1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kexec.h> 34 35 #include <asm/alternative.h> 36 #include <asm/atomic.h> 37 #include <asm/cacheflush.h> 38 #include <asm/cpu.h> 39 #include <asm/cputype.h> 40 #include <asm/cpu_ops.h> 41 #include <asm/daifflags.h> 42 #include <asm/mmu_context.h> 43 #include <asm/numa.h> 44 #include <asm/pgtable.h> 45 #include <asm/pgalloc.h> 46 #include <asm/processor.h> 47 #include <asm/smp_plat.h> 48 #include <asm/sections.h> 49 #include <asm/tlbflush.h> 50 #include <asm/ptrace.h> 51 #include <asm/virt.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ipi.h> 55 56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 57 EXPORT_PER_CPU_SYMBOL(cpu_number); 58 59 /* 60 * as from 2.5, kernels no longer have an init_tasks structure 61 * so we need some other way of telling a new secondary core 62 * where to place its SVC stack 63 */ 64 struct secondary_data secondary_data; 65 /* Number of CPUs which aren't online, but looping in kernel text. */ 66 int cpus_stuck_in_kernel; 67 68 enum ipi_msg_type { 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CPU_STOP, 72 IPI_CPU_CRASH_STOP, 73 IPI_TIMER, 74 IPI_IRQ_WORK, 75 IPI_WAKEUP 76 }; 77 78 #ifdef CONFIG_HOTPLUG_CPU 79 static int op_cpu_kill(unsigned int cpu); 80 #else 81 static inline int op_cpu_kill(unsigned int cpu) 82 { 83 return -ENOSYS; 84 } 85 #endif 86 87 88 /* 89 * Boot a secondary CPU, and assign it the specified idle task. 90 * This also gives us the initial stack to use for this CPU. 91 */ 92 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 93 { 94 if (cpu_ops[cpu]->cpu_boot) 95 return cpu_ops[cpu]->cpu_boot(cpu); 96 97 return -EOPNOTSUPP; 98 } 99 100 static DECLARE_COMPLETION(cpu_running); 101 102 int __cpu_up(unsigned int cpu, struct task_struct *idle) 103 { 104 int ret; 105 long status; 106 107 /* 108 * We need to tell the secondary core where to find its stack and the 109 * page tables. 110 */ 111 secondary_data.task = idle; 112 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 113 update_cpu_boot_status(CPU_MMU_OFF); 114 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 115 116 /* 117 * Now bring the CPU into our world. 118 */ 119 ret = boot_secondary(cpu, idle); 120 if (ret == 0) { 121 /* 122 * CPU was successfully started, wait for it to come online or 123 * time out. 124 */ 125 wait_for_completion_timeout(&cpu_running, 126 msecs_to_jiffies(1000)); 127 128 if (!cpu_online(cpu)) { 129 pr_crit("CPU%u: failed to come online\n", cpu); 130 ret = -EIO; 131 } 132 } else { 133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 134 return ret; 135 } 136 137 secondary_data.task = NULL; 138 secondary_data.stack = NULL; 139 status = READ_ONCE(secondary_data.status); 140 if (ret && status) { 141 142 if (status == CPU_MMU_OFF) 143 status = READ_ONCE(__early_cpu_boot_status); 144 145 switch (status & CPU_BOOT_STATUS_MASK) { 146 default: 147 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 148 cpu, status); 149 break; 150 case CPU_KILL_ME: 151 if (!op_cpu_kill(cpu)) { 152 pr_crit("CPU%u: died during early boot\n", cpu); 153 break; 154 } 155 /* Fall through */ 156 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 157 case CPU_STUCK_IN_KERNEL: 158 pr_crit("CPU%u: is stuck in kernel\n", cpu); 159 if (status & CPU_STUCK_REASON_52_BIT_VA) 160 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 161 if (status & CPU_STUCK_REASON_NO_GRAN) 162 pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K); 163 cpus_stuck_in_kernel++; 164 break; 165 case CPU_PANIC_KERNEL: 166 panic("CPU%u detected unsupported configuration\n", cpu); 167 } 168 } 169 170 return ret; 171 } 172 173 static void init_gic_priority_masking(void) 174 { 175 u32 cpuflags; 176 177 if (WARN_ON(!gic_enable_sre())) 178 return; 179 180 cpuflags = read_sysreg(daif); 181 182 WARN_ON(!