xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kexec.h>
34 #include <linux/kvm_host.h>
35 
36 #include <asm/alternative.h>
37 #include <asm/atomic.h>
38 #include <asm/cacheflush.h>
39 #include <asm/cpu.h>
40 #include <asm/cputype.h>
41 #include <asm/cpu_ops.h>
42 #include <asm/daifflags.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/numa.h>
46 #include <asm/pgtable.h>
47 #include <asm/pgalloc.h>
48 #include <asm/processor.h>
49 #include <asm/smp_plat.h>
50 #include <asm/sections.h>
51 #include <asm/tlbflush.h>
52 #include <asm/ptrace.h>
53 #include <asm/virt.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ipi.h>
57 
58 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
59 EXPORT_PER_CPU_SYMBOL(cpu_number);
60 
61 /*
62  * as from 2.5, kernels no longer have an init_tasks structure
63  * so we need some other way of telling a new secondary core
64  * where to place its SVC stack
65  */
66 struct secondary_data secondary_data;
67 /* Number of CPUs which aren't online, but looping in kernel text. */
68 static int cpus_stuck_in_kernel;
69 
70 enum ipi_msg_type {
71 	IPI_RESCHEDULE,
72 	IPI_CALL_FUNC,
73 	IPI_CPU_STOP,
74 	IPI_CPU_CRASH_STOP,
75 	IPI_TIMER,
76 	IPI_IRQ_WORK,
77 	IPI_WAKEUP
78 };
79 
80 #ifdef CONFIG_HOTPLUG_CPU
81 static int op_cpu_kill(unsigned int cpu);
82 #else
83 static inline int op_cpu_kill(unsigned int cpu)
84 {
85 	return -ENOSYS;
86 }
87 #endif
88 
89 
90 /*
91  * Boot a secondary CPU, and assign it the specified idle task.
92  * This also gives us the initial stack to use for this CPU.
93  */
94 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
95 {
96 	const struct cpu_operations *ops = get_cpu_ops(cpu);
97 
98 	if (ops->cpu_boot)
99 		return ops->cpu_boot(cpu);
100 
101 	return -EOPNOTSUPP;
102 }
103 
104 static DECLARE_COMPLETION(cpu_running);
105 
106 int __cpu_up(unsigned int cpu, struct task_struct *idle)
107 {
108 	int ret;
109 	long status;
110 
111 	/*
112 	 * We need to tell the secondary core where to find its stack and the
113 	 * page tables.
114 	 */
115 	secondary_data.task = idle;
116 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
117 	update_cpu_boot_status(CPU_MMU_OFF);
118 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
119 
120 	/* Now bring the CPU into our world */
121 	ret = boot_secondary(cpu, idle);
122 	if (ret) {
123 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
124 		return ret;
125 	}
126 
127 	/*
128 	 * CPU was successfully started, wait for it to come online or
129 	 * time out.
130 	 */
131 	wait_for_completion_timeout(&cpu_running,
132 				    msecs_to_jiffies(5000));
133 	if (cpu_online(cpu))
134 		return 0;
135 
136 	pr_crit("CPU%u: failed to come online\n", cpu);
137 	secondary_data.task = NULL;
138 	secondary_data.stack = NULL;
139 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
140 	status = READ_ONCE(secondary_data.status);
141 	if (status == CPU_MMU_OFF)
142 		status = READ_ONCE(__early_cpu_boot_status);
143 
144 	switch (status & CPU_BOOT_STATUS_MASK) {
145 	default:
146 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
147 		       cpu, status);
148 		cpus_stuck_in_kernel++;
149 		break;
150 	case CPU_KILL_ME:
151 		if (!op_cpu_kill(cpu)) {
152 			pr_crit("CPU%u: died during early boot\n", cpu);
153 			break;
154 		}
155 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
156 		/* Fall through */
157 	case CPU_STUCK_IN_KERNEL:
158 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
159 		if (status & CPU_STUCK_REASON_52_BIT_VA)
160 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
161 		if (status & CPU_STUCK_REASON_NO_GRAN) {
162 			pr_crit("CPU%u: does not support %luK granule\n",
163 				cpu, PAGE_SIZE / SZ_1K);
164 		}
165 		cpus_stuck_in_kernel++;
166 		break;
167 	case CPU_PANIC_KERNEL:
168 		panic("CPU%u detected unsupported configuration\n", cpu);
169 	}
170 
171 	return -EIO;
172 }
173 
174 static void init_gic_priority_masking(void)
175 {
176 	u32 cpuflags;
177 
178 	if (WARN_ON(!gic_enable_sre()))
179 		return;
180 
181 	cpuflags = read_sysreg(daif);
182 
183 	WARN_ON(!(cpuflags & PSR_I_BIT));
184 
185 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
186 }
187 
188 /*
189  * This is the secondary CPU boot entry.  We're using this CPUs
190  * idle thread stack, but a set of temporary page tables.
