xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 9b5db89e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kexec.h>
34 
35 #include <asm/alternative.h>
36 #include <asm/atomic.h>
37 #include <asm/cacheflush.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/cpu_ops.h>
41 #include <asm/daifflags.h>
42 #include <asm/mmu_context.h>
43 #include <asm/numa.h>
44 #include <asm/pgtable.h>
45 #include <asm/pgalloc.h>
46 #include <asm/processor.h>
47 #include <asm/smp_plat.h>
48 #include <asm/sections.h>
49 #include <asm/tlbflush.h>
50 #include <asm/ptrace.h>
51 #include <asm/virt.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ipi.h>
55 
56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
57 EXPORT_PER_CPU_SYMBOL(cpu_number);
58 
59 /*
60  * as from 2.5, kernels no longer have an init_tasks structure
61  * so we need some other way of telling a new secondary core
62  * where to place its SVC stack
63  */
64 struct secondary_data secondary_data;
65 /* Number of CPUs which aren't online, but looping in kernel text. */
66 int cpus_stuck_in_kernel;
67 
68 enum ipi_msg_type {
69 	IPI_RESCHEDULE,
70 	IPI_CALL_FUNC,
71 	IPI_CPU_STOP,
72 	IPI_CPU_CRASH_STOP,
73 	IPI_TIMER,
74 	IPI_IRQ_WORK,
75 	IPI_WAKEUP
76 };
77 
78 #ifdef CONFIG_HOTPLUG_CPU
79 static int op_cpu_kill(unsigned int cpu);
80 #else
81 static inline int op_cpu_kill(unsigned int cpu)
82 {
83 	return -ENOSYS;
84 }
85 #endif
86 
87 
88 /*
89  * Boot a secondary CPU, and assign it the specified idle task.
90  * This also gives us the initial stack to use for this CPU.
91  */
92 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
93 {
94 	if (cpu_ops[cpu]->cpu_boot)
95 		return cpu_ops[cpu]->cpu_boot(cpu);
96 
97 	return -EOPNOTSUPP;
98 }
99 
100 static DECLARE_COMPLETION(cpu_running);
101 
102 int __cpu_up(unsigned int cpu, struct task_struct *idle)
103 {
104 	int ret;
105 	long status;
106 
107 	/*
108 	 * We need to tell the secondary core where to find its stack and the
109 	 * page tables.
110 	 */
111 	secondary_data.task = idle;
112 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
113 	update_cpu_boot_status(CPU_MMU_OFF);
114 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
115 
116 	/*
117 	 * Now bring the CPU into our world.
118 	 */
119 	ret = boot_secondary(cpu, idle);
120 	if (ret == 0) {
121 		/*
122 		 * CPU was successfully started, wait for it to come online or
123 		 * time out.
124 		 */
125 		wait_for_completion_timeout(&cpu_running,
126 					    msecs_to_jiffies(1000));
127 
128 		if (!cpu_online(cpu)) {
129 			pr_crit("CPU%u: failed to come online\n", cpu);
130 			ret = -EIO;
131 		}
132 	} else {
133 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
134 		return ret;
135 	}
136 
137 	secondary_data.task = NULL;
138 	secondary_data.stack = NULL;
139 	status = READ_ONCE(secondary_data.status);
140 	if (ret && status) {
141 
142 		if (status == CPU_MMU_OFF)
143 			status = READ_ONCE(__early_cpu_boot_status);
144 
145 		switch (status & CPU_BOOT_STATUS_MASK) {
146 		default:
147 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
148 					cpu, status);
149 			break;
150 		case CPU_KILL_ME:
151 			if (!op_cpu_kill(cpu)) {
152 				pr_crit("CPU%u: died during early boot\n", cpu);
153 				break;
154 			}
155 			/* Fall through */
156 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
157 		case CPU_STUCK_IN_KERNEL:
158 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
159 			if (status & CPU_STUCK_REASON_52_BIT_VA)
160 				pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
161 			if (status & CPU_STUCK_REASON_NO_GRAN)
162 				pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K);
163 			cpus_stuck_in_kernel++;
164 			break;
165 		case CPU_PANIC_KERNEL:
166 			panic("CPU%u detected unsupported configuration\n", cpu);
167 		}
168 	}
169 
170 	return ret;
171 }
172 
173 static void init_gic_priority_masking(void)
174 {
175 	u32 cpuflags;
176 
177 	if (WARN_ON(!gic_enable_sre()))
178 		return;
179 
180 	cpuflags = read_sysreg(daif);
181 
182 	WARN_ON(!(cpuflags & PSR_I_BIT));
183 
184 	gic_write_pmr(GIC_PRIO_IRQOFF);
185 
186 	/* We can only unmask PSR.I if we can take aborts */
187 	if (!(cpuflags & PSR_A_BIT))
188 		write_sysreg(cpuflags & ~PSR_I_BIT, daif);
189 }
190 
191 /*
192  * This is the secondary CPU boot entry.  We're using this CPUs
193  * idle thread stack, but a set of temporary page tables.