(cpuflags & PSR_I_BIT)); 183 184 gic_write_pmr(GIC_PRIO_IRQOFF); 185 186 /* We can only unmask PSR.I if we can take aborts */ 187 if (!(cpuflags & PSR_A_BIT)) 188 write_sysreg(cpuflags & ~PSR_I_BIT, daif); 189 } 190 191 /* 192 * This is the secondary CPU boot entry. We're using this CPUs 193 * idle thread stack, but a set of temporary page tables. 194 */ 195 asmlinkage notrace void secondary_start_kernel(void) 196 { 197 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 198 struct mm_struct *mm = &init_mm; 199 unsigned int cpu; 200 201 cpu = task_cpu(current); 202 set_my_cpu_offset(per_cpu_offset(cpu)); 203 204 /* 205 * All kernel threads share the same mm context; grab a 206 * reference and switch to it. 207 */ 208 mmgrab(mm); 209 current->active_mm = mm; 210 211 /* 212 * TTBR0 is only used for the identity mapping at this stage. Make it 213 * point to zero page to avoid speculatively fetching new entries. 214 */ 215 cpu_uninstall_idmap(); 216 217 if (system_uses_irq_prio_masking()) 218 init_gic_priority_masking(); 219 220 preempt_disable(); 221 trace_hardirqs_off(); 222 223 /* 224 * If the system has established the capabilities, make sure 225 * this CPU ticks all of those. If it doesn't, the CPU will 226 * fail to come online. 227 */ 228 check_local_cpu_capabilities(); 229 230 if (cpu_ops[cpu]->cpu_postboot) 231 cpu_ops[cpu]->cpu_postboot(); 232 233 /* 234 * Log the CPU info before it is marked online and might get read. 235 */ 236 cpuinfo_store_cpu(); 237 238 /* 239 * Enable GIC and timers. 240 */ 241 notify_cpu_starting(cpu); 242 243 store_cpu_topology(cpu); 244 numa_add_cpu(cpu); 245 246 /* 247 * OK, now it's safe to let the boot CPU continue. Wait for 248 * the CPU migration code to notice that the CPU is online 249 * before we continue. 250 */ 251 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 252 cpu, (unsigned long)mpidr, 253 read_cpuid_id()); 254 update_cpu_boot_status(CPU_BOOT_SUCCESS); 255 set_cpu_online(cpu, true); 256 complete(&cpu_running); 257 258 local_daif_restore(DAIF_PROCCTX); 259 260 /* 261 * OK, it's off to the idle thread for us 262 */ 263 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 264 } 265 266 #ifdef CONFIG_HOTPLUG_CPU 267 static int op_cpu_disable(unsigned int cpu) 268 { 269 /* 270 * If we don't have a cpu_die method, abort before we reach the point 271 * of no return. CPU0 may not have an cpu_ops, so test for it. 272 */ 273 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 274 return -EOPNOTSUPP; 275 276 /* 277 * We may need to abort a hot unplug for some other mechanism-specific 278 * reason. 279 */ 280 if (cpu_ops[cpu]->cpu_disable) 281 return cpu_ops[cpu]->cpu_disable(cpu); 282 283 return 0; 284 } 285 286 /* 287 * __cpu_disable runs on the processor to be shutdown. 288 */ 289 int __cpu_disable(void) 290 { 291 unsigned int cpu = smp_processor_id(); 292 int ret; 293 294 ret = op_cpu_disable(cpu); 295 if (ret) 296 return ret; 297 298 remove_cpu_topology(cpu); 299 numa_remove_cpu(cpu); 300 301 /* 302 * Take this CPU offline. Once we clear this, we can't return, 303 * and we must not schedule until we're ready to give up the cpu. 304 */ 305 set_cpu_online(cpu, false); 306 307 /* 308 * OK - migrate IRQs away from this CPU 309 */ 310 irq_migrate_all_off_this_cpu(); 311 312 return 0; 313 } 314 315 static int op_cpu_kill(unsigned int cpu) 316 { 317 /* 318 * If we have no means of synchronising with the dying CPU, then assume 319 * that it is really dead. We can only wait for an arbitrary length of 320 * time and hope that it's