191  */
192 asmlinkage notrace void secondary_start_kernel(void)
193 {
194 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
195 	struct mm_struct *mm = &init_mm;
196 	const struct cpu_operations *ops;
197 	unsigned int cpu;
198 
199 	cpu = task_cpu(current);
200 	set_my_cpu_offset(per_cpu_offset(cpu));
201 
202 	/*
203 	 * All kernel threads share the same mm context; grab a
204 	 * reference and switch to it.
205 	 */
206 	mmgrab(mm);
207 	current->active_mm = mm;
208 
209 	/*
210 	 * TTBR0 is only used for the identity mapping at this stage. Make it
211 	 * point to zero page to avoid speculatively fetching new entries.
212 	 */
213 	cpu_uninstall_idmap();
214 
215 	if (system_uses_irq_prio_masking())
216 		init_gic_priority_masking();
217 
218 	preempt_disable();
219 	trace_hardirqs_off();
220 
221 	/*
222 	 * If the system has established the capabilities, make sure
223 	 * this CPU ticks all of those. If it doesn't, the CPU will
224 	 * fail to come online.
225 	 */
226 	check_local_cpu_capabilities();
227 
228 	ops = get_cpu_ops(cpu);
229 	if (ops->cpu_postboot)
230 		ops->cpu_postboot();
231 
232 	/*
233 	 * Log the CPU info before it is marked online and might get read.
234 	 */
235 	cpuinfo_store_cpu();
236 
237 	/*
238 	 * Enable GIC and timers.
239 	 */
240 	notify_cpu_starting(cpu);
241 
242 	store_cpu_topology(cpu);
243 	numa_add_cpu(cpu);
244 
245 	/*
246 	 * OK, now it's safe to let the boot CPU continue.  Wait for
247 	 * the CPU migration code to notice that the CPU is online
248 	 * before we continue.
249 	 */
250 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
251 					 cpu, (unsigned long)mpidr,
252 					 read_cpuid_id());
253 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
254 	set_cpu_online(cpu, true);
255 	complete(&cpu_running);
256 
257 	local_daif_restore(DAIF_PROCCTX);
258 
259 	/*
260 	 * OK, it's off to the idle thread for us
261 	 */
262 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
263 }
264 
265 #ifdef CONFIG_HOTPLUG_CPU
266 static int op_cpu_disable(unsigned int cpu)
267 {
268 	const struct cpu_operations *ops = get_cpu_ops(cpu);
269 
270 	/*
271 	 * If we don't have a cpu_die method, abort before we reach the point
272 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
273 	 */
274 	if (!ops || !ops->cpu_die)
275 		return -EOPNOTSUPP;
276 
277 	/*
278 	 * We may need to abort a hot unplug for some other mechanism-specific
279 	 * reason.
280 	 */
281 	if (ops->cpu_disable)
282 		return ops->cpu_disable(cpu);
283 
284 	return 0;
285 }
286 
287 /*
288  * __cpu_disable runs on the processor to be shutdown.
289  */
290 int __cpu_disable(void)
291 {
292 	unsigned int cpu = smp_processor_id();
293 	int ret;
294 
295 	ret = op_cpu_disable(cpu);
296 	if (ret)
297 		return ret;
298 
299 	remove_cpu_topology(cpu);
300 	numa_remove_cpu(cpu);
301 
302 	/*
303 	 * Take this CPU offline.  Once we clear this, we can't return,
304 	 * and we must not schedule until we're ready to give up the cpu.