194  */
195 asmlinkage notrace void secondary_start_kernel(void)
196 {
197 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
198 	struct mm_struct *mm = &init_mm;
199 	unsigned int cpu;
200 
201 	cpu = task_cpu(current);
202 	set_my_cpu_offset(per_cpu_offset(cpu));
203 
204 	/*
205 	 * All kernel threads share the same mm context; grab a
206 	 * reference and switch to it.
207 	 */
208 	mmgrab(mm);
209 	current->active_mm = mm;
210 
211 	/*
212 	 * TTBR0 is only used for the identity mapping at this stage. Make it
213 	 * point to zero page to avoid speculatively fetching new entries.
214 	 */
215 	cpu_uninstall_idmap();
216 
217 	if (system_uses_irq_prio_masking())
218 		init_gic_priority_masking();
219 
220 	preempt_disable();
221 	trace_hardirqs_off();
222 
223 	/*
224 	 * If the system has established the capabilities, make sure
225 	 * this CPU ticks all of those. If it doesn't, the CPU will
226 	 * fail to come online.
227 	 */
228 	check_local_cpu_capabilities();
229 
230 	if (cpu_ops[cpu]->cpu_postboot)
231 		cpu_ops[cpu]->cpu_postboot();
232 
233 	/*
234 	 * Log the CPU info before it is marked online and might get read.
235 	 */
236 	cpuinfo_store_cpu();
237 
238 	/*
239 	 * Enable GIC and timers.
240 	 */
241 	notify_cpu_starting(cpu);
242 
243 	store_cpu_topology(cpu);
244 	numa_add_cpu(cpu);
245 
246 	/*
247 	 * OK, now it's safe to let the boot CPU continue.  Wait for
248 	 * the CPU migration code to notice that the CPU is online
249 	 * before we continue.
250 	 */
251 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
252 					 cpu, (unsigned long)mpidr,
253 					 read_cpuid_id());
254 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
255 	set_cpu_online(cpu, true);
256 	complete(&cpu_running);
257 
258 	local_daif_restore(DAIF_PROCCTX);
259 
260 	/*
261 	 * OK, it's off to the idle thread for us
262 	 */
263 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
264 }
265 
266 #ifdef CONFIG_HOTPLUG_CPU
267 static int op_cpu_disable(unsigned int cpu)
268 {
269 	/*
270 	 * If we don't have a cpu_die method, abort before we reach the point
271 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
272 	 */
273 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
274 		return -EOPNOTSUPP;
275 
276 	/*
277 	 * We may need to abort a hot unplug for some other mechanism-specific
278 	 * reason.
279 	 */
280 	if (cpu_ops[cpu]->cpu_disable)
281 		return cpu_ops[cpu]->cpu_disable(cpu);
282 
283 	return 0;
284 }
285 
286 /*
287  * __cpu_disable runs on the processor to be shutdown.
288  */
289 int __cpu_disable(void)
290 {
291 	unsigned int cpu = smp_processor_id();
292 	int ret;
293 
294 	ret = op_cpu_disable(cpu);
295 	if (ret)
296 		return ret;
297 
298 	remove_cpu_topology(cpu);
299 	numa_remove_cpu(cpu);
300 
301 	/*
302 	 * Take this CPU offline.  Once we clear this, we can't return,
303 	 * and we must not schedule until we're ready to give up the cpu.
