1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/delay.h> 21 #include <linux/init.h> 22 #include <linux/spinlock.h> 23 #include <linux/sched.h> 24 #include <linux/interrupt.h> 25 #include <linux/cache.h> 26 #include <linux/profile.h> 27 #include <linux/errno.h> 28 #include <linux/mm.h> 29 #include <linux/err.h> 30 #include <linux/cpu.h> 31 #include <linux/smp.h> 32 #include <linux/seq_file.h> 33 #include <linux/irq.h> 34 #include <linux/percpu.h> 35 #include <linux/clockchips.h> 36 #include <linux/completion.h> 37 #include <linux/of.h> 38 39 #include <asm/atomic.h> 40 #include <asm/cacheflush.h> 41 #include <asm/cputype.h> 42 #include <asm/mmu_context.h> 43 #include <asm/pgtable.h> 44 #include <asm/pgalloc.h> 45 #include <asm/processor.h> 46 #include <asm/sections.h> 47 #include <asm/tlbflush.h> 48 #include <asm/ptrace.h> 49 50 /* 51 * as from 2.5, kernels no longer have an init_tasks structure 52 * so we need some other way of telling a new secondary core 53 * where to place its SVC stack 54 */ 55 struct secondary_data secondary_data; 56 volatile unsigned long secondary_holding_pen_release = -1; 57 58 enum ipi_msg_type { 59 IPI_RESCHEDULE, 60 IPI_CALL_FUNC, 61 IPI_CALL_FUNC_SINGLE, 62 IPI_CPU_STOP, 63 }; 64 65 static DEFINE_RAW_SPINLOCK(boot_lock); 66 67 /* 68 * Write secondary_holding_pen_release in a way that is guaranteed to be 69 * visible to all observers, irrespective of whether they're taking part 70 * in coherency or not. This is necessary for the hotplug code to work 71 * reliably. 72 */ 73 static void __cpuinit write_pen_release(int val) 74 { 75 void *start = (void *)&secondary_holding_pen_release; 76 unsigned long size = sizeof(secondary_holding_pen_release); 77 78 secondary_holding_pen_release = val; 79 __flush_dcache_area(start, size); 80 } 81 82 /* 83 * Boot a secondary CPU, and assign it the specified idle task. 84 * This also gives us the initial stack to use for this CPU. 85 */ 86 static int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) 87 { 88 unsigned long timeout; 89 90 /* 91 * Set synchronisation state between this boot processor 92 * and the secondary one 93 */ 94 raw_spin_lock(&boot_lock); 95 96 /* 97 * Update the pen release flag. 98 */ 99 write_pen_release(cpu); 100 101 /* 102 * Send an event, causing the secondaries to read pen_release. 103 */ 104 sev(); 105 106 timeout = jiffies + (1 * HZ); 107 while (time_before(jiffies, timeout)) { 108 if (secondary_holding_pen_release == -1UL) 109 break; 110 udelay(10); 111 } 112 113 /* 114 * Now the secondary core is starting up let it run its 115 * calibrations, then wait for it to finish 116 */ 117 raw_spin_unlock(&boot_lock); 118 119 return secondary_holding_pen_release != -1 ? -ENOSYS : 0; 120 } 121 122 static DECLARE_COMPLETION(cpu_running); 123 124 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle) 125 { 126 int ret; 127 128 /* 129 * We need to tell the secondary core where to find its stack and the 130 * page tables. 131 */ 132 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 133 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 134 135 /* 136 * Now bring the CPU into our world. 137 */ 138 ret = boot_secondary(cpu, idle); 139 if (ret == 0) { 140 /* 141 * CPU was successfully started, wait for it to come online or 142 * time out. 143 */ 144 wait_for_completion_timeout(&cpu_running, 145 msecs_to_jiffies(1000)); 146 147 if (!cpu_online(cpu)) { 148 pr_crit("CPU%u: failed to come online\n", cpu); 149 ret = -EIO; 150 } 151 } else { 152 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 153 } 154 155 secondary_data.stack = NULL; 156 157 return ret; 158 } 159 160 /* 161 * This is the secondary CPU boot entry. We're using this CPUs 162 * idle thread stack, but a set of temporary page tables. 