dead, so let's skip the wait and just hope. 321 */ 322 if (!cpu_ops[cpu]->cpu_kill) 323 return 0; 324 325 return cpu_ops[cpu]->cpu_kill(cpu); 326 } 327 328 /* 329 * called on the thread which is asking for a CPU to be shutdown - 330 * waits until shutdown has completed, or it is timed out. 331 */ 332 void __cpu_die(unsigned int cpu) 333 { 334 int err; 335 336 if (!cpu_wait_death(cpu, 5)) { 337 pr_crit("CPU%u: cpu didn't die\n", cpu); 338 return; 339 } 340 pr_notice("CPU%u: shutdown\n", cpu); 341 342 /* 343 * Now that the dying CPU is beyond the point of no return w.r.t. 344 * in-kernel synchronisation, try to get the firwmare to help us to 345 * verify that it has really left the kernel before we consider 346 * clobbering anything it might still be using. 347 */ 348 err = op_cpu_kill(cpu); 349 if (err) 350 pr_warn("CPU%d may not have shut down cleanly: %d\n", 351 cpu, err); 352 } 353 354 /* 355 * Called from the idle thread for the CPU which has been shutdown. 356 * 357 */ 358 void cpu_die(void) 359 { 360 unsigned int cpu = smp_processor_id(); 361 362 idle_task_exit(); 363 364 local_daif_mask(); 365 366 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 367 (void)cpu_report_death(); 368 369 /* 370 * Actually shutdown the CPU. This must never fail. The specific hotplug 371 * mechanism must perform all required cache maintenance to ensure that 372 * no dirty lines are lost in the process of shutting down the CPU. 373 */ 374 cpu_ops[cpu]->cpu_die(cpu); 375 376 BUG(); 377 } 378 #endif 379 380 /* 381 * Kill the calling secondary CPU, early in bringup before it is turned 382 * online. 383 */ 384 void cpu_die_early(void) 385 { 386 int cpu = smp_processor_id(); 387 388 pr_crit("CPU%d: will not boot\n", cpu); 389 390 /* Mark this CPU absent */ 391 set_cpu_present(cpu, 0); 392 393 #ifdef CONFIG_HOTPLUG_CPU 394 update_cpu_boot_status(CPU_KILL_ME); 395 /* Check if we can park ourselves */ 396 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 397 cpu_ops[cpu]->cpu_die(cpu); 398 #endif 399 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 400 401 cpu_park_loop(); 402 } 403 404 static void __init hyp_mode_check(void) 405 { 406 if (is_hyp_mode_available()) 407 pr_info("CPU: All CPU(s) started at EL2\n"); 408 else if (is_hyp_mode_mismatched()) 409 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 410 "CPU: CPUs started in inconsistent modes"); 411 else 412 pr_info("CPU: All CPU(s) started at EL1\n"); 413 } 414 415 void __init smp_cpus_done(unsigned int max_cpus) 416 { 417 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 418 setup_cpu_features(); 419 hyp_mode_check(); 420 apply_alternatives_all(); 421 mark_linear_text_alias_ro(); 422 } 423 424 void __init smp_prepare_boot_cpu(void) 425 { 426 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 427 /* 428 * Initialise the static keys early as they may be enabled by the 429 * cpufeature code. 430 */ 431 jump_label_init(); 432 cpuinfo_store_boot_cpu(); 433 434 /* 435 * We now know enough about the boot CPU to apply the 436 * alternatives that cannot wait until interrupt handling 437 * and/or scheduling is enabled. 438 */ 439 apply_boot_alternatives(); 440 441 /* Conditionally switch to GIC PMR for interrupt masking */ 442 if (system_uses_irq_prio_masking()) 443 init_gic_priority_masking(); 444 } 445 446 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 447 { 448 const __be32 *cell; 449 u64 hwid; 450 451 /* 452 * A cpu node with missing "reg" property is 453 * considered invalid to build a cpu_logical_map 454 * entry. 