304 	 */
305 	set_cpu_online(cpu, false);
306 
307 	/*
308 	 * OK - migrate IRQs away from this CPU
309 	 */
310 	irq_migrate_all_off_this_cpu();
311 
312 	return 0;
313 }
314 
315 static int op_cpu_kill(unsigned int cpu)
316 {
317 	/*
318 	 * If we have no means of synchronising with the dying CPU, then assume
319 	 * that it is really dead. We can only wait for an arbitrary length of
320 	 * time and hope that it's dead, so let's skip the wait and just hope.
321 	 */
322 	if (!cpu_ops[cpu]->cpu_kill)
323 		return 0;
324 
325 	return cpu_ops[cpu]->cpu_kill(cpu);
326 }
327 
328 /*
329  * called on the thread which is asking for a CPU to be shutdown -
330  * waits until shutdown has completed, or it is timed out.
331  */
332 void __cpu_die(unsigned int cpu)
333 {
334 	int err;
335 
336 	if (!cpu_wait_death(cpu, 5)) {
337 		pr_crit("CPU%u: cpu didn't die\n", cpu);
338 		return;
339 	}
340 	pr_notice("CPU%u: shutdown\n", cpu);
341 
342 	/*
343 	 * Now that the dying CPU is beyond the point of no return w.r.t.
344 	 * in-kernel synchronisation, try to get the firwmare to help us to
345 	 * verify that it has really left the kernel before we consider
346 	 * clobbering anything it might still be using.
347 	 */
348 	err = op_cpu_kill(cpu);
349 	if (err)
350 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
351 			cpu, err);
352 }
353 
354 /*
355  * Called from the idle thread for the CPU which has been shutdown.
356  *
357  */
358 void cpu_die(void)
359 {
360 	unsigned int cpu = smp_processor_id();
361 
362 	idle_task_exit();
363 
364 	local_daif_mask();
365 
366 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
367 	(void)cpu_report_death();
368 
369 	/*
370 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
371 	 * mechanism must perform all required cache maintenance to ensure that
372 	 * no dirty lines are lost in the process of shutting down the CPU.
373 	 */
374 	cpu_ops[cpu]->cpu_die(cpu);
375 
376 	BUG();
377 }
378 #endif
379 
380 /*
381  * Kill the calling secondary CPU, early in bringup before it is turned
382  * online.
383  */
384 void cpu_die_early(void)
385 {
386 	int cpu = smp_processor_id();
387 
388 	pr_crit("CPU%d: will not boot\n", cpu);
389 
390 	/* Mark this CPU absent */
391 	set_cpu_present(cpu, 0);
392 
393 #ifdef CONFIG_HOTPLUG_CPU
394 	update_cpu_boot_status(CPU_KILL_ME);
395 	/* Check if we can park ourselves */
396 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
397 		cpu_ops[cpu]->cpu_die(cpu);
398 #endif
399 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
400 
401 	cpu_park_loop();
402 }
403 
404 static void __init hyp_mode_check(void)
405 {
406 	if (is_hyp_mode_available())
407 		pr_info("CPU: All CPU(s) started at EL2\n");
408 	else if (is_hyp_mode_mismatched())
409 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
410 			   "CPU: CPUs started in inconsistent modes");
411 	else
412 		pr_info("CPU: All CPU(s) started at EL1\n");
413 }
414 
415 void __init smp_cpus_done(unsigned int max_cpus)
416 {
417 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
418 	setup_cpu_features();
419 	hyp_mode_check();
420 	apply_alternatives_all();
421 	mark_linear_text_alias_ro();
422 }
423 
424 void __init smp_prepare_boot_cpu(void)
425 {
426 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
427 	/*
428 	 * Initialise the static keys early as they may be enabled by the
429 	 * cpufeature code.
430 	 */
431 	jump_label_init();
432 	cpuinfo_store_boot_cpu();
433 
434 	/*
435 	 * We now know enough about the boot CPU to apply the
436 	 * alternatives that cannot wait until interrupt handling
437 	 * and/or scheduling is enabled.
