xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 9b9c2cd4)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40 
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/processor.h>
51 #include <asm/smp_plat.h>
52 #include <asm/sections.h>
53 #include <asm/tlbflush.h>
54 #include <asm/ptrace.h>
55 #include <asm/virt.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ipi.h>
59 
60 /*
61  * as from 2.5, kernels no longer have an init_tasks structure
62  * so we need some other way of telling a new secondary core
63  * where to place its SVC stack
64  */
65 struct secondary_data secondary_data;
66 
67 enum ipi_msg_type {
68 	IPI_RESCHEDULE,
69 	IPI_CALL_FUNC,
70 	IPI_CPU_STOP,
71 	IPI_TIMER,
72 	IPI_IRQ_WORK,
73 };
74 
75 /*
76  * Boot a secondary CPU, and assign it the specified idle task.
77  * This also gives us the initial stack to use for this CPU.
78  */
79 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
80 {
81 	if (cpu_ops[cpu]->cpu_boot)
82 		return cpu_ops[cpu]->cpu_boot(cpu);
83 
84 	return -EOPNOTSUPP;
85 }
86 
87 static DECLARE_COMPLETION(cpu_running);
88 
89 int __cpu_up(unsigned int cpu, struct task_struct *idle)
90 {
91 	int ret;
92 
93 	/*
94 	 * We need to tell the secondary core where to find its stack and the
95 	 * page tables.
96 	 */
97 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
98 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
99 
100 	/*
101 	 * Now bring the CPU into our world.
102 	 */
103 	ret = boot_secondary(cpu, idle);
104 	if (ret == 0) {
105 		/*
106 		 * CPU was successfully started, wait for it to come online or
107 		 * time out.
108 		 */
109 		wait_for_completion_timeout(&cpu_running,
110 					    msecs_to_jiffies(1000));
111 
112 		if (!cpu_online(cpu)) {
113 			pr_crit("CPU%u: failed to come online\n", cpu);
114 			ret = -EIO;
115 		}
116 	} else {
117 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
118 	}
119 
120 	secondary_data.stack = NULL;
121 
122 	return ret;
123 }
124 
125 static void smp_store_cpu_info(unsigned int cpuid)
126 {
127 	store_cpu_topology(cpuid);
128 }
129 
130 /*
131  * This is the secondary CPU boot entry.  We're using this CPUs
132  * idle thread stack, but a set of temporary page tables.
133  */
134 asmlinkage void secondary_start_kernel(void)
135 {
136 	struct mm_struct *mm = &init_mm;
137 	unsigned int cpu = smp_processor_id();
138 
139 	/*
140 	 * All kernel threads share the same mm context; grab a
141 	 * reference and switch to it.
142 	 */
143 	atomic_inc(&mm->mm_count);
144 	current->active_mm = mm;
145 
146 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
147 
148 	/*
149 	 * TTBR0 is only used for the identity mapping at this stage. Make it
150 	 * point to zero page to avoid speculatively fetching new entries.
151 	 */
152 	cpu_set_reserved_ttbr0();
153 	local_flush_tlb_all();
154 	cpu_set_default_tcr_t0sz();
155 
156 	preempt_disable();
157 	trace_hardirqs_off();
158 
159 	/*
160 	 * If the system has established the capabilities, make sure
161 	 * this CPU ticks all of those. If it doesn't, the CPU will
162 	 * fail to come online.
163 	 */
164 	verify_local_cpu_capabilities();
165 
166 	if (cpu_ops[cpu]->cpu_postboot)
167 		cpu_ops[cpu]->cpu_postboot();
168 
169 	/*
170 	 * Log the CPU info before it is marked online and might get read.
171 	 */
172 	cpuinfo_store_cpu();
173 
174 	/*
175 	 * Enable GIC and timers.
176 	 */
177 	notify_cpu_starting(cpu);
178 
179 	smp_store_cpu_info(cpu);
180 
181 	/*
182 	 * OK, now it's safe to let the boot CPU continue.  Wait for
183 	 * the CPU migration code to notice that the CPU is online
184 	 * before we continue.