163 */ 164 asmlinkage void __cpuinit secondary_start_kernel(void) 165 { 166 struct mm_struct *mm = &init_mm; 167 unsigned int cpu = smp_processor_id(); 168 169 printk("CPU%u: Booted secondary processor\n", cpu); 170 171 /* 172 * All kernel threads share the same mm context; grab a 173 * reference and switch to it. 174 */ 175 atomic_inc(&mm->mm_count); 176 current->active_mm = mm; 177 cpumask_set_cpu(cpu, mm_cpumask(mm)); 178 179 /* 180 * TTBR0 is only used for the identity mapping at this stage. Make it 181 * point to zero page to avoid speculatively fetching new entries. 182 */ 183 cpu_set_reserved_ttbr0(); 184 flush_tlb_all(); 185 186 preempt_disable(); 187 trace_hardirqs_off(); 188 189 /* 190 * Let the primary processor know we're out of the 191 * pen, then head off into the C entry point 192 */ 193 write_pen_release(-1); 194 195 /* 196 * Synchronise with the boot thread. 197 */ 198 raw_spin_lock(&boot_lock); 199 raw_spin_unlock(&boot_lock); 200 201 /* 202 * Enable local interrupts. 203 */ 204 notify_cpu_starting(cpu); 205 local_irq_enable(); 206 local_fiq_enable(); 207 208 /* 209 * OK, now it's safe to let the boot CPU continue. Wait for 210 * the CPU migration code to notice that the CPU is online 211 * before we continue. 212 */ 213 set_cpu_online(cpu, true); 214 complete(&cpu_running); 215 216 /* 217 * OK, it's off to the idle thread for us 218 */ 219 cpu_idle(); 220 } 221 222 void __init smp_cpus_done(unsigned int max_cpus) 223 { 224 unsigned long bogosum = loops_per_jiffy * num_online_cpus(); 225 226 pr_info("SMP: Total of %d processors activated (%lu.%02lu BogoMIPS).\n", 227 num_online_cpus(), bogosum / (500000/HZ), 228 (bogosum / (5000/HZ)) % 100); 229 } 230 231 void __init smp_prepare_boot_cpu(void) 232 { 233 } 234 235 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 236 237 static const struct smp_enable_ops *enable_ops[] __initconst = { 238 &smp_spin_table_ops, 239 &smp_psci_ops, 240 NULL, 241 }; 242 243 static const struct smp_enable_ops *smp_enable_ops[NR_CPUS]; 244 245 static const struct smp_enable_ops * __init smp_get_enable_ops(const char *name) 246 { 247 const struct smp_enable_ops *ops = enable_ops[0]; 248 249 while (ops) { 250 if (!strcmp(name, ops->name)) 251 return ops; 252 253 ops++; 254 } 255 256 return NULL; 257 } 258 259 /* 260 * Enumerate the possible CPU set from the device tree. 261 */ 262 void __init smp_init_cpus(void) 263 { 264 const char *enable_method; 265 struct device_node *dn = NULL; 266 int cpu = 0; 267 268 while ((dn = of_find_node_by_type(dn, "cpu"))) { 269 if (cpu >= NR_CPUS) 270 goto next; 271 272 /* 273 * We currently support only the "spin-table" enable-method. 274 */ 275 enable_method = of_get_property(dn, "enable-method", NULL); 276 if (!enable_method) { 277 pr_err("CPU %d: missing enable-method property\n", cpu); 278 goto next; 279 } 280 281 smp_enable_ops[cpu] = smp_get_enable_ops(enable_method); 282 283 if (!smp_enable_ops[cpu]) { 284 pr_err("CPU %d: invalid enable-method property: %s\n", 285 cpu, enable_method); 286 goto next; 287 } 288 289 if (smp_enable_ops[cpu]->init_cpu(dn, cpu)) 290 goto next; 291 292 set_cpu_possible(cpu, true); 293 next: 294 cpu++; 295 } 296 297 /* sanity check */ 298 if (cpu > NR_CPUS) 299 pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n", 300 cpu, NR_CPUS); 301 } 302 303 void __init smp_prepare_cpus(unsigned int max_cpus) 304 { 305 int cpu, err; 306 unsigned int ncores = num_possible_cpus(); 307 308 /* 309 * are we trying to boot more cores than exist? 310 */ 311 if (max_cpus > ncores) 312 max_cpus = ncores; 313 314 /* Don't bother if we're effectively UP */ 315 if (max_cpus <= 1) 316 return; 317 318 /* 319 * Initialise the present map (which describes the set of CPUs 320 * actually populated at the present time) and release the 321 * secondaries from the bootloader. 