1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SMP initialisation and IPI support 4 * Based on arch/arm/kernel/smp.c 5 * 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/arm_sdei.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/smp.h> 25 #include <linux/seq_file.h> 26 #include <linux/irq.h> 27 #include <linux/irqchip/arm-gic-v3.h> 28 #include <linux/percpu.h> 29 #include <linux/clockchips.h> 30 #include <linux/completion.h> 31 #include <linux/of.h> 32 #include <linux/irq_work.h> 33 #include <linux/kexec.h> 34 #include <linux/kvm_host.h> 35 36 #include <asm/alternative.h> 37 #include <asm/atomic.h> 38 #include <asm/cacheflush.h> 39 #include <asm/cpu.h> 40 #include <asm/cputype.h> 41 #include <asm/cpu_ops.h> 42 #include <asm/daifflags.h> 43 #include <asm/kvm_mmu.h> 44 #include <asm/mmu_context.h> 45 #include <asm/numa.h> 46 #include <asm/pgtable.h> 47 #include <asm/pgalloc.h> 48 #include <asm/processor.h> 49 #include <asm/smp_plat.h> 50 #include <asm/sections.h> 51 #include <asm/tlbflush.h> 52 #include <asm/ptrace.h> 53 #include <asm/virt.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/ipi.h> 57 58 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 59 EXPORT_PER_CPU_SYMBOL(cpu_number); 60 61 /* 62 * as from 2.5, kernels no longer have an init_tasks structure 63 * so we need some other way of telling a new secondary core 64 * where to place its SVC stack 65 */ 66 struct secondary_data secondary_data; 67 /* Number of CPUs which aren't online, but looping in kernel text. */ 68 static int cpus_stuck_in_kernel; 69 70 enum ipi_msg_type { 71 IPI_RESCHEDULE, 72 IPI_CALL_FUNC, 73 IPI_CPU_STOP, 74 IPI_CPU_CRASH_STOP, 75 IPI_TIMER, 76 IPI_IRQ_WORK, 77 IPI_WAKEUP 78 }; 79 80 #ifdef CONFIG_HOTPLUG_CPU 81 static int op_cpu_kill(unsigned int cpu); 82 #else 83 static inline int op_cpu_kill(unsigned int cpu) 84 { 85 return -ENOSYS; 86 } 87 #endif 88 89 90 /* 91 * Boot a secondary CPU, and assign it the specified idle task. 92 * This also gives us the initial stack to use for this CPU. 93 */ 94 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 95 { 96 const struct cpu_operations *ops = get_cpu_ops(cpu); 97 98 if (ops->cpu_boot) 99 return ops->cpu_boot(cpu); 100 101 return -EOPNOTSUPP; 102 } 103 104 static DECLARE_COMPLETION(cpu_running); 105 106 int __cpu_up(unsigned int cpu, struct task_struct *idle) 107 { 108 int ret; 109 long status; 110 111 /* 112 * We need to tell the secondary core where to find its stack and the 113 * page tables. 114 */ 115 secondary_data.task = idle; 116 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 117 update_cpu_boot_status(CPU_MMU_OFF); 118 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 119 120 /* Now bring the CPU into our world */ 121 ret = boot_secondary(cpu, idle); 122 if (ret) { 123 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 124 return ret; 125 } 126 127 /* 128 * CPU was successfully started, wait for it to come online or 129 * time out. 130 */ 131 wait_for_completion_timeout(&cpu_running, 132 msecs_to_jiffies(5000)); 133 if (cpu_online(cpu)) 134 return 0; 135 136 pr_crit("CPU%u: failed to come online\n", cpu); 137 secondary_data.task = NULL; 138 secondary_data.stack = NULL; 139 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 140 status = READ_ONCE(secondary_data.status); 141 if (status == CPU_MMU_OFF) 142 status = READ_ONCE(__early_cpu_boot_status); 143 144 switch (status & CPU_BOOT_STATUS_MASK) { 145 default: 146 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 147 cpu, status); 148 cpus_stuck_in_kernel++; 149 break; 150 case CPU_KILL_ME: 151 if (!op_cpu_kill(cpu)) { 152 pr_crit("CPU%u: died during early boot\n", cpu); 153 break; 154 } 155 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 156 /* Fall through */ 157 case CPU_STUCK_IN_KERNEL: 158 pr_crit("CPU%u: is stuck in kernel\n", cpu); 159 if (status & CPU_STUCK_REASON_52_BIT_VA) 160 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); 161 if (status & CPU_STUCK_REASON_NO_GRAN) { 162 pr_crit("CPU%u: does not support %luK granule\n", 163 cpu, PAGE_SIZE / SZ_1K); 164 } 165 cpus_stuck_in_kernel++; 166 break; 167 case CPU_PANIC_KERNEL: 168 panic("CPU%u detected unsupported configuration\n", cpu); 169 } 170 171 return -EIO; 172 } 173 174 static void init_gic_priority_masking(void) 175 { 176 u32 cpuflags; 177 178 if (WARN_ON(!gic_enable_sre())) 179 return; 180 181 cpuflags = read_sysreg(daif); 182 183 WARN_ON(!