185 	 */
186 	pr_info("CPU%u: Booted secondary processor [%08x]\n",
187 					 cpu, read_cpuid_id());
188 	set_cpu_online(cpu, true);
189 	complete(&cpu_running);
190 
191 	local_dbg_enable();
192 	local_irq_enable();
193 	local_async_enable();
194 
195 	/*
196 	 * OK, it's off to the idle thread for us
197 	 */
198 	cpu_startup_entry(CPUHP_ONLINE);
199 }
200 
201 #ifdef CONFIG_HOTPLUG_CPU
202 static int op_cpu_disable(unsigned int cpu)
203 {
204 	/*
205 	 * If we don't have a cpu_die method, abort before we reach the point
206 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
207 	 */
208 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
209 		return -EOPNOTSUPP;
210 
211 	/*
212 	 * We may need to abort a hot unplug for some other mechanism-specific
213 	 * reason.
214 	 */
215 	if (cpu_ops[cpu]->cpu_disable)
216 		return cpu_ops[cpu]->cpu_disable(cpu);
217 
218 	return 0;
219 }
220 
221 /*
222  * __cpu_disable runs on the processor to be shutdown.
223  */
224 int __cpu_disable(void)
225 {
226 	unsigned int cpu = smp_processor_id();
227 	int ret;
228 
229 	ret = op_cpu_disable(cpu);
230 	if (ret)
231 		return ret;
232 
233 	/*
234 	 * Take this CPU offline.  Once we clear this, we can't return,
235 	 * and we must not schedule until we're ready to give up the cpu.
236 	 */
237 	set_cpu_online(cpu, false);
238 
239 	/*
240 	 * OK - migrate IRQs away from this CPU
241 	 */
242 	irq_migrate_all_off_this_cpu();
243 
244 	return 0;
245 }
246 
247 static int op_cpu_kill(unsigned int cpu)
248 {
249 	/*
250 	 * If we have no means of synchronising with the dying CPU, then assume
251 	 * that it is really dead. We can only wait for an arbitrary length of
252 	 * time and hope that it's dead, so let's skip the wait and just hope.
253 	 */
254 	if (!cpu_ops[cpu]->cpu_kill)
255 		return 0;
256 
257 	return cpu_ops[cpu]->cpu_kill(cpu);
258 }
259 
260 /*
261  * called on the thread which is asking for a CPU to be shutdown -
262  * waits until shutdown has completed, or it is timed out.
263  */
264 void __cpu_die(unsigned int cpu)
265 {
266 	int err;
267 
268 	if (!cpu_wait_death(cpu, 5)) {
269 		pr_crit("CPU%u: cpu didn't die\n", cpu);
270 		return;
271 	}
272 	pr_notice("CPU%u: shutdown\n", cpu);
273 
274 	/*
275 	 * Now that the dying CPU is beyond the point of no return w.r.t.
276 	 * in-kernel synchronisation, try to get the firwmare to help us to
277 	 * verify that it has really left the kernel before we consider
278 	 * clobbering anything it might still be using.
279 	 */
280 	err = op_cpu_kill(cpu);
281 	if (err)
282 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
283 			cpu, err);
284 }
285 
286 /*
287  * Called from the idle thread for the CPU which has been shutdown.
288  *
289  * Note that we disable IRQs here, but do not re-enable them
290  * before returning to the caller. This is also the behaviour
291  * of the other hotplug-cpu capable cores, so presumably coming
292  * out of idle fixes this.
293  */
294 void cpu_die(void)
295 {
296 	unsigned int cpu = smp_processor_id();
297 
298 	idle_task_exit();
299 
300 	local_irq_disable();
301 
302 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
303 	(void)cpu_report_death();
304 
305 	/*
306 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
307 	 * mechanism must perform all required cache maintenance to ensure that
308 	 * no dirty lines are lost in the process of shutting down the CPU.
309 	 */
310 	cpu_ops[cpu]->cpu_die(cpu);
311 
312 	BUG();
313 }
314 #endif
315 
316 static void __init hyp_mode_check(void)
317 {
318 	if (is_hyp_mode_available())
319 		pr_info("CPU: All CPU(s) started at EL2\n");
320 	else if (is_hyp_mode_mismatched())
321 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
322 			   "CPU: CPUs started in inconsistent modes");
323 	else
324 		pr_info("CPU: All CPU(s) started at EL1\n");
325 }
326 
327 void __init smp_cpus_done(unsigned int max_cpus)
328 {
329 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
330 	setup_cpu_features();
331 	hyp_mode_check();
332 	apply_alternatives_all();
333 }
334 
335 void __init smp_prepare_boot_cpu(void)
336 {
337 	cpuinfo_store_boot_cpu();
338 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
339 }
340 
341 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
342 {
343 	const __be32 *cell;
344 	u64 hwid;
345 
346 	/*
347 	 * A cpu node with missing "reg" property is
348 	 * considered invalid to build a cpu_logical_map
349 	 * entry.