305 	 */
306 	set_cpu_online(cpu, false);
307 
308 	/*
309 	 * OK - migrate IRQs away from this CPU
310 	 */
311 	irq_migrate_all_off_this_cpu();
312 
313 	return 0;
314 }
315 
316 static int op_cpu_kill(unsigned int cpu)
317 {
318 	const struct cpu_operations *ops = get_cpu_ops(cpu);
319 
320 	/*
321 	 * If we have no means of synchronising with the dying CPU, then assume
322 	 * that it is really dead. We can only wait for an arbitrary length of
323 	 * time and hope that it's dead, so let's skip the wait and just hope.
324 	 */
325 	if (!ops->cpu_kill)
326 		return 0;
327 
328 	return ops->cpu_kill(cpu);
329 }
330 
331 /*
332  * called on the thread which is asking for a CPU to be shutdown -
333  * waits until shutdown has completed, or it is timed out.
334  */
335 void __cpu_die(unsigned int cpu)
336 {
337 	int err;
338 
339 	if (!cpu_wait_death(cpu, 5)) {
340 		pr_crit("CPU%u: cpu didn't die\n", cpu);
341 		return;
342 	}
343 	pr_notice("CPU%u: shutdown\n", cpu);
344 
345 	/*
346 	 * Now that the dying CPU is beyond the point of no return w.r.t.
347 	 * in-kernel synchronisation, try to get the firwmare to help us to
348 	 * verify that it has really left the kernel before we consider
349 	 * clobbering anything it might still be using.
350 	 */
351 	err = op_cpu_kill(cpu);
352 	if (err)
353 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
354 }
355 
356 /*
357  * Called from the idle thread for the CPU which has been shutdown.
358  *
359  */
360 void cpu_die(void)
361 {
362 	unsigned int cpu = smp_processor_id();
363 	const struct cpu_operations *ops = get_cpu_ops(cpu);
364 
365 	idle_task_exit();
366 
367 	local_daif_mask();
368 
369 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
370 	(void)cpu_report_death();
371 
372 	/*
373 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
374 	 * mechanism must perform all required cache maintenance to ensure that
375 	 * no dirty lines are lost in the process of shutting down the CPU.
376 	 */
377 	ops->cpu_die(cpu);
378 
379 	BUG();
380 }
381 #endif
382 
383 static void __cpu_try_die(int cpu)
384 {
385 #ifdef CONFIG_HOTPLUG_CPU
386 	const struct cpu_operations *ops = get_cpu_ops(cpu);
387 
388 	if (ops && ops->cpu_die)
389 		ops->cpu_die(cpu);
390 #endif
391 }
392 
393 /*
394  * Kill the calling secondary CPU, early in bringup before it is turned
395  * online.
396  */
397 void cpu_die_early(void)
398 {
399 	int cpu = smp_processor_id();
400 
401 	pr_crit("CPU%d: will not boot\n", cpu);
402 
403 	/* Mark this CPU absent */
404 	set_cpu_present(cpu, 0);
405 
406 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
407 		update_cpu_boot_status(CPU_KILL_ME);
408 		__cpu_try_die(cpu);
409 	}
410 
411 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
412 
413 	cpu_park_loop();
414 }
415 
416 static void __init hyp_mode_check(void)
417 {
418 	if (is_hyp_mode_available())
419 		pr_info("CPU: All CPU(s) started at EL2\n");
420 	else if (is_hyp_mode_mismatched())
421 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
422 			   "CPU: CPUs started in inconsistent modes");
423 	else
424 		pr_info("CPU: All CPU(s) started at EL1\n");
425 	if (IS_ENABLED(CONFIG_KVM))
426 		kvm_compute_layout();
427 }
428 
429 void __init smp_cpus_done(unsigned int max_cpus)
430 {
431 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
432 	setup_cpu_features();
433 	hyp_mode_check();
434 	apply_alternatives_all();
435 	mark_linear_text_alias_ro();
436 }
437 
438 void __init smp_prepare_boot_cpu(void)
439 {
440 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
441 	cpuinfo_store_boot_cpu();
442 
443 	/*
444 	 * We now know enough about the boot CPU to apply the
445 	 * alternatives that cannot wait until interrupt handling
446 	 * and/or scheduling is enabled.
447 	 */
448 	apply_boot_alternatives();
449 
450 	/* Conditionally switch to GIC PMR for interrupt masking */
451 	if (system_uses_irq_prio_masking())
452 		init_gic_priority_masking();
453 }
454 
455 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
456 {
457 	const __be32 *cell;
458 	u64 hwid;
459 
460 	/*
461 	 * A cpu node with missing "reg" property is
462 	 * considered invalid to build a cpu_logical_map
463 	 * entry.
