xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 8571e645)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40 
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/processor.h>
51 #include <asm/smp_plat.h>
52 #include <asm/sections.h>
53 #include <asm/tlbflush.h>
54 #include <asm/ptrace.h>
55 #include <asm/virt.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ipi.h>
59 
60 /*
61  * as from 2.5, kernels no longer have an init_tasks structure
62  * so we need some other way of telling a new secondary core
63  * where to place its SVC stack
64  */
65 struct secondary_data secondary_data;
66 /* Number of CPUs which aren't online, but looping in kernel text. */
67 int cpus_stuck_in_kernel;
68 
69 enum ipi_msg_type {
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CPU_STOP,
73 	IPI_TIMER,
74 	IPI_IRQ_WORK,
75 	IPI_WAKEUP
76 };
77 
78 #ifdef CONFIG_HOTPLUG_CPU
79 static int op_cpu_kill(unsigned int cpu);
80 #else
81 static inline int op_cpu_kill(unsigned int cpu)
82 {
83 	return -ENOSYS;
84 }
85 #endif
86 
87 
88 /*
89  * Boot a secondary CPU, and assign it the specified idle task.
90  * This also gives us the initial stack to use for this CPU.
91  */
92 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
93 {
94 	if (cpu_ops[cpu]->cpu_boot)
95 		return cpu_ops[cpu]->cpu_boot(cpu);
96 
97 	return -EOPNOTSUPP;
98 }
99 
100 static DECLARE_COMPLETION(cpu_running);
101 
102 int __cpu_up(unsigned int cpu, struct task_struct *idle)
103 {
104 	int ret;
105 	long status;
106 
107 	/*
108 	 * We need to tell the secondary core where to find its stack and the
109 	 * page tables.
110 	 */
111 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
112 	update_cpu_boot_status(CPU_MMU_OFF);
113 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
114 
115 	/*
116 	 * Now bring the CPU into our world.
117 	 */
118 	ret = boot_secondary(cpu, idle);
119 	if (ret == 0) {
120 		/*
121 		 * CPU was successfully started, wait for it to come online or
122 		 * time out.
123 		 */
124 		wait_for_completion_timeout(&cpu_running,
125 					    msecs_to_jiffies(1000));
126 
127 		if (!cpu_online(cpu)) {
128 			pr_crit("CPU%u: failed to come online\n", cpu);
129 			ret = -EIO;
130 		}
131 	} else {
132 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
133 	}
134 
135 	secondary_data.stack = NULL;
136 	status = READ_ONCE(secondary_data.status);
137 	if (ret && status) {
138 
139 		if (status == CPU_MMU_OFF)
140 			status = READ_ONCE(__early_cpu_boot_status);
141 
142 		switch (status) {
143 		default:
144 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
145 					cpu, status);
146 			break;
147 		case CPU_KILL_ME:
148 			if (!op_cpu_kill(cpu)) {
149 				pr_crit("CPU%u: died during early boot\n", cpu);
150 				break;
151 			}
152 			/* Fall through */
153 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
154 		case CPU_STUCK_IN_KERNEL:
155 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
156 			cpus_stuck_in_kernel++;
157 			break;
158 		case CPU_PANIC_KERNEL:
159 			panic("CPU%u detected unsupported configuration\n", cpu);
160 		}
161 	}
162 
163 	return ret;
164 }
165 
166 static void smp_store_cpu_info(unsigned int cpuid)
167 {
168 	store_cpu_topology(cpuid);
169 }
170 
171 /*
172  * This is the secondary CPU boot entry.  We're using this CPUs
173  * idle thread stack, but a set of temporary page tables.
174  */
175 asmlinkage void secondary_start_kernel(void)
176 {
177 	struct mm_struct *mm = &init_mm;
178 	unsigned int cpu = smp_processor_id();
179 
180 	/*
181 	 * All kernel threads share the same mm context; grab a
182 	 * reference and switch to it.