350 	 */
351 	cell = of_get_property(dn, "reg", NULL);
352 	if (!cell) {
353 		pr_err("%s: missing reg property\n", dn->full_name);
354 		return INVALID_HWID;
355 	}
356 
357 	hwid = of_read_number(cell, of_n_addr_cells(dn));
358 	/*
359 	 * Non affinity bits must be set to 0 in the DT
360 	 */
361 	if (hwid & ~MPIDR_HWID_BITMASK) {
362 		pr_err("%s: invalid reg property\n", dn->full_name);
363 		return INVALID_HWID;
364 	}
365 	return hwid;
366 }
367 
368 /*
369  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
370  * entries and check for duplicates. If any is found just ignore the
371  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
372  * matching valid MPIDR values.
373  */
374 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
375 {
376 	unsigned int i;
377 
378 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
379 		if (cpu_logical_map(i) == hwid)
380 			return true;
381 	return false;
382 }
383 
384 /*
385  * Initialize cpu operations for a logical cpu and
386  * set it in the possible mask on success
387  */
388 static int __init smp_cpu_setup(int cpu)
389 {
390 	if (cpu_read_ops(cpu))
391 		return -ENODEV;
392 
393 	if (cpu_ops[cpu]->cpu_init(cpu))
394 		return -ENODEV;
395 
396 	set_cpu_possible(cpu, true);
397 
398 	return 0;
399 }
400 
401 static bool bootcpu_valid __initdata;
402 static unsigned int cpu_count = 1;
403 
404 #ifdef CONFIG_ACPI
405 /*
406  * acpi_map_gic_cpu_interface - parse processor MADT entry
407  *
408  * Carry out sanity checks on MADT processor entry and initialize
409  * cpu_logical_map on success
410  */
411 static void __init
412 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
413 {
414 	u64 hwid = processor->arm_mpidr;
415 
416 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
417 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
418 		return;
419 	}
420 
421 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
422 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
423 		return;
424 	}
425 
426 	if (is_mpidr_duplicate(cpu_count, hwid)) {
427 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
428 		return;
429 	}
430 
431 	/* Check if GICC structure of boot CPU is available in the MADT */
432 	if (cpu_logical_map(0) == hwid) {
433 		if (bootcpu_valid) {
434 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
435 			       hwid);
436 			return;
437 		}
438 		bootcpu_valid = true;
439 		return;
440 	}
441 
442 	if (cpu_count >= NR_CPUS)
443 		return;
444 
445 	/* map the logical cpu id to cpu MPIDR */
446 	cpu_logical_map(cpu_count) = hwid;
447 
448 	cpu_count++;
449 }
450 
451 static int __init
452 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
453 			     const unsigned long end)
454 {
455 	struct acpi_madt_generic_interrupt *processor;
456 
457 	processor = (struct acpi_madt_generic_interrupt *)header;
458 	if (BAD_MADT_GICC_ENTRY(processor, end))
459 		return -EINVAL;
460 
461 	acpi_table_print_madt_entry(header);
462 
463 	acpi_map_gic_cpu_interface(processor);
464 
465 	return 0;
466 }
467 #else
468 #define acpi_table_parse_madt(...)	do { } while (0)
469 #endif
470 
471 /*
472  * Enumerate the possible CPU set from the device tree and build the
473  * cpu logical map array containing MPIDR values related to logical
474  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
475  */
476 static void __init of_parse_and_init_cpus(void)
477 {
478 	struct device_node *dn = NULL;
479 
480 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
481 		u64 hwid = of_get_cpu_mpidr(dn);
482 
483 		if (hwid == INVALID_HWID)
484 			goto next;
485 
486 		if (is_mpidr_duplicate(cpu_count, hwid)) {
487 			pr_err("%s: duplicate cpu reg properties in the DT\n",
488 				dn->full_name);
489 			goto next;
490 		}
491 
492 		/*
493 		 * The numbering scheme requires that the boot CPU
494 		 * must be assigned logical id 0. Record it so that
495 		 * the logical map built from DT is validated and can
496 		 * be used.