464 	 */
465 	cell = of_get_property(dn, "reg", NULL);
466 	if (!cell) {
467 		pr_err("%pOF: missing reg property\n", dn);
468 		return INVALID_HWID;
469 	}
470 
471 	hwid = of_read_number(cell, of_n_addr_cells(dn));
472 	/*
473 	 * Non affinity bits must be set to 0 in the DT
474 	 */
475 	if (hwid & ~MPIDR_HWID_BITMASK) {
476 		pr_err("%pOF: invalid reg property\n", dn);
477 		return INVALID_HWID;
478 	}
479 	return hwid;
480 }
481 
482 /*
483  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
484  * entries and check for duplicates. If any is found just ignore the
485  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
486  * matching valid MPIDR values.
487  */
488 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
489 {
490 	unsigned int i;
491 
492 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
493 		if (cpu_logical_map(i) == hwid)
494 			return true;
495 	return false;
496 }
497 
498 /*
499  * Initialize cpu operations for a logical cpu and
500  * set it in the possible mask on success
501  */
502 static int __init smp_cpu_setup(int cpu)
503 {
504 	const struct cpu_operations *ops;
505 
506 	if (init_cpu_ops(cpu))
507 		return -ENODEV;
508 
509 	ops = get_cpu_ops(cpu);
510 	if (ops->cpu_init(cpu))
511 		return -ENODEV;
512 
513 	set_cpu_possible(cpu, true);
514 
515 	return 0;
516 }
517 
518 static bool bootcpu_valid __initdata;
519 static unsigned int cpu_count = 1;
520 
521 #ifdef CONFIG_ACPI
522 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
523 
524 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
525 {
526 	return &cpu_madt_gicc[cpu];
527 }
528 
529 /*
530  * acpi_map_gic_cpu_interface - parse processor MADT entry
531  *
532  * Carry out sanity checks on MADT processor entry and initialize
533  * cpu_logical_map on success
534  */
535 static void __init
536 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
537 {
538 	u64 hwid = processor->arm_mpidr;
539 
540 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
541 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
542 		return;
543 	}
544 
545 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
546 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
547 		return;
548 	}
549 
550 	if (is_mpidr_duplicate(cpu_count, hwid)) {
551 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
552 		return;
553 	}
554 
555 	/* Check if GICC structure of boot CPU is available in the MADT */
556 	if (cpu_logical_map(0) == hwid) {
557 		if (bootcpu_valid) {
558 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
559 			       hwid);
560 			return;
561 		}
562 		bootcpu_valid = true;
563 		cpu_madt_gicc[0] = *processor;
564 		return;
565 	}
566 
567 	if (cpu_count >= NR_CPUS)
568 		return;
569 
570 	/* map the logical cpu id to cpu MPIDR */
571 	cpu_logical_map(cpu_count) = hwid;
572 
573 	cpu_madt_gicc[cpu_count] = *processor;
574 
575 	/*
576 	 * Set-up the ACPI parking protocol cpu entries
577 	 * while initializing the cpu_logical_map to
578 	 * avoid parsing MADT entries multiple times for
579 	 * nothing (ie a valid cpu_logical_map entry should
580 	 * contain a valid parking protocol data set to
581 	 * initialize the cpu if the parking protocol is
582 	 * the only available enable method).
583 	 */
584 	acpi_set_mailbox_entry(cpu_count, processor);
585 
586 	cpu_count++;
587 }
588 
589 static int __init
590 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
591 			     const unsigned long end)
592 {
593 	struct acpi_madt_generic_interrupt *processor;
594 
595 	processor = (struct acpi_madt_generic_interrupt *)header;
596 	if (BAD_MADT_GICC_ENTRY(processor, end))
597 		return -EINVAL;
598 
599 	acpi_table_print_madt_entry(&header->common);
600 
601 	acpi_map_gic_cpu_interface(processor);
602 
603 	return 0;
604 }
605 
606 static void __init acpi_parse_and_init_cpus(void)
607 {
608 	int i;
609 
610 	/*
611 	 * do a walk of MADT to determine how many CPUs
612 	 * we have including disabled CPUs, and get information
613 	 * we need for SMP init.