(cpuflags & PSR_I_BIT)); 184 185 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); 186 } 187 188 /* 189 * This is the secondary CPU boot entry. We're using this CPUs 190 * idle thread stack, but a set of temporary page tables. 191 */ 192 asmlinkage notrace void secondary_start_kernel(void) 193 { 194 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 195 struct mm_struct *mm = &init_mm; 196 const struct cpu_operations *ops; 197 unsigned int cpu; 198 199 cpu = task_cpu(current); 200 set_my_cpu_offset(per_cpu_offset(cpu)); 201 202 /* 203 * All kernel threads share the same mm context; grab a 204 * reference and switch to it. 205 */ 206 mmgrab(mm); 207 current->active_mm = mm; 208 209 /* 210 * TTBR0 is only used for the identity mapping at this stage. Make it 211 * point to zero page to avoid speculatively fetching new entries. 212 */ 213 cpu_uninstall_idmap(); 214 215 if (system_uses_irq_prio_masking()) 216 init_gic_priority_masking(); 217 218 preempt_disable(); 219 trace_hardirqs_off(); 220 221 /* 222 * If the system has established the capabilities, make sure 223 * this CPU ticks all of those. If it doesn't, the CPU will 224 * fail to come online. 225 */ 226 check_local_cpu_capabilities(); 227 228 ops = get_cpu_ops(cpu); 229 if (ops->cpu_postboot) 230 ops->cpu_postboot(); 231 232 /* 233 * Log the CPU info before it is marked online and might get read. 234 */ 235 cpuinfo_store_cpu(); 236 237 /* 238 * Enable GIC and timers. 239 */ 240 notify_cpu_starting(cpu); 241 242 store_cpu_topology(cpu); 243 numa_add_cpu(cpu); 244 245 /* 246 * OK, now it's safe to let the boot CPU continue. Wait for 247 * the CPU migration code to notice that the CPU is online 248 * before we continue. 249 */ 250 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 251 cpu, (unsigned long)mpidr, 252 read_cpuid_id()); 253 update_cpu_boot_status(CPU_BOOT_SUCCESS); 254 set_cpu_online(cpu, true); 255 complete(&cpu_running); 256 257 local_daif_restore(DAIF_PROCCTX); 258 259 /* 260 * OK, it's off to the idle thread for us 261 */ 262 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 263 } 264 265 #ifdef CONFIG_HOTPLUG_CPU 266 static int op_cpu_disable(unsigned int cpu) 267 { 268 const struct cpu_operations *ops = get_cpu_ops(cpu); 269 270 /* 271 * If we don't have a cpu_die method, abort before we reach the point 272 * of no return. CPU0 may not have an cpu_ops, so test for it. 273 */ 274 if (!ops || !ops->cpu_die) 275 return -EOPNOTSUPP; 276 277 /* 278 * We may need to abort a hot unplug for some other mechanism-specific 279 * reason. 280 */ 281 if (ops->cpu_disable) 282 return ops->cpu_disable(cpu); 283 284 return 0; 285 } 286 287 /* 288 * __cpu_disable runs on the processor to be shutdown. 289 */ 290 int __cpu_disable(void) 291 { 292 unsigned int cpu = smp_processor_id(); 293 int ret; 294 295 ret = op_cpu_disable(cpu); 296 if (ret) 297 return ret; 298 299 remove_cpu_topology(cpu); 300 numa_remove_cpu(cpu); 301 302 /* 303 * Take this CPU offline. Once we clear this, we can't return, 304 * and we must not schedule until we're ready to give up the cpu. 305 */ 306 set_cpu_online(cpu, false); 307 308 /* 309 * OK - migrate IRQs away from this CPU 310 */ 311 irq_migrate_all_off_this_cpu(); 312 313 return 0; 314 } 315 316 static int op_cpu_kill(unsigned int cpu) 317 { 318 const struct cpu_operations *ops = get_cpu_ops(cpu); 319 320 /* 321 * If we have no means of synchronising with the dying CPU, then assume 322 * that it is really dead. We can only wait for an arbitrary length of 323 * time and hope that it's dead, so let's skip the wait and just hope. 324 */ 325 if (!ops->cpu_kill) 326 return 0; 327 328 return ops->cpu_kill(cpu); 329 } 330 331 /* 332 * called on the thread which is asking for a CPU to be shutdown - 333 * waits until shutdown has completed, or it is timed out. 334 */ 335 void __cpu_die(unsigned int cpu) 336 { 337 int err; 338 339 if (!cpu_wait_death(cpu, 5)) { 340 pr_crit("CPU%u: cpu didn't die\n", cpu); 341 return; 342 } 343 pr_notice("CPU%u: shutdown\n", cpu); 344 345 /* 346 * Now that the dying CPU is beyond the point of no return w.r.t. 347 * in-kernel synchronisation, try to get the firwmare to help us to 348 * verify that it has really left the kernel before we consider 349 * clobbering anything it might still be using. 350 */ 351 err = op_cpu_kill(cpu); 352 if (err) 353 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); 354 } 355 356 /* 357 * Called from the idle thread for the CPU which has been shutdown. 358 * 359 */ 360 void cpu_die(void) 361 { 362 unsigned int cpu = smp_processor_id(); 363 const struct cpu_operations *ops = get_cpu_ops(cpu); 364 365 idle_task_exit(); 366 367 local_daif_mask(); 368 369 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 370 (void)cpu_report_death(); 371 372 /* 373 * Actually shutdown the CPU. This must never fail. The specific hotplug 374 * mechanism must perform all required cache maintenance to ensure that 375 * no dirty lines are lost in the process of shutting down the CPU. 376 */ 377 ops->cpu_die(cpu); 378 379 BUG(); 380 } 381 #endif 382 383 static void __cpu_try_die(int cpu) 384 { 385 #ifdef CONFIG_HOTPLUG_CPU 386 const struct cpu_operations *ops = get_cpu_ops(cpu); 387 388 if (ops && ops->cpu_die) 389 ops->cpu_die(cpu); 390 #endif 391 } 392 393 /* 394 * Kill the calling secondary CPU, early in bringup before it is turned 395 * online. 396 */ 397 void cpu_die_early(void) 398 { 399 int cpu = smp_processor_id(); 400 401 pr_crit("CPU%d: will not boot\n", cpu); 402 403 /* Mark this CPU absent */ 404 set_cpu_present(cpu, 0); 405 406 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { 407 update_cpu_boot_status(CPU_KILL_ME); 408 __cpu_try_die(cpu); 409 } 410 411 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 412 413 cpu_park_loop(); 414 } 415 416 static void __init hyp_mode_check(void) 417 { 418 if (is_hyp_mode_available()) 419 pr_info("CPU: All CPU(s) started at EL2\n"); 420 else if (is_hyp_mode_mismatched()) 421 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 422 "CPU: CPUs started in inconsistent modes"); 423 else 424 pr_info("CPU: All CPU(s) started at EL1\n"); 425 if (IS_ENABLED(CONFIG_KVM)) 426 kvm_compute_layout(); 427 } 428 429 void __init smp_cpus_done(unsigned int max_cpus) 430 { 431 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 432 setup_cpu_features(); 433 hyp_mode_check(); 434 apply_alternatives_all(); 435 mark_linear_text_alias_ro(); 436 } 437 438 void __init smp_prepare_boot_cpu(void) 439 { 440 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 441 cpuinfo_store_boot_cpu(); 442 443 /* 444 * We now know enough about the boot CPU to apply the 445 * alternatives that cannot wait until interrupt handling 446 * and/or scheduling is enabled. 447 */ 448 apply_boot_alternatives(); 449 450 /* Conditionally switch to GIC PMR for interrupt masking */ 451 if (system_uses_irq_prio_masking()) 452 init_gic_priority_masking(); 453 } 454 455 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 456 { 457 const __be32 *cell; 458 u64 hwid; 459 460 /* 461 * A cpu node with missing "reg" property is 462 * considered invalid to build a cpu_logical_map 463 * entry. 