455 */ 456 cell = of_get_property(dn, "reg", NULL); 457 if (!cell) { 458 pr_err("%pOF: missing reg property\n", dn); 459 return INVALID_HWID; 460 } 461 462 hwid = of_read_number(cell, of_n_addr_cells(dn)); 463 /* 464 * Non affinity bits must be set to 0 in the DT 465 */ 466 if (hwid & ~MPIDR_HWID_BITMASK) { 467 pr_err("%pOF: invalid reg property\n", dn); 468 return INVALID_HWID; 469 } 470 return hwid; 471 } 472 473 /* 474 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 475 * entries and check for duplicates. If any is found just ignore the 476 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 477 * matching valid MPIDR values. 478 */ 479 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 480 { 481 unsigned int i; 482 483 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 484 if (cpu_logical_map(i) == hwid) 485 return true; 486 return false; 487 } 488 489 /* 490 * Initialize cpu operations for a logical cpu and 491 * set it in the possible mask on success 492 */ 493 static int __init smp_cpu_setup(int cpu) 494 { 495 if (cpu_read_ops(cpu)) 496 return -ENODEV; 497 498 if (cpu_ops[cpu]->cpu_init(cpu)) 499 return -ENODEV; 500 501 set_cpu_possible(cpu, true); 502 503 return 0; 504 } 505 506 static bool bootcpu_valid __initdata; 507 static unsigned int cpu_count = 1; 508 509 #ifdef CONFIG_ACPI 510 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 511 512 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 513 { 514 return &cpu_madt_gicc[cpu]; 515 } 516 517 /* 518 * acpi_map_gic_cpu_interface - parse processor MADT entry 519 * 520 * Carry out sanity checks on MADT processor entry and initialize 521 * cpu_logical_map on success 522 */ 523 static void __init 524 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 525 { 526 u64 hwid = processor->arm_mpidr; 527 528 if (!(processor->flags & ACPI_MADT_ENABLED)) { 529 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 530 return; 531 } 532 533 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 534 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 535 return; 536 } 537 538 if (is_mpidr_duplicate(cpu_count, hwid)) { 539 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 540 return; 541 } 542 543 /* Check if GICC structure of boot CPU is available in the MADT */ 544 if (cpu_logical_map(0) == hwid) { 545 if (bootcpu_valid) { 546 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 547 hwid); 548 return; 549 } 550 bootcpu_valid = true; 551 cpu_madt_gicc[0] = *processor; 552 return; 553 } 554 555 if (cpu_count >= NR_CPUS) 556 return; 557 558 /* map the logical cpu id to cpu MPIDR */ 559 cpu_logical_map(cpu_count) = hwid; 560 561 cpu_madt_gicc[cpu_count] = *processor; 562 563 /* 564 * Set-up the ACPI parking protocol cpu entries 565 * while initializing the cpu_logical_map to 566 * avoid parsing MADT entries multiple times for 567 * nothing (ie a valid cpu_logical_map entry should 568 * contain a valid parking protocol data set to 569 * initialize the cpu if the parking protocol is 570 * the only available enable method). 571 */ 572 acpi_set_mailbox_entry(cpu_count, processor); 573 574 cpu_count++; 575 } 576 577 static int __init 578 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 579 const unsigned long end) 580 { 581 struct acpi_madt_generic_interrupt *processor; 582 583 processor = (struct acpi_madt_generic_interrupt *)header; 584 if (BAD_MADT_GICC_ENTRY(processor, end)) 585 return -EINVAL; 586 587 acpi_table_print_madt_entry(&header->common); 588 589 acpi_map_gic_cpu_interface(processor); 590 591 return 0; 592 } 593 594 static void __init acpi_parse_and_init_cpus(void) 595 { 596 int i; 597 598 /* 599 * do a walk of MADT to determine how many CPUs 600 * we have including disabled CPUs, and get information 601 * we need for SMP init. 602 */ 603 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 604 acpi_parse_gic_cpu_interface, 0); 605 606 /* 607 * In ACPI, SMP and CPU NUMA information is provided in separate 608 * static tables, namely the MADT and the SRAT. 609 * 610 * Thus, it is simpler to first create the cpu logical map through 611 * an MADT walk and then map the logical cpus to their node ids 612 * as separate steps. 