438 	 */
439 	apply_boot_alternatives();
440 
441 	/* Conditionally switch to GIC PMR for interrupt masking */
442 	if (system_uses_irq_prio_masking())
443 		init_gic_priority_masking();
444 }
445 
446 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
447 {
448 	const __be32 *cell;
449 	u64 hwid;
450 
451 	/*
452 	 * A cpu node with missing "reg" property is
453 	 * considered invalid to build a cpu_logical_map
454 	 * entry.
455 	 */
456 	cell = of_get_property(dn, "reg", NULL);
457 	if (!cell) {
458 		pr_err("%pOF: missing reg property\n", dn);
459 		return INVALID_HWID;
460 	}
461 
462 	hwid = of_read_number(cell, of_n_addr_cells(dn));
463 	/*
464 	 * Non affinity bits must be set to 0 in the DT
465 	 */
466 	if (hwid & ~MPIDR_HWID_BITMASK) {
467 		pr_err("%pOF: invalid reg property\n", dn);
468 		return INVALID_HWID;
469 	}
470 	return hwid;
471 }
472 
473 /*
474  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
475  * entries and check for duplicates. If any is found just ignore the
476  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
477  * matching valid MPIDR values.
478  */
479 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
480 {
481 	unsigned int i;
482 
483 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
484 		if (cpu_logical_map(i) == hwid)
485 			return true;
486 	return false;
487 }
488 
489 /*
490  * Initialize cpu operations for a logical cpu and
491  * set it in the possible mask on success
492  */
493 static int __init smp_cpu_setup(int cpu)
494 {
495 	if (cpu_read_ops(cpu))
496 		return -ENODEV;
497 
498 	if (cpu_ops[cpu]->cpu_init(cpu))
499 		return -ENODEV;
500 
501 	set_cpu_possible(cpu, true);
502 
503 	return 0;
504 }
505 
506 static bool bootcpu_valid __initdata;
507 static unsigned int cpu_count = 1;
508 
509 #ifdef CONFIG_ACPI
510 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
511 
512 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
513 {
514 	return &cpu_madt_gicc[cpu];
515 }
516 
517 /*
518  * acpi_map_gic_cpu_interface - parse processor MADT entry
519  *
520  * Carry out sanity checks on MADT processor entry and initialize
521  * cpu_logical_map on success
522  */
523 static void __init
524 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
525 {
526 	u64 hwid = processor->arm_mpidr;
527 
528 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
529 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
530 		return;
531 	}
532 
533 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
534 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
535 		return;
536 	}
537 
538 	if (is_mpidr_duplicate(cpu_count, hwid)) {
539 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
540 		return;
541 	}
542 
543 	/* Check if GICC structure of boot CPU is available in the MADT */
544 	if (cpu_logical_map(0) == hwid) {
545 		if (bootcpu_valid) {
546 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
547 			       hwid);
548 			return;
549 		}
550 		bootcpu_valid = true;
551 		cpu_madt_gicc[0] = *processor;
552 		return;
553 	}
554 
555 	if (cpu_count >= NR_CPUS)
556 		return;
557 
558 	/* map the logical cpu id to cpu MPIDR */
559 	cpu_logical_map(cpu_count) = hwid;
560 
561 	cpu_madt_gicc[cpu_count] = *processor;
562 
563 	/*
564 	 * Set-up the ACPI parking protocol cpu entries
565 	 * while initializing the cpu_logical_map to
566 	 * avoid parsing MADT entries multiple times for
567 	 * nothing (ie a valid cpu_logical_map entry should
568 	 * contain a valid parking protocol data set to
569 	 * initialize the cpu if the parking protocol is
570 	 * the only available enable method).
571 	 */
572 	acpi_set_mailbox_entry(cpu_count, processor);
573 
574 	cpu_count++;
575 }
576 
577 static int __init
578 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
579 			     const unsigned long end)
580 {
581 	struct acpi_madt_generic_interrupt *processor;
582 
583 	processor = (struct acpi_madt_generic_interrupt *)header;
584 	if (BAD_MADT_GICC_ENTRY(processor, end))
585 		return -EINVAL;
586 
587 	acpi_table_print_madt_entry(&header->common);
588 
589 	acpi_map_gic_cpu_interface(processor);
590 
591 	return 0;
592 }
593 
594 static void __init acpi_parse_and_init_cpus(void)
595 {
596 	int i;
597 
598 	/*
599 	 * do a walk of MADT to determine how many CPUs
600 	 * we have including disabled CPUs, and get information
601 	 * we need for SMP init.