464 */ 465 cell = of_get_property(dn, "reg", NULL); 466 if (!cell) { 467 pr_err("%pOF: missing reg property\n", dn); 468 return INVALID_HWID; 469 } 470 471 hwid = of_read_number(cell, of_n_addr_cells(dn)); 472 /* 473 * Non affinity bits must be set to 0 in the DT 474 */ 475 if (hwid & ~MPIDR_HWID_BITMASK) { 476 pr_err("%pOF: invalid reg property\n", dn); 477 return INVALID_HWID; 478 } 479 return hwid; 480 } 481 482 /* 483 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 484 * entries and check for duplicates. If any is found just ignore the 485 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 486 * matching valid MPIDR values. 487 */ 488 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 489 { 490 unsigned int i; 491 492 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 493 if (cpu_logical_map(i) == hwid) 494 return true; 495 return false; 496 } 497 498 /* 499 * Initialize cpu operations for a logical cpu and 500 * set it in the possible mask on success 501 */ 502 static int __init smp_cpu_setup(int cpu) 503 { 504 const struct cpu_operations *ops; 505 506 if (init_cpu_ops(cpu)) 507 return -ENODEV; 508 509 ops = get_cpu_ops(cpu); 510 if (ops->cpu_init(cpu)) 511 return -ENODEV; 512 513 set_cpu_possible(cpu, true); 514 515 return 0; 516 } 517 518 static bool bootcpu_valid __initdata; 519 static unsigned int cpu_count = 1; 520 521 #ifdef CONFIG_ACPI 522 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 523 524 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 525 { 526 return &cpu_madt_gicc[cpu]; 527 } 528 529 /* 530 * acpi_map_gic_cpu_interface - parse processor MADT entry 531 * 532 * Carry out sanity checks on MADT processor entry and initialize 533 * cpu_logical_map on success 534 */ 535 static void __init 536 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 537 { 538 u64 hwid = processor->arm_mpidr; 539 540 if (!(processor->flags & ACPI_MADT_ENABLED)) { 541 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 542 return; 543 } 544 545 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 546 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 547 return; 548 } 549 550 if (is_mpidr_duplicate(cpu_count, hwid)) { 551 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 552 return; 553 } 554 555 /* Check if GICC structure of boot CPU is available in the MADT */ 556 if (cpu_logical_map(0) == hwid) { 557 if (bootcpu_valid) { 558 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 559 hwid); 560 return; 561 } 562 bootcpu_valid = true; 563 cpu_madt_gicc[0] = *processor; 564 return; 565 } 566 567 if (cpu_count >= NR_CPUS) 568 return; 569 570 /* map the logical cpu id to cpu MPIDR */ 571 cpu_logical_map(cpu_count) = hwid; 572 573 cpu_madt_gicc[cpu_count] = *processor; 574 575 /* 576 * Set-up the ACPI parking protocol cpu entries 577 * while initializing the cpu_logical_map to 578 * avoid parsing MADT entries multiple times for 579 * nothing (ie a valid cpu_logical_map entry should 580 * contain a valid parking protocol data set to 581 * initialize the cpu if the parking protocol is 582 * the only available enable method). 583 */ 584 acpi_set_mailbox_entry(cpu_count, processor); 585 586 cpu_count++; 587 } 588 589 static int __init 590 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, 591 const unsigned long end) 592 { 593 struct acpi_madt_generic_interrupt *processor; 594 595 processor = (struct acpi_madt_generic_interrupt *)header; 596 if (BAD_MADT_GICC_ENTRY(processor, end)) 597 return -EINVAL; 598 599 acpi_table_print_madt_entry(&header->common); 600 601 acpi_map_gic_cpu_interface(processor); 602 603 return 0; 604 } 605 606 static void __init acpi_parse_and_init_cpus(void) 607 { 608 int i; 609 610 /* 611 * do a walk of MADT to determine how many CPUs 612 * we have including disabled CPUs, and get information 613 * we need for SMP init. 614 */ 615 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 616 acpi_parse_gic_cpu_interface, 0); 617 618 /* 619 * In ACPI, SMP and CPU NUMA information is provided in separate 620 * static tables, namely the MADT and the SRAT. 621 * 622 * Thus, it is simpler to first create the cpu logical map through 623 * an MADT walk and then map the logical cpus to their node ids 624 * as separate steps. 