183 	 */
184 	atomic_inc(&mm->mm_count);
185 	current->active_mm = mm;
186 
187 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
188 
189 	/*
190 	 * TTBR0 is only used for the identity mapping at this stage. Make it
191 	 * point to zero page to avoid speculatively fetching new entries.
192 	 */
193 	cpu_uninstall_idmap();
194 
195 	preempt_disable();
196 	trace_hardirqs_off();
197 
198 	/*
199 	 * If the system has established the capabilities, make sure
200 	 * this CPU ticks all of those. If it doesn't, the CPU will
201 	 * fail to come online.
202 	 */
203 	verify_local_cpu_capabilities();
204 
205 	if (cpu_ops[cpu]->cpu_postboot)
206 		cpu_ops[cpu]->cpu_postboot();
207 
208 	/*
209 	 * Log the CPU info before it is marked online and might get read.
210 	 */
211 	cpuinfo_store_cpu();
212 
213 	/*
214 	 * Enable GIC and timers.
215 	 */
216 	notify_cpu_starting(cpu);
217 
218 	smp_store_cpu_info(cpu);
219 
220 	/*
221 	 * OK, now it's safe to let the boot CPU continue.  Wait for
222 	 * the CPU migration code to notice that the CPU is online
223 	 * before we continue.
224 	 */
225 	pr_info("CPU%u: Booted secondary processor [%08x]\n",
226 					 cpu, read_cpuid_id());
227 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
228 	/* Make sure the status update is visible before we complete */
229 	smp_wmb();
230 	set_cpu_online(cpu, true);
231 	complete(&cpu_running);
232 
233 	local_dbg_enable();
234 	local_irq_enable();
235 	local_async_enable();
236 
237 	/*
238 	 * OK, it's off to the idle thread for us
239 	 */
240 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
241 }
242 
243 #ifdef CONFIG_HOTPLUG_CPU
244 static int op_cpu_disable(unsigned int cpu)
245 {
246 	/*
247 	 * If we don't have a cpu_die method, abort before we reach the point
248 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
249 	 */
250 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
251 		return -EOPNOTSUPP;
252 
253 	/*
254 	 * We may need to abort a hot unplug for some other mechanism-specific
255 	 * reason.
256 	 */
257 	if (cpu_ops[cpu]->cpu_disable)
258 		return cpu_ops[cpu]->cpu_disable(cpu);
259 
260 	return 0;
261 }
262 
263 /*
264  * __cpu_disable runs on the processor to be shutdown.
265  */
266 int __cpu_disable(void)
267 {
268 	unsigned int cpu = smp_processor_id();
269 	int ret;
270 
271 	ret = op_cpu_disable(cpu);
272 	if (ret)
273 		return ret;
274 
275 	/*
276 	 * Take this CPU offline.  Once we clear this, we can't return,
277 	 * and we must not schedule until we're ready to give up the cpu.
278 	 */
279 	set_cpu_online(cpu, false);
280 
281 	/*
282 	 * OK - migrate IRQs away from this CPU
283 	 */
284 	irq_migrate_all_off_this_cpu();
285 
286 	return 0;
287 }
288 
289 static int op_cpu_kill(unsigned int cpu)
290 {
291 	/*
292 	 * If we have no means of synchronising with the dying CPU, then assume
293 	 * that it is really dead. We can only wait for an arbitrary length of
294 	 * time and hope that it's dead, so let's skip the wait and just hope.
295 	 */
296 	if (!cpu_ops[cpu]->cpu_kill)
297 		return 0;
298 
299 	return cpu_ops[cpu]->cpu_kill(cpu);
300 }
301 
302 /*
303  * called on the thread which is asking for a CPU to be shutdown -
304  * waits until shutdown has completed, or it is timed out.
305  */
306 void __cpu_die(unsigned int cpu)
307 {
308 	int err;
309 
310 	if (!cpu_wait_death(cpu, 5)) {
311 		pr_crit("CPU%u: cpu didn't die\n", cpu);
312 		return;
313 	}
314 	pr_notice("CPU%u: shutdown\n", cpu);
315 
316 	/*
317 	 * Now that the dying CPU is beyond the point of no return w.r.t.