614 	 */
615 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
616 				      acpi_parse_gic_cpu_interface, 0);
617 
618 	/*
619 	 * In ACPI, SMP and CPU NUMA information is provided in separate
620 	 * static tables, namely the MADT and the SRAT.
621 	 *
622 	 * Thus, it is simpler to first create the cpu logical map through
623 	 * an MADT walk and then map the logical cpus to their node ids
624 	 * as separate steps.
625 	 */
626 	acpi_map_cpus_to_nodes();
627 
628 	for (i = 0; i < nr_cpu_ids; i++)
629 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
630 }
631 #else
632 #define acpi_parse_and_init_cpus(...)	do { } while (0)
633 #endif
634 
635 /*
636  * Enumerate the possible CPU set from the device tree and build the
637  * cpu logical map array containing MPIDR values related to logical
638  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
639  */
640 static void __init of_parse_and_init_cpus(void)
641 {
642 	struct device_node *dn;
643 
644 	for_each_of_cpu_node(dn) {
645 		u64 hwid = of_get_cpu_mpidr(dn);
646 
647 		if (hwid == INVALID_HWID)
648 			goto next;
649 
650 		if (is_mpidr_duplicate(cpu_count, hwid)) {
651 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
652 				dn);
653 			goto next;
654 		}
655 
656 		/*
657 		 * The numbering scheme requires that the boot CPU
658 		 * must be assigned logical id 0. Record it so that
659 		 * the logical map built from DT is validated and can
660 		 * be used.
661 		 */
662 		if (hwid == cpu_logical_map(0)) {
663 			if (bootcpu_valid) {
664 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
665 					dn);
666 				goto next;
667 			}
668 
669 			bootcpu_valid = true;
670 			early_map_cpu_to_node(0, of_node_to_nid(dn));
671 
672 			/*
673 			 * cpu_logical_map has already been
674 			 * initialized and the boot cpu doesn't need
675 			 * the enable-method so continue without
676 			 * incrementing cpu.
677 			 */
678 			continue;
679 		}
680 
681 		if (cpu_count >= NR_CPUS)
682 			goto next;
683 
684 		pr_debug("cpu logical map 0x%llx\n", hwid);
685 		cpu_logical_map(cpu_count) = hwid;
686 
687 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
688 next:
689 		cpu_count++;
690 	}
691 }
692 
693 /*
694  * Enumerate the possible CPU set from the device tree or ACPI and build the
695  * cpu logical map array containing MPIDR values related to logical
696  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
697  */
698 void __init smp_init_cpus(void)
699 {
700 	int i;
701 
702 	if (acpi_disabled)
703 		of_parse_and_init_cpus();
704 	else
705 		acpi_parse_and_init_cpus();
706 
707 	if (cpu_count > nr_cpu_ids)
708 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
709 			cpu_count, nr_cpu_ids);
710 
711 	if (!bootcpu_valid) {
712 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
713 		return;
714 	}
715 
716 	/*
717 	 * We need to set the cpu_logical_map entries before enabling
718 	 * the cpus so that cpu processor description entries (DT cpu nodes
719 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
720 	 * with entries in cpu_logical_map while initializing the cpus.
721 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
722 	 */
723 	for (i = 1; i < nr_cpu_ids; i++) {
724 		if (cpu_logical_map(i) != INVALID_HWID) {
725 			if (smp_cpu_setup(i))
726 				cpu_logical_map(i) = INVALID_HWID;
727 		}
728 	}
729 }
730 
731 void __init smp_prepare_cpus(unsigned int max_cpus)
732 {
733 	const struct cpu_operations *ops;
734 	int err;
735 	unsigned int cpu;
736 	unsigned int this_cpu;
737 
738 	init_cpu_topology();
739 
740 	this_cpu = smp_processor_id();
741 	store_cpu_topology(this_cpu);
742 	numa_store_cpu_info(this_cpu);
743 	numa_add_cpu(this_cpu);
744 
745 	/*
746 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
747 	 * secondary CPUs present.
748 	 */
749 	if (max_cpus == 0)
750 		return;
751 
752 	/*
753 	 * Initialise the present map (which describes the set of CPUs
754 	 * actually populated at the present time) and release the
755 	 * secondaries from the bootloader.