625 */ 626 acpi_map_cpus_to_nodes(); 627 628 for (i = 0; i < nr_cpu_ids; i++) 629 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 630 } 631 #else 632 #define acpi_parse_and_init_cpus(...) do { } while (0) 633 #endif 634 635 /* 636 * Enumerate the possible CPU set from the device tree and build the 637 * cpu logical map array containing MPIDR values related to logical 638 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 639 */ 640 static void __init of_parse_and_init_cpus(void) 641 { 642 struct device_node *dn; 643 644 for_each_of_cpu_node(dn) { 645 u64 hwid = of_get_cpu_mpidr(dn); 646 647 if (hwid == INVALID_HWID) 648 goto next; 649 650 if (is_mpidr_duplicate(cpu_count, hwid)) { 651 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 652 dn); 653 goto next; 654 } 655 656 /* 657 * The numbering scheme requires that the boot CPU 658 * must be assigned logical id 0. Record it so that 659 * the logical map built from DT is validated and can 660 * be used. 661 */ 662 if (hwid == cpu_logical_map(0)) { 663 if (bootcpu_valid) { 664 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 665 dn); 666 goto next; 667 } 668 669 bootcpu_valid = true; 670 early_map_cpu_to_node(0, of_node_to_nid(dn)); 671 672 /* 673 * cpu_logical_map has already been 674 * initialized and the boot cpu doesn't need 675 * the enable-method so continue without 676 * incrementing cpu. 677 */ 678 continue; 679 } 680 681 if (cpu_count >= NR_CPUS) 682 goto next; 683 684 pr_debug("cpu logical map 0x%llx\n", hwid); 685 cpu_logical_map(cpu_count) = hwid; 686 687 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 688 next: 689 cpu_count++; 690 } 691 } 692 693 /* 694 * Enumerate the possible CPU set from the device tree or ACPI and build the 695 * cpu logical map array containing MPIDR values related to logical 696 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 697 */ 698 void __init smp_init_cpus(void) 699 { 700 int i; 701 702 if (acpi_disabled) 703 of_parse_and_init_cpus(); 704 else 705 acpi_parse_and_init_cpus(); 706 707 if (cpu_count > nr_cpu_ids) 708 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 709 cpu_count, nr_cpu_ids); 710 711 if (!bootcpu_valid) { 712 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 713 return; 714 } 715 716 /* 717 * We need to set the cpu_logical_map entries before enabling 718 * the cpus so that cpu processor description entries (DT cpu nodes 719 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 720 * with entries in cpu_logical_map while initializing the cpus. 721 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 722 */ 723 for (i = 1; i < nr_cpu_ids; i++) { 724 if (cpu_logical_map(i) != INVALID_HWID) { 725 if (smp_cpu_setup(i)) 726 cpu_logical_map(i) = INVALID_HWID; 727 } 728 } 729 } 730 731 void __init smp_prepare_cpus(unsigned int max_cpus) 732 { 733 const struct cpu_operations *ops; 734 int err; 735 unsigned int cpu; 736 unsigned int this_cpu; 737 738 init_cpu_topology(); 739 740 this_cpu = smp_processor_id(); 741 store_cpu_topology(this_cpu); 742 numa_store_cpu_info(this_cpu); 743 numa_add_cpu(this_cpu); 744 745 /* 746 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 747 * secondary CPUs present. 748 */ 749 if (max_cpus == 0) 750 return; 751 752 /* 753 * Initialise the present map (which describes the set of CPUs 754 * actually populated at the present time) and release the 755 * secondaries from the bootloader. 