318 	 * in-kernel synchronisation, try to get the firwmare to help us to
319 	 * verify that it has really left the kernel before we consider
320 	 * clobbering anything it might still be using.
321 	 */
322 	err = op_cpu_kill(cpu);
323 	if (err)
324 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
325 			cpu, err);
326 }
327 
328 /*
329  * Called from the idle thread for the CPU which has been shutdown.
330  *
331  * Note that we disable IRQs here, but do not re-enable them
332  * before returning to the caller. This is also the behaviour
333  * of the other hotplug-cpu capable cores, so presumably coming
334  * out of idle fixes this.
335  */
336 void cpu_die(void)
337 {
338 	unsigned int cpu = smp_processor_id();
339 
340 	idle_task_exit();
341 
342 	local_irq_disable();
343 
344 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
345 	(void)cpu_report_death();
346 
347 	/*
348 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
349 	 * mechanism must perform all required cache maintenance to ensure that
350 	 * no dirty lines are lost in the process of shutting down the CPU.
351 	 */
352 	cpu_ops[cpu]->cpu_die(cpu);
353 
354 	BUG();
355 }
356 #endif
357 
358 /*
359  * Kill the calling secondary CPU, early in bringup before it is turned
360  * online.
361  */
362 void cpu_die_early(void)
363 {
364 	int cpu = smp_processor_id();
365 
366 	pr_crit("CPU%d: will not boot\n", cpu);
367 
368 	/* Mark this CPU absent */
369 	set_cpu_present(cpu, 0);
370 
371 #ifdef CONFIG_HOTPLUG_CPU
372 	update_cpu_boot_status(CPU_KILL_ME);
373 	/* Check if we can park ourselves */
374 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
375 		cpu_ops[cpu]->cpu_die(cpu);
376 #endif
377 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
378 
379 	cpu_park_loop();
380 }
381 
382 static void __init hyp_mode_check(void)
383 {
384 	if (is_hyp_mode_available())
385 		pr_info("CPU: All CPU(s) started at EL2\n");
386 	else if (is_hyp_mode_mismatched())
387 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
388 			   "CPU: CPUs started in inconsistent modes");
389 	else
390 		pr_info("CPU: All CPU(s) started at EL1\n");
391 }
392 
393 void __init smp_cpus_done(unsigned int max_cpus)
394 {
395 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
396 	setup_cpu_features();
397 	hyp_mode_check();
398 	apply_alternatives_all();
399 }
400 
401 void __init smp_prepare_boot_cpu(void)
402 {
403 	cpuinfo_store_boot_cpu();
404 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
405 }
406 
407 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
408 {
409 	const __be32 *cell;
410 	u64 hwid;
411 
412 	/*
413 	 * A cpu node with missing "reg" property is
414 	 * considered invalid to build a cpu_logical_map
415 	 * entry.
416 	 */
417 	cell = of_get_property(dn, "reg", NULL);
418 	if (!cell) {
419 		pr_err("%s: missing reg property\n", dn->full_name);
420 		return INVALID_HWID;
421 	}
422 
423 	hwid = of_read_number(cell, of_n_addr_cells(dn));
424 	/*
425 	 * Non affinity bits must be set to 0 in the DT
426 	 */
427 	if (hwid & ~MPIDR_HWID_BITMASK) {
428 		pr_err("%s: invalid reg property\n", dn->full_name);
429 		return INVALID_HWID;
430 	}
431 	return hwid;
432 }
433 
434 /*
435  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
436  * entries and check for duplicates. If any is found just ignore the
437  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
438  * matching valid MPIDR values.