756 	 */
757 	for_each_possible_cpu(cpu) {
758 
759 		per_cpu(cpu_number, cpu) = cpu;
760 
761 		if (cpu == smp_processor_id())
762 			continue;
763 
764 		ops = get_cpu_ops(cpu);
765 		if (!ops)
766 			continue;
767 
768 		err = ops->cpu_prepare(cpu);
769 		if (err)
770 			continue;
771 
772 		set_cpu_present(cpu, true);
773 		numa_store_cpu_info(cpu);
774 	}
775 }
776 
777 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
778 
779 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
780 {
781 	__smp_cross_call = fn;
782 }
783 
784 static const char *ipi_types[NR_IPI] __tracepoint_string = {
785 #define S(x,s)	[x] = s
786 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
787 	S(IPI_CALL_FUNC, "Function call interrupts"),
788 	S(IPI_CPU_STOP, "CPU stop interrupts"),
789 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
790 	S(IPI_TIMER, "Timer broadcast interrupts"),
791 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
792 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
793 };
794 
795 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
796 {
797 	trace_ipi_raise(target, ipi_types[ipinr]);
798 	__smp_cross_call(target, ipinr);
799 }
800 
801 void show_ipi_list(struct seq_file *p, int prec)
802 {
803 	unsigned int cpu, i;
804 
805 	for (i = 0; i < NR_IPI; i++) {
806 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
807 			   prec >= 4 ? " " : "");
808 		for_each_online_cpu(cpu)
809 			seq_printf(p, "%10u ",
810 				   __get_irq_stat(cpu, ipi_irqs[i]));
811 		seq_printf(p, "      %s\n", ipi_types[i]);
812 	}
813 }
814 
815 u64 smp_irq_stat_cpu(unsigned int cpu)
816 {
817 	u64 sum = 0;
818 	int i;
819 
820 	for (i = 0; i < NR_IPI; i++)
821 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
822 
823 	return sum;
824 }
825 
826 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
827 {
828 	smp_cross_call(mask, IPI_CALL_FUNC);
829 }
830 
831 void arch_send_call_function_single_ipi(int cpu)
832 {
833 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
834 }
835 
836 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
837 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
838 {
839 	smp_cross_call(mask, IPI_WAKEUP);
840 }
841 #endif
842 
843 #ifdef CONFIG_IRQ_WORK
844 void arch_irq_work_raise(void)
845 {
846 	if (__smp_cross_call)
847 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
848 }
849 #endif
850 
851 static void local_cpu_stop(void)
852 {
853 	set_cpu_online(smp_processor_id(), false);
854 
855 	local_daif_mask();
856 	sdei_mask_local_cpu();
857 	cpu_park_loop();
858 }
859 
860 /*
861  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
862  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
863  * CPUs that have already stopped themselves.
864  */
865 void panic_smp_self_stop(void)
866 {
867 	local_cpu_stop();
868 }
869 
870 #ifdef CONFIG_KEXEC_CORE
871 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
872 #endif
873 
874 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
875 {
876 #ifdef CONFIG_KEXEC_CORE
877 	crash_save_cpu(regs, cpu);
878 
879 	atomic_dec(&waiting_for_crash_ipi);
880 
881 	local_irq_disable();
882 	sdei_mask_local_cpu();
883 
884 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
885 		__cpu_try_die(cpu);
886 
887 	/* just in case */
888 	cpu_park_loop();
889 #endif
890 }
891 
892 /*
893  * Main handler for inter-processor interrupts
894  */
895 void handle_IPI(int ipinr, struct pt_regs *regs)
896 {
897 	unsigned int cpu = smp_processor_id();
898 	struct pt_regs *old_regs = set_irq_regs(regs);
899 
900 	if ((unsigned)ipinr < NR_IPI) {
901 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
902 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
903 	}
904 
905 	switch (ipinr) {
906 	case IPI_RESCHEDULE:
907 		scheduler_ipi();
908 		break;
909 
910 	case IPI_CALL_FUNC:
911 		irq_enter();
912 		generic_smp_call_function_interrupt();
913 		irq_exit();
914 		break;
915 
916 	case IPI_CPU_STOP:
917 		irq_enter();
918 		local_cpu_stop();
919 		irq_exit();
920 		break;
921 
922 	case IPI_CPU_CRASH_STOP:
923 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
924 			irq_enter();
925 			ipi_cpu_crash_stop(cpu, regs);
926 
927 			unreachable();
928 		}
929 		break;
930 
931 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
932 	case IPI_TIMER:
933 		irq_enter();
934 		tick_receive_broadcast();
935 		irq_exit();
936 		break;
937 #endif
938 
939 #ifdef CONFIG_IRQ_WORK
940 	case IPI_IRQ_WORK:
941 		irq_enter();
942 		irq_work_run();
943 		irq_exit();
944 		break;
945 #endif
946 
947 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
948 	case IPI_WAKEUP:
949 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
950 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
951 			  cpu);
952 		break;
953 #endif
954 
955 	default:
956 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
957 		break;
958 	}
959 
960 	if ((unsigned)ipinr < NR_IPI)
961 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
962 	set_irq_regs(old_regs);
963 }
964 
965 void smp_send_reschedule(int cpu)
966 {
967 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
968 }
969 
970 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
971 void tick_broadcast(const struct cpumask *mask)
972 {
973 	smp_cross_call(mask, IPI_TIMER);
974 }
975 #endif
976 
977 /*
978  * The number of CPUs online, not counting this CPU (which may not be
979  * fully online and so not counted in num_online_cpus()).