613 */ 614 acpi_map_cpus_to_nodes(); 615 616 for (i = 0; i < nr_cpu_ids; i++) 617 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 618 } 619 #else 620 #define acpi_parse_and_init_cpus(...) do { } while (0) 621 #endif 622 623 /* 624 * Enumerate the possible CPU set from the device tree and build the 625 * cpu logical map array containing MPIDR values related to logical 626 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 627 */ 628 static void __init of_parse_and_init_cpus(void) 629 { 630 struct device_node *dn; 631 632 for_each_of_cpu_node(dn) { 633 u64 hwid = of_get_cpu_mpidr(dn); 634 635 if (hwid == INVALID_HWID) 636 goto next; 637 638 if (is_mpidr_duplicate(cpu_count, hwid)) { 639 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 640 dn); 641 goto next; 642 } 643 644 /* 645 * The numbering scheme requires that the boot CPU 646 * must be assigned logical id 0. Record it so that 647 * the logical map built from DT is validated and can 648 * be used. 649 */ 650 if (hwid == cpu_logical_map(0)) { 651 if (bootcpu_valid) { 652 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 653 dn); 654 goto next; 655 } 656 657 bootcpu_valid = true; 658 early_map_cpu_to_node(0, of_node_to_nid(dn)); 659 660 /* 661 * cpu_logical_map has already been 662 * initialized and the boot cpu doesn't need 663 * the enable-method so continue without 664 * incrementing cpu. 665 */ 666 continue; 667 } 668 669 if (cpu_count >= NR_CPUS) 670 goto next; 671 672 pr_debug("cpu logical map 0x%llx\n", hwid); 673 cpu_logical_map(cpu_count) = hwid; 674 675 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 676 next: 677 cpu_count++; 678 } 679 } 680 681 /* 682 * Enumerate the possible CPU set from the device tree or ACPI and build the 683 * cpu logical map array containing MPIDR values related to logical 684 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 685 */ 686 void __init smp_init_cpus(void) 687 { 688 int i; 689 690 if (acpi_disabled) 691 of_parse_and_init_cpus(); 692 else 693 acpi_parse_and_init_cpus(); 694 695 if (cpu_count > nr_cpu_ids) 696 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 697 cpu_count, nr_cpu_ids); 698 699 if (!bootcpu_valid) { 700 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 701 return; 702 } 703 704 /* 705 * We need to set the cpu_logical_map entries before enabling 706 * the cpus so that cpu processor description entries (DT cpu nodes 707 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 708 * with entries in cpu_logical_map while initializing the cpus. 709 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 710 */ 711 for (i = 1; i < nr_cpu_ids; i++) { 712 if (cpu_logical_map(i) != INVALID_HWID) { 713 if (smp_cpu_setup(i)) 714 cpu_logical_map(i) = INVALID_HWID; 715 } 716 } 717 } 718 719 void __init smp_prepare_cpus(unsigned int max_cpus) 720 { 721 int err; 722 unsigned int cpu; 723 unsigned int this_cpu; 724 725 init_cpu_topology(); 726 727 this_cpu = smp_processor_id(); 728 store_cpu_topology(this_cpu); 729 numa_store_cpu_info(this_cpu); 730 numa_add_cpu(this_cpu); 731 732 /* 733 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 734 * secondary CPUs present. 735 */ 736 if (max_cpus == 0) 737 return; 738 739 /* 740 * Initialise the present map (which describes the set of CPUs 741 * actually populated at the present time) and release the 742 * secondaries from the bootloader. 