439  */
440 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
441 {
442 	unsigned int i;
443 
444 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
445 		if (cpu_logical_map(i) == hwid)
446 			return true;
447 	return false;
448 }
449 
450 /*
451  * Initialize cpu operations for a logical cpu and
452  * set it in the possible mask on success
453  */
454 static int __init smp_cpu_setup(int cpu)
455 {
456 	if (cpu_read_ops(cpu))
457 		return -ENODEV;
458 
459 	if (cpu_ops[cpu]->cpu_init(cpu))
460 		return -ENODEV;
461 
462 	set_cpu_possible(cpu, true);
463 
464 	return 0;
465 }
466 
467 static bool bootcpu_valid __initdata;
468 static unsigned int cpu_count = 1;
469 
470 #ifdef CONFIG_ACPI
471 /*
472  * acpi_map_gic_cpu_interface - parse processor MADT entry
473  *
474  * Carry out sanity checks on MADT processor entry and initialize
475  * cpu_logical_map on success
476  */
477 static void __init
478 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
479 {
480 	u64 hwid = processor->arm_mpidr;
481 
482 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
483 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
484 		return;
485 	}
486 
487 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
488 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
489 		return;
490 	}
491 
492 	if (is_mpidr_duplicate(cpu_count, hwid)) {
493 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
494 		return;
495 	}
496 
497 	/* Check if GICC structure of boot CPU is available in the MADT */
498 	if (cpu_logical_map(0) == hwid) {
499 		if (bootcpu_valid) {
500 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
501 			       hwid);
502 			return;
503 		}
504 		bootcpu_valid = true;
505 		return;
506 	}
507 
508 	if (cpu_count >= NR_CPUS)
509 		return;
510 
511 	/* map the logical cpu id to cpu MPIDR */
512 	cpu_logical_map(cpu_count) = hwid;
513 
514 	/*
515 	 * Set-up the ACPI parking protocol cpu entries
516 	 * while initializing the cpu_logical_map to
517 	 * avoid parsing MADT entries multiple times for
518 	 * nothing (ie a valid cpu_logical_map entry should
519 	 * contain a valid parking protocol data set to
520 	 * initialize the cpu if the parking protocol is
521 	 * the only available enable method).
522 	 */
523 	acpi_set_mailbox_entry(cpu_count, processor);
524 
525 	cpu_count++;
526 }
527 
528 static int __init
529 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
530 			     const unsigned long end)
531 {
532 	struct acpi_madt_generic_interrupt *processor;
533 
534 	processor = (struct acpi_madt_generic_interrupt *)header;
535 	if (BAD_MADT_GICC_ENTRY(processor, end))
536 		return -EINVAL;
537 
538 	acpi_table_print_madt_entry(header);
539 
540 	acpi_map_gic_cpu_interface(processor);
541 
542 	return 0;
543 }
544 #else
545 #define acpi_table_parse_madt(...)	do { } while (0)
546 #endif
547 
548 /*
549  * Enumerate the possible CPU set from the device tree and build the
550  * cpu logical map array containing MPIDR values related to logical
551  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
552  */
553 static void __init of_parse_and_init_cpus(void)
554 {
555 	struct device_node *dn = NULL;
556 
557 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
558 		u64 hwid = of_get_cpu_mpidr(dn);
559 
560 		if (hwid == INVALID_HWID)
561 			goto next;
562 
563 		if (is_mpidr_duplicate(cpu_count, hwid)) {
564 			pr_err("%s: duplicate cpu reg properties in the DT\n",
565 				dn->full_name);
566 			goto next;
567 		}
568 
569 		/*
570 		 * The numbering scheme requires that the boot CPU
571 		 * must be assigned logical id 0. Record it so that
572 		 * the logical map built from DT is validated and can
573 		 * be used.
574 		 */
575 		if (hwid == cpu_logical_map(0)) {
576 			if (bootcpu_valid) {
577 				pr_err("%s: duplicate boot cpu reg property in DT\n",
578 					dn->full_name);
579 				goto next;
580 			}
581 
582 			bootcpu_valid = true;
583 
584 			/*
585 			 * cpu_logical_map has already been
586 			 * initialized and the boot cpu doesn't need
587 			 * the enable-method so continue without
588 			 * incrementing cpu.