602 	 */
603 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
604 				      acpi_parse_gic_cpu_interface, 0);
605 
606 	/*
607 	 * In ACPI, SMP and CPU NUMA information is provided in separate
608 	 * static tables, namely the MADT and the SRAT.
609 	 *
610 	 * Thus, it is simpler to first create the cpu logical map through
611 	 * an MADT walk and then map the logical cpus to their node ids
612 	 * as separate steps.
613 	 */
614 	acpi_map_cpus_to_nodes();
615 
616 	for (i = 0; i < nr_cpu_ids; i++)
617 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
618 }
619 #else
620 #define acpi_parse_and_init_cpus(...)	do { } while (0)
621 #endif
622 
623 /*
624  * Enumerate the possible CPU set from the device tree and build the
625  * cpu logical map array containing MPIDR values related to logical
626  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
627  */
628 static void __init of_parse_and_init_cpus(void)
629 {
630 	struct device_node *dn;
631 
632 	for_each_of_cpu_node(dn) {
633 		u64 hwid = of_get_cpu_mpidr(dn);
634 
635 		if (hwid == INVALID_HWID)
636 			goto next;
637 
638 		if (is_mpidr_duplicate(cpu_count, hwid)) {
639 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
640 				dn);
641 			goto next;
642 		}
643 
644 		/*
645 		 * The numbering scheme requires that the boot CPU
646 		 * must be assigned logical id 0. Record it so that
647 		 * the logical map built from DT is validated and can
648 		 * be used.
649 		 */
650 		if (hwid == cpu_logical_map(0)) {
651 			if (bootcpu_valid) {
652 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
653 					dn);
654 				goto next;
655 			}
656 
657 			bootcpu_valid = true;
658 			early_map_cpu_to_node(0, of_node_to_nid(dn));
659 
660 			/*
661 			 * cpu_logical_map has already been
662 			 * initialized and the boot cpu doesn't need
663 			 * the enable-method so continue without
664 			 * incrementing cpu.
665 			 */
666 			continue;
667 		}
668 
669 		if (cpu_count >= NR_CPUS)
670 			goto next;
671 
672 		pr_debug("cpu logical map 0x%llx\n", hwid);
673 		cpu_logical_map(cpu_count) = hwid;
674 
675 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
676 next:
677 		cpu_count++;
678 	}
679 }
680 
681 /*
682  * Enumerate the possible CPU set from the device tree or ACPI and build the
683  * cpu logical map array containing MPIDR values related to logical
684  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
685  */
686 void __init smp_init_cpus(void)
687 {
688 	int i;
689 
690 	if (acpi_disabled)
691 		of_parse_and_init_cpus();
692 	else
693 		acpi_parse_and_init_cpus();
694 
695 	if (cpu_count > nr_cpu_ids)
696 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
697 			cpu_count, nr_cpu_ids);
698 
699 	if (!bootcpu_valid) {
700 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
701 		return;
702 	}
703 
704 	/*
705 	 * We need to set the cpu_logical_map entries before enabling
706 	 * the cpus so that cpu processor description entries (DT cpu nodes
707 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
708 	 * with entries in cpu_logical_map while initializing the cpus.
709 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
710 	 */
711 	for (i = 1; i < nr_cpu_ids; i++) {
712 		if (cpu_logical_map(i) != INVALID_HWID) {
713 			if (smp_cpu_setup(i))
714 				cpu_logical_map(i) = INVALID_HWID;
715 		}
716 	}
717 }
718 
719 void __init smp_prepare_cpus(unsigned int max_cpus)
720 {
721 	int err;
722 	unsigned int cpu;
723 	unsigned int this_cpu;
724 
725 	init_cpu_topology();
726 
727 	this_cpu = smp_processor_id();
728 	store_cpu_topology(this_cpu);
729 	numa_store_cpu_info(this_cpu);
730 	numa_add_cpu(this_cpu);
731 
732 	/*
733 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
734 	 * secondary CPUs present.
735 	 */
736 	if (max_cpus == 0)
737 		return;
738 
739 	/*
740 	 * Initialise the present map (which describes the set of CPUs
741 	 * actually populated at the present time) and release the
742 	 * secondaries from the bootloader.