743 */ 744 for_each_possible_cpu(cpu) { 745 746 per_cpu(cpu_number, cpu) = cpu; 747 748 if (cpu == smp_processor_id()) 749 continue; 750 751 if (!cpu_ops[cpu]) 752 continue; 753 754 err = cpu_ops[cpu]->cpu_prepare(cpu); 755 if (err) 756 continue; 757 758 set_cpu_present(cpu, true); 759 numa_store_cpu_info(cpu); 760 } 761 } 762 763 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 764 765 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 766 { 767 __smp_cross_call = fn; 768 } 769 770 static const char *ipi_types[NR_IPI] __tracepoint_string = { 771 #define S(x,s) [x] = s 772 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 773 S(IPI_CALL_FUNC, "Function call interrupts"), 774 S(IPI_CPU_STOP, "CPU stop interrupts"), 775 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 776 S(IPI_TIMER, "Timer broadcast interrupts"), 777 S(IPI_IRQ_WORK, "IRQ work interrupts"), 778 S(IPI_WAKEUP, "CPU wake-up interrupts"), 779 }; 780 781 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 782 { 783 trace_ipi_raise(target, ipi_types[ipinr]); 784 __smp_cross_call(target, ipinr); 785 } 786 787 void show_ipi_list(struct seq_file *p, int prec) 788 { 789 unsigned int cpu, i; 790 791 for (i = 0; i < NR_IPI; i++) { 792 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 793 prec >= 4 ? " " : ""); 794 for_each_online_cpu(cpu) 795 seq_printf(p, "%10u ", 796 __get_irq_stat(cpu, ipi_irqs[i])); 797 seq_printf(p, " %s\n", ipi_types[i]); 798 } 799 } 800 801 u64 smp_irq_stat_cpu(unsigned int cpu) 802 { 803 u64 sum = 0; 804 int i; 805 806 for (i = 0; i < NR_IPI; i++) 807 sum += __get_irq_stat(cpu, ipi_irqs[i]); 808 809 return sum; 810 } 811 812 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 813 { 814 smp_cross_call(mask, IPI_CALL_FUNC); 815 } 816 817 void arch_send_call_function_single_ipi(int cpu) 818 { 819 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 820 } 821 822 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 823 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 824 { 825 smp_cross_call(mask, IPI_WAKEUP); 826 } 827 #endif 828 829 #ifdef CONFIG_IRQ_WORK 830 void arch_irq_work_raise(void) 831 { 832 if (__smp_cross_call) 833 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 834 } 835 #endif 836 837 /* 838 * ipi_cpu_stop - handle IPI from smp_send_stop() 839 */ 840 static void ipi_cpu_stop(unsigned int cpu) 841 { 842 set_cpu_online(cpu, false); 843 844 local_daif_mask(); 845 sdei_mask_local_cpu(); 846 847 while (1) 848 cpu_relax(); 849 } 850 851 #ifdef CONFIG_KEXEC_CORE 852 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 853 #endif 854 855 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 856 { 857 #ifdef CONFIG_KEXEC_CORE 858 crash_save_cpu(regs, cpu); 859 860 atomic_dec(&waiting_for_crash_ipi); 861 862 local_irq_disable(); 863 sdei_mask_local_cpu(); 864 865 #ifdef CONFIG_HOTPLUG_CPU 866 if (cpu_ops[cpu]->cpu_die) 867 cpu_ops[cpu]->cpu_die(cpu); 868 #endif 869 870 /* just in case */ 871 cpu_park_loop(); 872 #endif 873 } 874 875 /* 876 * Main handler for inter-processor interrupts 877 */ 878 void handle_IPI(int ipinr, struct pt_regs *regs) 879 { 880 unsigned int cpu = smp_processor_id(); 881 struct pt_regs *old_regs = set_irq_regs(regs); 882 883 if ((unsigned)ipinr < NR_IPI) { 884 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 885 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 886 } 887 888 switch (ipinr) { 889 case IPI_RESCHEDULE: 890 scheduler_ipi(); 891 break; 892 893 case IPI_CALL_FUNC: 894 irq_enter(); 895 generic_smp_call_function_interrupt(); 896 irq_exit(); 897 break; 898 899 case IPI_CPU_STOP: 900 irq_enter(); 