589 			 */
590 			continue;
591 		}
592 
593 		if (cpu_count >= NR_CPUS)
594 			goto next;
595 
596 		pr_debug("cpu logical map 0x%llx\n", hwid);
597 		cpu_logical_map(cpu_count) = hwid;
598 next:
599 		cpu_count++;
600 	}
601 }
602 
603 /*
604  * Enumerate the possible CPU set from the device tree or ACPI and build the
605  * cpu logical map array containing MPIDR values related to logical
606  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
607  */
608 void __init smp_init_cpus(void)
609 {
610 	int i;
611 
612 	if (acpi_disabled)
613 		of_parse_and_init_cpus();
614 	else
615 		/*
616 		 * do a walk of MADT to determine how many CPUs
617 		 * we have including disabled CPUs, and get information
618 		 * we need for SMP init
619 		 */
620 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
621 				      acpi_parse_gic_cpu_interface, 0);
622 
623 	if (cpu_count > NR_CPUS)
624 		pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n",
625 			cpu_count, NR_CPUS);
626 
627 	if (!bootcpu_valid) {
628 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
629 		return;
630 	}
631 
632 	/*
633 	 * We need to set the cpu_logical_map entries before enabling
634 	 * the cpus so that cpu processor description entries (DT cpu nodes
635 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
636 	 * with entries in cpu_logical_map while initializing the cpus.
637 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
638 	 */
639 	for (i = 1; i < NR_CPUS; i++) {
640 		if (cpu_logical_map(i) != INVALID_HWID) {
641 			if (smp_cpu_setup(i))
642 				cpu_logical_map(i) = INVALID_HWID;
643 		}
644 	}
645 }
646 
647 void __init smp_prepare_cpus(unsigned int max_cpus)
648 {
649 	int err;
650 	unsigned int cpu, ncores = num_possible_cpus();
651 
652 	init_cpu_topology();
653 
654 	smp_store_cpu_info(smp_processor_id());
655 
656 	/*
657 	 * are we trying to boot more cores than exist?
658 	 */
659 	if (max_cpus > ncores)
660 		max_cpus = ncores;
661 
662 	/* Don't bother if we're effectively UP */
663 	if (max_cpus <= 1)
664 		return;
665 
666 	/*
667 	 * Initialise the present map (which describes the set of CPUs
668 	 * actually populated at the present time) and release the
669 	 * secondaries from the bootloader.
670 	 *
671 	 * Make sure we online at most (max_cpus - 1) additional CPUs.
672 	 */
673 	max_cpus--;
674 	for_each_possible_cpu(cpu) {
675 		if (max_cpus == 0)
676 			break;
677 
678 		if (cpu == smp_processor_id())
679 			continue;
680 
681 		if (!cpu_ops[cpu])
682 			continue;
683 
684 		err = cpu_ops[cpu]->cpu_prepare(cpu);
685 		if (err)
686 			continue;
687 
688 		set_cpu_present(cpu, true);
689 		max_cpus--;
690 	}
691 }
692 
693 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
694 
695 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
696 {
697 	__smp_cross_call = fn;
698 }
699 
700 static const char *ipi_types[NR_IPI] __tracepoint_string = {
701 #define S(x,s)	[x] = s
702 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
703 	S(IPI_CALL_FUNC, "Function call interrupts"),
704 	S(IPI_CPU_STOP, "CPU stop interrupts"),
705 	S(IPI_TIMER, "Timer broadcast interrupts"),
706 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
707 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
708 };
709 
710 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
711 {
712 	trace_ipi_raise(target, ipi_types[ipinr]);
713 	__smp_cross_call(target, ipinr);
714 }
715 
716 void show_ipi_list(struct seq_file *p, int prec)
717 {
718 	unsigned int cpu, i;
719 
720 	for (i = 0; i < NR_IPI; i++) {
721 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
722 			   prec >= 4 ? " " : "");
723 		for_each_online_cpu(cpu)
724 			seq_printf(p, "%10u ",
725 				   __get_irq_stat(cpu, ipi_irqs[i]));
726 		seq_printf(p, "      %s\n", ipi_types[i]);