756 */ 757 for_each_possible_cpu(cpu) { 758 759 per_cpu(cpu_number, cpu) = cpu; 760 761 if (cpu == smp_processor_id()) 762 continue; 763 764 ops = get_cpu_ops(cpu); 765 if (!ops) 766 continue; 767 768 err = ops->cpu_prepare(cpu); 769 if (err) 770 continue; 771 772 set_cpu_present(cpu, true); 773 numa_store_cpu_info(cpu); 774 } 775 } 776 777 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 778 779 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 780 { 781 __smp_cross_call = fn; 782 } 783 784 static const char *ipi_types[NR_IPI] __tracepoint_string = { 785 #define S(x,s) [x] = s 786 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 787 S(IPI_CALL_FUNC, "Function call interrupts"), 788 S(IPI_CPU_STOP, "CPU stop interrupts"), 789 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 790 S(IPI_TIMER, "Timer broadcast interrupts"), 791 S(IPI_IRQ_WORK, "IRQ work interrupts"), 792 S(IPI_WAKEUP, "CPU wake-up interrupts"), 793 }; 794 795 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 796 { 797 trace_ipi_raise(target, ipi_types[ipinr]); 798 __smp_cross_call(target, ipinr); 799 } 800 801 void show_ipi_list(struct seq_file *p, int prec) 802 { 803 unsigned int cpu, i; 804 805 for (i = 0; i < NR_IPI; i++) { 806 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 807 prec >= 4 ? " " : ""); 808 for_each_online_cpu(cpu) 809 seq_printf(p, "%10u ", 810 __get_irq_stat(cpu, ipi_irqs[i])); 811 seq_printf(p, " %s\n", ipi_types[i]); 812 } 813 } 814 815 u64 smp_irq_stat_cpu(unsigned int cpu) 816 { 817 u64 sum = 0; 818 int i; 819 820 for (i = 0; i < NR_IPI; i++) 821 sum += __get_irq_stat(cpu, ipi_irqs[i]); 822 823 return sum; 824 } 825 826 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 827 { 828 smp_cross_call(mask, IPI_CALL_FUNC); 829 } 830 831 void arch_send_call_function_single_ipi(int cpu) 832 { 833 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 834 } 835 836 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 837 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 838 { 839 smp_cross_call(mask, IPI_WAKEUP); 840 } 841 #endif 842 843 #ifdef CONFIG_IRQ_WORK 844 void arch_irq_work_raise(void) 845 { 846 if (__smp_cross_call) 847 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 848 } 849 #endif 850 851 static void local_cpu_stop(void) 852 { 853 set_cpu_online(smp_processor_id(), false); 854 855 local_daif_mask(); 856 sdei_mask_local_cpu(); 857 cpu_park_loop(); 858 } 859 860 /* 861 * We need to implement panic_smp_self_stop() for parallel panic() calls, so 862 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip 863 * CPUs that have already stopped themselves. 864 */ 865 void panic_smp_self_stop(void) 866 { 867 local_cpu_stop(); 868 } 869 870 #ifdef CONFIG_KEXEC_CORE 871 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 872 #endif 873 874 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 875 { 876 #ifdef CONFIG_KEXEC_CORE 877 crash_save_cpu(regs, cpu); 878 879 atomic_dec(&waiting_for_crash_ipi); 880 881 local_irq_disable(); 882 sdei_mask_local_cpu(); 883 884 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 885 __cpu_try_die(cpu); 886 887 /* just in case */ 888 cpu_park_loop(); 889 #endif 890 } 891 892 /* 893 * Main handler for inter-processor interrupts 894 */ 895 void handle_IPI(int ipinr, struct pt_regs *regs) 896 { 897 unsigned int cpu = smp_processor_id(); 898 struct pt_regs *old_regs = set_irq_regs(regs); 899 900 if ((unsigned)ipinr < NR_IPI) { 901 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 902 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 903 } 904 905 switch (ipinr) { 906 case IPI_RESCHEDULE: 907 scheduler_ipi(); 908 break; 909 910 case IPI_CALL_FUNC: 911 irq_enter(); 912 generic_smp_call_function_interrupt(); 913 irq_exit(); 914 break; 915 916 case IPI_CPU_STOP: 917 irq_enter(); 918 local_cpu_stop(); 919 irq_exit(); 920 break; 921 922 case IPI_CPU_CRASH_STOP: 923 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 924 irq_enter(); 925 ipi_cpu_crash_stop(cpu, regs); 926 927 unreachable(); 928 } 929 break; 930 931 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 932 case IPI_TIMER: 933 irq_enter(); 934 tick_receive_broadcast(); 