743 	 */
744 	for_each_possible_cpu(cpu) {
745 
746 		per_cpu(cpu_number, cpu) = cpu;
747 
748 		if (cpu == smp_processor_id())
749 			continue;
750 
751 		if (!cpu_ops[cpu])
752 			continue;
753 
754 		err = cpu_ops[cpu]->cpu_prepare(cpu);
755 		if (err)
756 			continue;
757 
758 		set_cpu_present(cpu, true);
759 		numa_store_cpu_info(cpu);
760 	}
761 }
762 
763 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
764 
765 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
766 {
767 	__smp_cross_call = fn;
768 }
769 
770 static const char *ipi_types[NR_IPI] __tracepoint_string = {
771 #define S(x,s)	[x] = s
772 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
773 	S(IPI_CALL_FUNC, "Function call interrupts"),
774 	S(IPI_CPU_STOP, "CPU stop interrupts"),
775 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
776 	S(IPI_TIMER, "Timer broadcast interrupts"),
777 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
778 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
779 };
780 
781 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
782 {
783 	trace_ipi_raise(target, ipi_types[ipinr]);
784 	__smp_cross_call(target, ipinr);
785 }
786 
787 void show_ipi_list(struct seq_file *p, int prec)
788 {
789 	unsigned int cpu, i;
790 
791 	for (i = 0; i < NR_IPI; i++) {
792 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
793 			   prec >= 4 ? " " : "");
794 		for_each_online_cpu(cpu)
795 			seq_printf(p, "%10u ",
796 				   __get_irq_stat(cpu, ipi_irqs[i]));
797 		seq_printf(p, "      %s\n", ipi_types[i]);
798 	}
799 }
800 
801 u64 smp_irq_stat_cpu(unsigned int cpu)
802 {
803 	u64 sum = 0;
804 	int i;
805 
806 	for (i = 0; i < NR_IPI; i++)
807 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
808 
809 	return sum;
810 }
811 
812 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
813 {
814 	smp_cross_call(mask, IPI_CALL_FUNC);
815 }
816 
817 void arch_send_call_function_single_ipi(int cpu)
818 {
819 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
820 }
821 
822 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
823 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
824 {
825 	smp_cross_call(mask, IPI_WAKEUP);
826 }
827 #endif
828 
829 #ifdef CONFIG_IRQ_WORK
830 void arch_irq_work_raise(void)
831 {
832 	if (__smp_cross_call)
833 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
834 }
835 #endif
836 
837 /*
838  * ipi_cpu_stop - handle IPI from smp_send_stop()
839  */
840 static void ipi_cpu_stop(unsigned int cpu)
841 {
842 	set_cpu_online(cpu, false);
843 
844 	local_daif_mask();
845 	sdei_mask_local_cpu();
846 
847 	while (1)
848 		cpu_relax();
849 }
850 
851 #ifdef CONFIG_KEXEC_CORE
852 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
853 #endif
854 
855 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
856 {
857 #ifdef CONFIG_KEXEC_CORE
858 	crash_save_cpu(regs, cpu);
859 
860 	atomic_dec(&waiting_for_crash_ipi);
861 
862 	local_irq_disable();
863 	sdei_mask_local_cpu();
864 
865 #ifdef CONFIG_HOTPLUG_CPU
866 	if (cpu_ops[cpu]->cpu_die)
867 		cpu_ops[cpu]->cpu_die(cpu);
868 #endif
869 
870 	/* just in case */
871 	cpu_park_loop();
872 #endif
873 }
874 
875 /*
876  * Main handler for inter-processor interrupts
877  */
878 void handle_IPI(int ipinr, struct pt_regs *regs)
879 {
880 	unsigned int cpu = smp_processor_id();
881 	struct pt_regs *old_regs = set_irq_regs(regs);
882 
883 	if ((unsigned)ipinr < NR_IPI) {
884 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
885 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
886 	}
887 
888 	switch (ipinr) {
889 	case IPI_RESCHEDULE:
890 		scheduler_ipi();
891 		break;
892 
893 	case IPI_CALL_FUNC:
894 		irq_enter();
895 		generic_smp_call_function_interrupt();
896 		irq_exit();
897 		break;
898 
899 	case IPI_CPU_STOP:
900 		irq_enter();
901 		ipi_cpu_stop(cpu);