497 		 */
498 		if (hwid == cpu_logical_map(0)) {
499 			if (bootcpu_valid) {
500 				pr_err("%s: duplicate boot cpu reg property in DT\n",
501 					dn->full_name);
502 				goto next;
503 			}
504 
505 			bootcpu_valid = true;
506 
507 			/*
508 			 * cpu_logical_map has already been
509 			 * initialized and the boot cpu doesn't need
510 			 * the enable-method so continue without
511 			 * incrementing cpu.
512 			 */
513 			continue;
514 		}
515 
516 		if (cpu_count >= NR_CPUS)
517 			goto next;
518 
519 		pr_debug("cpu logical map 0x%llx\n", hwid);
520 		cpu_logical_map(cpu_count) = hwid;
521 next:
522 		cpu_count++;
523 	}
524 }
525 
526 /*
527  * Enumerate the possible CPU set from the device tree or ACPI and build the
528  * cpu logical map array containing MPIDR values related to logical
529  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
530  */
531 void __init smp_init_cpus(void)
532 {
533 	int i;
534 
535 	if (acpi_disabled)
536 		of_parse_and_init_cpus();
537 	else
538 		/*
539 		 * do a walk of MADT to determine how many CPUs
540 		 * we have including disabled CPUs, and get information
541 		 * we need for SMP init
542 		 */
543 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
544 				      acpi_parse_gic_cpu_interface, 0);
545 
546 	if (cpu_count > NR_CPUS)
547 		pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n",
548 			cpu_count, NR_CPUS);
549 
550 	if (!bootcpu_valid) {
551 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
552 		return;
553 	}
554 
555 	/*
556 	 * We need to set the cpu_logical_map entries before enabling
557 	 * the cpus so that cpu processor description entries (DT cpu nodes
558 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
559 	 * with entries in cpu_logical_map while initializing the cpus.
560 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
561 	 */
562 	for (i = 1; i < NR_CPUS; i++) {
563 		if (cpu_logical_map(i) != INVALID_HWID) {
564 			if (smp_cpu_setup(i))
565 				cpu_logical_map(i) = INVALID_HWID;
566 		}
567 	}
568 }
569 
570 void __init smp_prepare_cpus(unsigned int max_cpus)
571 {
572 	int err;
573 	unsigned int cpu, ncores = num_possible_cpus();
574 
575 	init_cpu_topology();
576 
577 	smp_store_cpu_info(smp_processor_id());
578 
579 	/*
580 	 * are we trying to boot more cores than exist?
581 	 */
582 	if (max_cpus > ncores)
583 		max_cpus = ncores;
584 
585 	/* Don't bother if we're effectively UP */
586 	if (max_cpus <= 1)
587 		return;
588 
589 	/*
590 	 * Initialise the present map (which describes the set of CPUs
591 	 * actually populated at the present time) and release the
592 	 * secondaries from the bootloader.
593 	 *
594 	 * Make sure we online at most (max_cpus - 1) additional CPUs.