901 ipi_cpu_stop(cpu); 902 irq_exit(); 903 break; 904 905 case IPI_CPU_CRASH_STOP: 906 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 907 irq_enter(); 908 ipi_cpu_crash_stop(cpu, regs); 909 910 unreachable(); 911 } 912 break; 913 914 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 915 case IPI_TIMER: 916 irq_enter(); 917 tick_receive_broadcast(); 918 irq_exit(); 919 break; 920 #endif 921 922 #ifdef CONFIG_IRQ_WORK 923 case IPI_IRQ_WORK: 924 irq_enter(); 925 irq_work_run(); 926 irq_exit(); 927 break; 928 #endif 929 930 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 931 case IPI_WAKEUP: 932 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 933 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 934 cpu); 935 break; 936 #endif 937 938 default: 939 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 940 break; 941 } 942 943 if ((unsigned)ipinr < NR_IPI) 944 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 945 set_irq_regs(old_regs); 946 } 947 948 void smp_send_reschedule(int cpu) 949 { 950 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 951 } 952 953 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 954 void tick_broadcast(const struct cpumask *mask) 955 { 956 smp_cross_call(mask, IPI_TIMER); 957 } 958 #endif 959 960 void smp_send_stop(void) 961 { 962 unsigned long timeout; 963 964 if (num_online_cpus() > 1) { 965 cpumask_t mask; 966 967 cpumask_copy(&mask, cpu_online_mask); 968 cpumask_clear_cpu(smp_processor_id(), &mask); 969 970 if (system_state <= SYSTEM_RUNNING) 971 pr_crit("SMP: stopping secondary CPUs\n"); 972 smp_cross_call(&mask, IPI_CPU_STOP); 973 } 974 975 /* Wait up to one second for other CPUs to stop */ 976 timeout = USEC_PER_SEC; 977 while (num_online_cpus() > 1 && timeout--) 978 udelay(1); 979 980 if (num_online_cpus() > 1) 981 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 982 cpumask_pr_args(cpu_online_mask)); 983 984 sdei_mask_local_cpu(); 985 } 986 987 #ifdef CONFIG_KEXEC_CORE 988 void crash_smp_send_stop(void) 989 { 990 static int cpus_stopped; 991 cpumask_t mask; 992 unsigned long timeout; 993 994 /* 995 * This function can be called twice in panic path, but obviously 996 * we execute this only once. 997 */ 998 if (cpus_stopped) 999 return; 1000 1001 cpus_stopped = 1; 1002 1003 if (num_online_cpus() == 1) { 1004 sdei_mask_local_cpu(); 1005 return; 1006 } 1007 1008 cpumask_copy(&mask, cpu_online_mask); 1009 cpumask_clear_cpu(smp_processor_id(), &mask); 1010 1011 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); 1012 1013 pr_crit("SMP: stopping secondary CPUs\n"); 1014 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1015 1016 /* Wait up to one second for other CPUs to stop */ 1017 timeout = USEC_PER_SEC; 1018 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1019 udelay(1); 1020 1021 if (atomic_read(&waiting_for_crash_ipi) > 0) 1022 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 1023 cpumask_pr_args(&mask)); 1024 1025 sdei_mask_local_cpu(); 1026 } 1027 1028 bool smp_crash_stop_failed(void) 1029 { 1030 return (atomic_read(&waiting_for_crash_ipi) > 0); 1031 } 1032 #endif 1033 1034 /* 1035 * not supported here 1036 */ 1037 int setup_profiling_timer(unsigned int multiplier) 1038 { 1039 return -EINVAL; 1040 } 1041 1042 static bool have_cpu_die(void) 1043 { 1044 #ifdef CONFIG_HOTPLUG_CPU 1045 int any_cpu = raw_smp_processor_id(); 1046 1047 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) 1048 return true; 1049 #endif 1050 return false; 1051 } 1052 1053 bool cpus_are_stuck_in_kernel(void) 1054 { 1055 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1056 1057 return !!cpus_stuck_in_kernel || smp_spin_tables; 1058 } 1059