322 * 323 * Make sure we online at most (max_cpus - 1) additional CPUs. 324 */ 325 max_cpus--; 326 for_each_possible_cpu(cpu) { 327 if (max_cpus == 0) 328 break; 329 330 if (cpu == smp_processor_id()) 331 continue; 332 333 if (!smp_enable_ops[cpu]) 334 continue; 335 336 err = smp_enable_ops[cpu]->prepare_cpu(cpu); 337 if (err) 338 continue; 339 340 set_cpu_present(cpu, true); 341 max_cpus--; 342 } 343 } 344 345 346 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 347 { 348 smp_cross_call = fn; 349 } 350 351 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 352 { 353 smp_cross_call(mask, IPI_CALL_FUNC); 354 } 355 356 void arch_send_call_function_single_ipi(int cpu) 357 { 358 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 359 } 360 361 static const char *ipi_types[NR_IPI] = { 362 #define S(x,s) [x - IPI_RESCHEDULE] = s 363 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 364 S(IPI_CALL_FUNC, "Function call interrupts"), 365 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 366 S(IPI_CPU_STOP, "CPU stop interrupts"), 367 }; 368 369 void show_ipi_list(struct seq_file *p, int prec) 370 { 371 unsigned int cpu, i; 372 373 for (i = 0; i < NR_IPI; i++) { 374 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i + IPI_RESCHEDULE, 375 prec >= 4 ? " " : ""); 376 for_each_present_cpu(cpu) 377 seq_printf(p, "%10u ", 378 __get_irq_stat(cpu, ipi_irqs[i])); 379 seq_printf(p, " %s\n", ipi_types[i]); 380 } 381 } 382 383 u64 smp_irq_stat_cpu(unsigned int cpu) 384 { 385 u64 sum = 0; 386 int i; 387 388 for (i = 0; i < NR_IPI; i++) 389 sum += __get_irq_stat(cpu, ipi_irqs[i]); 390 391 return sum; 392 } 393 394 static DEFINE_RAW_SPINLOCK(stop_lock); 395 396 /* 397 * ipi_cpu_stop - handle IPI from smp_send_stop() 398 */ 399 static void ipi_cpu_stop(unsigned int cpu) 400 { 401 if (system_state == SYSTEM_BOOTING || 402 system_state == SYSTEM_RUNNING) { 403 raw_spin_lock(&stop_lock); 404 pr_crit("CPU%u: stopping\n", cpu); 405 dump_stack(); 406 raw_spin_unlock(&stop_lock); 407 } 408 409 set_cpu_online(cpu, false); 410 411 local_fiq_disable(); 412 local_irq_disable(); 413 414 while (1) 415 cpu_relax(); 416 } 417 418 /* 419 * Main handler for inter-processor interrupts 420 */ 421 void handle_IPI(int ipinr, struct pt_regs *regs) 422 { 423 unsigned int cpu = smp_processor_id(); 424 struct pt_regs *old_regs = set_irq_regs(regs); 425 426 if (ipinr >= IPI_RESCHEDULE && ipinr < IPI_RESCHEDULE + NR_IPI) 427 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_RESCHEDULE]); 428 429 switch (ipinr) { 430 case IPI_RESCHEDULE: 431 scheduler_ipi(); 432 break; 433 434 case IPI_CALL_FUNC: 435 irq_enter(); 436 generic_smp_call_function_interrupt(); 437 irq_exit(); 438 break; 439 440 case IPI_CALL_FUNC_SINGLE: 441 irq_enter(); 442 generic_smp_call_function_single_interrupt(); 443 irq_exit(); 444 break; 445 446 case IPI_CPU_STOP: 447 irq_enter(); 448 ipi_cpu_stop(cpu); 449 irq_exit(); 450 break; 451 452 default: 453 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 454 break; 455 } 456 set_irq_regs(old_regs); 457 } 458 459 void smp_send_reschedule(int cpu) 460 { 461 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 462 } 463 464 void smp_send_stop(void) 465 { 466 unsigned long timeout; 467 468 if (num_online_cpus() > 1) { 469 cpumask_t mask; 470 471 cpumask_copy(&mask, cpu_online_mask); 472 cpu_clear(smp_processor_id(), mask); 473 474 smp_cross_call(&mask, IPI_CPU_STOP); 475 } 476 477 /* Wait up to one second for other CPUs to stop */ 478 timeout = USEC_PER_SEC; 479 while (num_online_cpus() > 1 && timeout--) 480 udelay(1); 481 482 if (num_online_cpus() > 1) 483 pr_warning("SMP: failed to stop secondary CPUs\n"); 484 } 485 486 /* 487 * not supported here 488 */ 489 int setup_profiling_timer(unsigned int multiplier) 490 { 491 return -EINVAL; 492 } 493