935 irq_exit(); 936 break; 937 #endif 938 939 #ifdef CONFIG_IRQ_WORK 940 case IPI_IRQ_WORK: 941 irq_enter(); 942 irq_work_run(); 943 irq_exit(); 944 break; 945 #endif 946 947 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 948 case IPI_WAKEUP: 949 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 950 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 951 cpu); 952 break; 953 #endif 954 955 default: 956 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 957 break; 958 } 959 960 if ((unsigned)ipinr < NR_IPI) 961 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 962 set_irq_regs(old_regs); 963 } 964 965 void smp_send_reschedule(int cpu) 966 { 967 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 968 } 969 970 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 971 void tick_broadcast(const struct cpumask *mask) 972 { 973 smp_cross_call(mask, IPI_TIMER); 974 } 975 #endif 976 977 /* 978 * The number of CPUs online, not counting this CPU (which may not be 979 * fully online and so not counted in num_online_cpus()). 980 */ 981 static inline unsigned int num_other_online_cpus(void) 982 { 983 unsigned int this_cpu_online = cpu_online(smp_processor_id()); 984 985 return num_online_cpus() - this_cpu_online; 986 } 987 988 void smp_send_stop(void) 989 { 990 unsigned long timeout; 991 992 if (num_other_online_cpus()) { 993 cpumask_t mask; 994 995 cpumask_copy(&mask, cpu_online_mask); 996 cpumask_clear_cpu(smp_processor_id(), &mask); 997 998 if (system_state <= SYSTEM_RUNNING) 999 pr_crit("SMP: stopping secondary CPUs\n"); 1000 smp_cross_call(&mask, IPI_CPU_STOP); 1001 } 1002 1003 /* Wait up to one second for other CPUs to stop */ 1004 timeout = USEC_PER_SEC; 1005 while (num_other_online_cpus() && timeout--) 1006 udelay(1); 1007 1008 if (num_other_online_cpus()) 1009 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1010 cpumask_pr_args(cpu_online_mask)); 1011 1012 sdei_mask_local_cpu(); 1013 } 1014 1015 #ifdef CONFIG_KEXEC_CORE 1016 void crash_smp_send_stop(void) 1017 { 1018 static int cpus_stopped; 1019 cpumask_t mask; 1020 unsigned long timeout; 1021 1022 /* 1023 * This function can be called twice in panic path, but obviously 1024 * we execute this only once. 1025 */ 1026 if (cpus_stopped) 1027 return; 1028 1029 cpus_stopped = 1; 1030 1031 /* 1032 * If this cpu is the only one alive at this point in time, online or 1033 * not, there are no stop messages to be sent around, so just back out. 1034 */ 1035 if (num_other_online_cpus() == 0) { 1036 sdei_mask_local_cpu(); 1037 return; 1038 } 1039 1040 cpumask_copy(&mask, cpu_online_mask); 1041 cpumask_clear_cpu(smp_processor_id(), &mask); 1042 1043 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); 1044 1045 pr_crit("SMP: stopping secondary CPUs\n"); 1046 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1047 1048 /* Wait up to one second for other CPUs to stop */ 1049 timeout = USEC_PER_SEC; 1050 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1051 udelay(1); 1052 1053 if (atomic_read(&waiting_for_crash_ipi) > 0) 1054 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", 1055 cpumask_pr_args(&mask)); 1056 1057 sdei_mask_local_cpu(); 1058 } 1059 1060 bool smp_crash_stop_failed(void) 1061 { 1062 return (atomic_read(&waiting_for_crash_ipi) > 0); 1063 } 1064 #endif 1065 1066 /* 1067 * not supported here 1068 */ 1069 int setup_profiling_timer(unsigned int multiplier) 1070 { 1071 return -EINVAL; 1072 } 1073 1074 static bool have_cpu_die(void) 1075 { 1076 #ifdef CONFIG_HOTPLUG_CPU 1077 int any_cpu = raw_smp_processor_id(); 1078 const struct cpu_operations *ops = get_cpu_ops(any_cpu); 1079 1080 if (ops && ops->cpu_die) 1081 return true; 1082 #endif 1083 return false; 1084 } 1085 1086 bool cpus_are_stuck_in_kernel(void) 1087 { 1088 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1089 1090 return !!cpus_stuck_in_kernel || smp_spin_tables; 1091 } 1092