727 	}
728 }
729 
730 u64 smp_irq_stat_cpu(unsigned int cpu)
731 {
732 	u64 sum = 0;
733 	int i;
734 
735 	for (i = 0; i < NR_IPI; i++)
736 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
737 
738 	return sum;
739 }
740 
741 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
742 {
743 	smp_cross_call(mask, IPI_CALL_FUNC);
744 }
745 
746 void arch_send_call_function_single_ipi(int cpu)
747 {
748 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
749 }
750 
751 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
752 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
753 {
754 	smp_cross_call(mask, IPI_WAKEUP);
755 }
756 #endif
757 
758 #ifdef CONFIG_IRQ_WORK
759 void arch_irq_work_raise(void)
760 {
761 	if (__smp_cross_call)
762 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
763 }
764 #endif
765 
766 static DEFINE_RAW_SPINLOCK(stop_lock);
767 
768 /*
769  * ipi_cpu_stop - handle IPI from smp_send_stop()
770  */
771 static void ipi_cpu_stop(unsigned int cpu)
772 {
773 	if (system_state == SYSTEM_BOOTING ||
774 	    system_state == SYSTEM_RUNNING) {
775 		raw_spin_lock(&stop_lock);
776 		pr_crit("CPU%u: stopping\n", cpu);
777 		dump_stack();
778 		raw_spin_unlock(&stop_lock);
779 	}
780 
781 	set_cpu_online(cpu, false);
782 
783 	local_irq_disable();
784 
785 	while (1)
786 		cpu_relax();
787 }
788 
789 /*
790  * Main handler for inter-processor interrupts
791  */
792 void handle_IPI(int ipinr, struct pt_regs *regs)
793 {
794 	unsigned int cpu = smp_processor_id();
795 	struct pt_regs *old_regs = set_irq_regs(regs);
796 
797 	if ((unsigned)ipinr < NR_IPI) {
798 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
799 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
800 	}
801 
802 	switch (ipinr) {
803 	case IPI_RESCHEDULE:
804 		scheduler_ipi();
805 		break;
806 
807 	case IPI_CALL_FUNC:
808 		irq_enter();
809 		generic_smp_call_function_interrupt();
810 		irq_exit();
811 		break;
812 
813 	case IPI_CPU_STOP:
814 		irq_enter();
815 		ipi_cpu_stop(cpu);
816 		irq_exit();
817 		break;
818 
819 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
820 	case IPI_TIMER:
821 		irq_enter();
822 		tick_receive_broadcast();
823 		irq_exit();
824 		break;
825 #endif
826 
827 #ifdef CONFIG_IRQ_WORK
828 	case IPI_IRQ_WORK:
829 		irq_enter();
830 		irq_work_run();
831 		irq_exit();
832 		break;
833 #endif
834 
835 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
836 	case IPI_WAKEUP:
837 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
838 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
839 			  cpu);
840 		break;
841 #endif
842 
843 	default:
844 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
845 		break;
846 	}
847 
848 	if ((unsigned)ipinr < NR_IPI)
849 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
850 	set_irq_regs(old_regs);
851 }
852 
853 void smp_send_reschedule(int cpu)
854 {
855 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
856 }
857 
858 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
859 void tick_broadcast(const struct cpumask *mask)
860 {
861 	smp_cross_call(mask, IPI_TIMER);
862 }
863 #endif
864 
865 void smp_send_stop(void)
866 {
867 	unsigned long timeout;
868 
869 	if (num_online_cpus() > 1) {
870 		cpumask_t mask;
871 
872 		cpumask_copy(&mask, cpu_online_mask);
873 		cpumask_clear_cpu(smp_processor_id(), &mask);
874 
875 		smp_cross_call(&mask, IPI_CPU_STOP);
876 	}
877 
878 	/* Wait up to one second for other CPUs to stop */
879 	timeout = USEC_PER_SEC;
880 	while (num_online_cpus() > 1 && timeout--)
881 		udelay(1);
882 
883 	if (num_online_cpus() > 1)
884 		pr_warning("SMP: failed to stop secondary CPUs\n");
885 }
886 
887 /*
888  * not supported here
889  */
890 int setup_profiling_timer(unsigned int multiplier)
891 {
892 	return -EINVAL;
893 }
894