595 	 */
596 	max_cpus--;
597 	for_each_possible_cpu(cpu) {
598 		if (max_cpus == 0)
599 			break;
600 
601 		if (cpu == smp_processor_id())
602 			continue;
603 
604 		if (!cpu_ops[cpu])
605 			continue;
606 
607 		err = cpu_ops[cpu]->cpu_prepare(cpu);
608 		if (err)
609 			continue;
610 
611 		set_cpu_present(cpu, true);
612 		max_cpus--;
613 	}
614 }
615 
616 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
617 
618 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
619 {
620 	__smp_cross_call = fn;
621 }
622 
623 static const char *ipi_types[NR_IPI] __tracepoint_string = {
624 #define S(x,s)	[x] = s
625 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
626 	S(IPI_CALL_FUNC, "Function call interrupts"),
627 	S(IPI_CPU_STOP, "CPU stop interrupts"),
628 	S(IPI_TIMER, "Timer broadcast interrupts"),
629 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
630 };
631 
632 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
633 {
634 	trace_ipi_raise(target, ipi_types[ipinr]);
635 	__smp_cross_call(target, ipinr);
636 }
637 
638 void show_ipi_list(struct seq_file *p, int prec)
639 {
640 	unsigned int cpu, i;
641 
642 	for (i = 0; i < NR_IPI; i++) {
643 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
644 			   prec >= 4 ? " " : "");
645 		for_each_online_cpu(cpu)
646 			seq_printf(p, "%10u ",
647 				   __get_irq_stat(cpu, ipi_irqs[i]));
648 		seq_printf(p, "      %s\n", ipi_types[i]);
649 	}
650 }
651 
652 u64 smp_irq_stat_cpu(unsigned int cpu)
653 {
654 	u64 sum = 0;
655 	int i;
656 
657 	for (i = 0; i < NR_IPI; i++)
658 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
659 
660 	return sum;
661 }
662 
663 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
664 {
665 	smp_cross_call(mask, IPI_CALL_FUNC);
666 }
667 
668 void arch_send_call_function_single_ipi(int cpu)
669 {
670 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
671 }
672 
673 #ifdef CONFIG_IRQ_WORK
674 void arch_irq_work_raise(void)
675 {
676 	if (__smp_cross_call)
677 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
678 }
679 #endif
680 
681 static DEFINE_RAW_SPINLOCK(stop_lock);
682 
683 /*
684  * ipi_cpu_stop - handle IPI from smp_send_stop()
685  */
686 static void ipi_cpu_stop(unsigned int cpu)
687 {
688 	if (system_state == SYSTEM_BOOTING ||
689 	    system_state == SYSTEM_RUNNING) {
690 		raw_spin_lock(&stop_lock);
691 		pr_crit("CPU%u: stopping\n", cpu);
692 		dump_stack();
693 		raw_spin_unlock(&stop_lock);
694 	}
695 
696 	set_cpu_online(cpu, false);
697 
698 	local_irq_disable();
699 
700 	while (1)
701 		cpu_relax();
702 }
703 
704 /*
705  * Main handler for inter-processor interrupts
706  */
707 void handle_IPI(int ipinr, struct pt_regs *regs)
708 {
709 	unsigned int cpu = smp_processor_id();
710 	struct pt_regs *old_regs = set_irq_regs(regs);
711 
712 	if ((unsigned)ipinr < NR_IPI) {
713 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
714 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
715 	}
716 
717 	switch (ipinr) {
718 	case IPI_RESCHEDULE:
719 		scheduler_ipi();
720 		break;
721 
722 	case IPI_CALL_FUNC:
723 		irq_enter();
724 		generic_smp_call_function_interrupt();
725 		irq_exit();
726 		break;
727 
728 	case IPI_CPU_STOP:
729 		irq_enter();
730 		ipi_cpu_stop(cpu);
731 		irq_exit();
732 		break;
733 
734 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
735 	case IPI_TIMER:
736 		irq_enter();
737 		tick_receive_broadcast();
738 		irq_exit();
739 		break;
740 #endif
741 
742 #ifdef CONFIG_IRQ_WORK
743 	case IPI_IRQ_WORK:
744 		irq_enter();
745 		irq_work_run();
746 		irq_exit();
747 		break;
748 #endif
749 
750 	default:
751 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
752 		break;
753 	}
754 
755 	if ((unsigned)ipinr < NR_IPI)
756 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
757 	set_irq_regs(old_regs);
758 }
759 
760 void smp_send_reschedule(int cpu)
761 {
762 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
763 }
764 
765 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
766 void tick_broadcast(const struct cpumask *mask)
767 {
768 	smp_cross_call(mask, IPI_TIMER);
769 }
770 #endif
771 
772 void smp_send_stop(void)
773 {
774 	unsigned long timeout;
775 
776 	if (num_online_cpus() > 1) {
777 		cpumask_t mask;
778 
779 		cpumask_copy(&mask, cpu_online_mask);
780 		cpumask_clear_cpu(smp_processor_id(), &mask);
781 
782 		smp_cross_call(&mask, IPI_CPU_STOP);
783 	}
784 
785 	/* Wait up to one second for other CPUs to stop */
786 	timeout = USEC_PER_SEC;
787 	while (num_online_cpus() > 1 && timeout--)
788 		udelay(1);
789 
790 	if (num_online_cpus() > 1)
791 		pr_warning("SMP: failed to stop secondary CPUs\n");
792 }
793 
794 /*
795  * not supported here
796  */
797 int setup_profiling_timer(unsigned int multiplier)
798 {
799 	return -EINVAL;
800 }
801