902 		irq_exit();
903 		break;
904 
905 	case IPI_CPU_CRASH_STOP:
906 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
907 			irq_enter();
908 			ipi_cpu_crash_stop(cpu, regs);
909 
910 			unreachable();
911 		}
912 		break;
913 
914 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
915 	case IPI_TIMER:
916 		irq_enter();
917 		tick_receive_broadcast();
918 		irq_exit();
919 		break;
920 #endif
921 
922 #ifdef CONFIG_IRQ_WORK
923 	case IPI_IRQ_WORK:
924 		irq_enter();
925 		irq_work_run();
926 		irq_exit();
927 		break;
928 #endif
929 
930 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
931 	case IPI_WAKEUP:
932 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
933 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
934 			  cpu);
935 		break;
936 #endif
937 
938 	default:
939 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
940 		break;
941 	}
942 
943 	if ((unsigned)ipinr < NR_IPI)
944 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
945 	set_irq_regs(old_regs);
946 }
947 
948 void smp_send_reschedule(int cpu)
949 {
950 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
951 }
952 
953 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
954 void tick_broadcast(const struct cpumask *mask)
955 {
956 	smp_cross_call(mask, IPI_TIMER);
957 }
958 #endif
959 
960 void smp_send_stop(void)
961 {
962 	unsigned long timeout;
963 
964 	if (num_online_cpus() > 1) {
965 		cpumask_t mask;
966 
967 		cpumask_copy(&mask, cpu_online_mask);
968 		cpumask_clear_cpu(smp_processor_id(), &mask);
969 
970 		if (system_state <= SYSTEM_RUNNING)
971 			pr_crit("SMP: stopping secondary CPUs\n");
972 		smp_cross_call(&mask, IPI_CPU_STOP);
973 	}
974 
975 	/* Wait up to one second for other CPUs to stop */
976 	timeout = USEC_PER_SEC;
977 	while (num_online_cpus() > 1 && timeout--)
978 		udelay(1);
979 
980 	if (num_online_cpus() > 1)
981 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
982 			   cpumask_pr_args(cpu_online_mask));
983 
984 	sdei_mask_local_cpu();
985 }
986 
987 #ifdef CONFIG_KEXEC_CORE
988 void crash_smp_send_stop(void)
989 {
990 	static int cpus_stopped;
991 	cpumask_t mask;
992 	unsigned long timeout;
993 
994 	/*
995 	 * This function can be called twice in panic path, but obviously
996 	 * we execute this only once.
997 	 */
998 	if (cpus_stopped)
999 		return;
1000 
1001 	cpus_stopped = 1;
1002 
1003 	if (num_online_cpus() == 1) {
1004 		sdei_mask_local_cpu();
1005 		return;
1006 	}
1007 
1008 	cpumask_copy(&mask, cpu_online_mask);
1009 	cpumask_clear_cpu(smp_processor_id(), &mask);
1010 
1011 	atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1012 
1013 	pr_crit("SMP: stopping secondary CPUs\n");
1014 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1015 
1016 	/* Wait up to one second for other CPUs to stop */
1017 	timeout = USEC_PER_SEC;
1018 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1019 		udelay(1);
1020 
1021 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1022 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1023 			   cpumask_pr_args(&mask));
1024 
1025 	sdei_mask_local_cpu();
1026 }
1027 
1028 bool smp_crash_stop_failed(void)
1029 {
1030 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1031 }
1032 #endif
1033 
1034 /*
1035  * not supported here
1036  */
1037 int setup_profiling_timer(unsigned int multiplier)
1038 {
1039 	return -EINVAL;
1040 }
1041 
1042 static bool have_cpu_die(void)
1043 {
1044 #ifdef CONFIG_HOTPLUG_CPU
1045 	int any_cpu = raw_smp_processor_id();
1046 
1047 	if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1048 		return true;
1049 #endif
1050 	return false;
1051 }
1052 
1053 bool cpus_are_stuck_in_kernel(void)
1054 {
1055 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1056 
1057 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1058 }
1059