980  */
981 static inline unsigned int num_other_online_cpus(void)
982 {
983 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
984 
985 	return num_online_cpus() - this_cpu_online;
986 }
987 
988 void smp_send_stop(void)
989 {
990 	unsigned long timeout;
991 
992 	if (num_other_online_cpus()) {
993 		cpumask_t mask;
994 
995 		cpumask_copy(&mask, cpu_online_mask);
996 		cpumask_clear_cpu(smp_processor_id(), &mask);
997 
998 		if (system_state <= SYSTEM_RUNNING)
999 			pr_crit("SMP: stopping secondary CPUs\n");
1000 		smp_cross_call(&mask, IPI_CPU_STOP);
1001 	}
1002 
1003 	/* Wait up to one second for other CPUs to stop */
1004 	timeout = USEC_PER_SEC;
1005 	while (num_other_online_cpus() && timeout--)
1006 		udelay(1);
1007 
1008 	if (num_other_online_cpus())
1009 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1010 			cpumask_pr_args(cpu_online_mask));
1011 
1012 	sdei_mask_local_cpu();
1013 }
1014 
1015 #ifdef CONFIG_KEXEC_CORE
1016 void crash_smp_send_stop(void)
1017 {
1018 	static int cpus_stopped;
1019 	cpumask_t mask;
1020 	unsigned long timeout;
1021 
1022 	/*
1023 	 * This function can be called twice in panic path, but obviously
1024 	 * we execute this only once.
1025 	 */
1026 	if (cpus_stopped)
1027 		return;
1028 
1029 	cpus_stopped = 1;
1030 
1031 	/*
1032 	 * If this cpu is the only one alive at this point in time, online or
1033 	 * not, there are no stop messages to be sent around, so just back out.
1034 	 */
1035 	if (num_other_online_cpus() == 0) {
1036 		sdei_mask_local_cpu();
1037 		return;
1038 	}
1039 
1040 	cpumask_copy(&mask, cpu_online_mask);
1041 	cpumask_clear_cpu(smp_processor_id(), &mask);
1042 
1043 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1044 
1045 	pr_crit("SMP: stopping secondary CPUs\n");
1046 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1047 
1048 	/* Wait up to one second for other CPUs to stop */
1049 	timeout = USEC_PER_SEC;
1050 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1051 		udelay(1);
1052 
1053 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1054 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1055 			cpumask_pr_args(&mask));
1056 
1057 	sdei_mask_local_cpu();
1058 }
1059 
1060 bool smp_crash_stop_failed(void)
1061 {
1062 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1063 }
1064 #endif
1065 
1066 /*
1067  * not supported here
1068  */
1069 int setup_profiling_timer(unsigned int multiplier)
1070 {
1071 	return -EINVAL;
1072 }
1073 
1074 static bool have_cpu_die(void)
1075 {
1076 #ifdef CONFIG_HOTPLUG_CPU
1077 	int any_cpu = raw_smp_processor_id();
1078 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1079 
1080 	if (ops && ops->cpu_die)
1081 		return true;
1082 #endif
1083 	return false;
1084 }
1085 
1086 bool cpus_are_stuck_in_kernel(void)
1087 {
1088 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1089 
1090 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1091 }
1092