
858 
859 static void local_cpu_stop(void)
860 {
861 	set_cpu_online(smp_processor_id(), false);
862 
863 	local_daif_mask();
864 	sdei_mask_local_cpu();
865 	cpu_park_loop();
866 }
867 
868 /*
869  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
870  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
871  * CPUs that have already stopped themselves.
872  */
873 void panic_smp_self_stop(void)
874 {
875 	local_cpu_stop();
876 }
877 
878 #ifdef CONFIG_KEXEC_CORE
879 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
880 #endif
881 
882 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
883 {
884 #ifdef CONFIG_KEXEC_CORE
885 	crash_save_cpu(regs, cpu);
886 
887 	atomic_dec(&waiting_for_crash_ipi);
888 
889 	local_irq_disable();
890 	sdei_mask_local_cpu();
891 
892 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
893 		__cpu_try_die(cpu);
894 
895 	/* just in case */
896 	cpu_park_loop();
897 #endif
898 }
899 
900 /*
901  * Main handler for inter-processor interrupts
902  */
903 void handle_IPI(int ipinr, struct pt_regs *regs)
904 {
905 	unsigned int cpu = smp_processor_id();
906 	struct pt_regs *old_regs = set_irq_regs(regs);
907 
908 	if ((unsigned)ipinr < NR_IPI) {
909 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
910 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
911 	}
912 
913 	switch (ipinr) {
914 	case IPI_RESCHEDULE:
915 		scheduler_ipi();
916 		break;
917 
918 	case IPI_CALL_FUNC:
919 		irq_enter();
920 		generic_smp_call_function_interrupt();
921 		irq_exit();
922 		break;
923 
924 	case IPI_CPU_STOP:
925 		irq_enter();
926 		local_cpu_stop();
927 		irq_exit();
928 		break;
929 
930 	case IPI_CPU_CRASH_STOP:
931 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
932 			irq_enter();
933 			ipi_cpu_crash_stop(cpu, regs);
934 
935 			unreachable();
936 		}
937 		break;
938 
939 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
940 	case IPI_TIMER:
941 		irq_enter();
942 		tick_receive_broadcast();
943 		irq_exit();
944 		break;
945 #endif
946 
947 #ifdef CONFIG_IRQ_WORK
948 	case IPI_IRQ_WORK:
949 		irq_enter();
950 		irq_work_run();
951 		irq_exit();
952 		break;
953 #endif
954 
955 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
956 	case IPI_WAKEUP:
957 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
958 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
959 			  cpu);
960 		break;
961 #endif
962 
963 	default:
964 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
965 		break;
966 	}
967 
968 	if ((unsigned)ipinr < NR_IPI)
969 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
970 	set_irq_regs(old_regs);
971 }
972 
973 void smp_send_reschedule(int cpu)
974 {
975 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
976 }
977 
978 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
979 void tick_broadcast(const struct cpumask *mask)
980 {
981 	smp_cross_call(mask, IPI_TIMER);
982 }
983 #endif
984 
985 /*
986  * The number of CPUs online, not counting this CPU (which may not be
987  * fully online and so not counted in num_online_cpus()).
988  */
989 static inline unsigned int num_other_online_cpus(void)
990 {
991 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
992 
993 	return num_online_cpus() - this_cpu_online;
994 }
995 
996 void smp_send_stop(void)
997 {
998 	unsigned long timeout;
999 
1000 	if (num_other_online_cpus()) {
1001 		cpumask_t mask;
1002 
1003 		cpumask_copy(&mask, cpu_online_mask);
1004 		cpumask_clear_cpu(smp_processor_id(), &mask);
1005 
1006 		if (system_state <= SYSTEM_RUNNING)
1007 			pr_crit("SMP: stopping secondary CPUs\n");
1008 		smp_cross_call(&mask, IPI_CPU_STOP);
1009 	}
1010 
1011 	/* Wait up to one second for other CPUs to stop */
1012 	timeout = USEC_PER_SEC;
1013 	while (num_other_online_cpus() && timeout--)
1014 		udelay(1);
1015 
1016 	if (num_other_online_cpus())
1017 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1018 			cpumask_pr_args(cpu_online_mask));
1019 
1020 	sdei_mask_local_cpu();
1021 }
1022 
1023 #ifdef CONFIG_KEXEC_CORE
1024 void crash_smp_send_stop(void)
1025 {
1026 	static int cpus_stopped;
1027 	cpumask_t mask;
1028 	unsigned long timeout;
1029 
1030 	/*
1031 	 * This function can be called twice in panic path, but obviously
1032 	 * we execute this only once.
1033 	 */
1034 	if (cpus_stopped)
1035 		return;
1036 
1037 	cpus_stopped = 1;
1038 
1039 	/*
1040 	 * If this cpu is the only one alive at this point in time, online or
1041 	 * not, there are no stop messages to be sent around, so just back out.
1042 	 */
1043 	if (num_other_online_cpus() == 0) {
1044 		sdei_mask_local_cpu();
1045 		return;
1046 	}
1047 
1048 	cpumask_copy(&mask, cpu_online_mask);
1049 	cpumask_clear_cpu(smp_processor_id(), &mask);
1050 
1051 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1052 
1053 	pr_crit("SMP: stopping secondary CPUs\n");
1054 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1055 
1056 	/* Wait up to one second for other CPUs to stop */
1057 	timeout = USEC_PER_SEC;
1058 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1059 		udelay(1);
1060 
1061 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1062 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1063 			cpumask_pr_args(&mask));
1064 
1065 	sdei_mask_local_cpu();
1066 }
1067 
1068 bool smp_crash_stop_failed(void)
1069 {
1070 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1071 }
1072 #endif
1073 
1074 /*
1075  * not supported here
1076  */
1077 int setup_profiling_timer(unsigned int multiplier)
1078 {
1079 	return -EINVAL;
1080 }
1081 
1082 static bool have_cpu_die(void)
1083 {
1084 #ifdef CONFIG_HOTPLUG_CPU
1085 	int any_cpu = raw_smp_processor_id();
1086 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1087 
1088 	if (ops && ops->cpu_die)
1089 		return true;
1090 #endif
1091 	return false;
1092 }
1093 
1094 bool cpus_are_stuck_in_kernel(void)
1095 {
1096 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1097 
1098 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1099 }
1100