xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 80483c3a)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40 
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/pgtable.h>
50 #include <asm/pgalloc.h>
51 #include <asm/processor.h>
52 #include <asm/smp_plat.h>
53 #include <asm/sections.h>
54 #include <asm/tlbflush.h>
55 #include <asm/ptrace.h>
56 #include <asm/virt.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ipi.h>
60 
61 /*
62  * as from 2.5, kernels no longer have an init_tasks structure
63  * so we need some other way of telling a new secondary core
64  * where to place its SVC stack
65  */
66 struct secondary_data secondary_data;
67 /* Number of CPUs which aren't online, but looping in kernel text. */
68 int cpus_stuck_in_kernel;
69 
70 enum ipi_msg_type {
71 	IPI_RESCHEDULE,
72 	IPI_CALL_FUNC,
73 	IPI_CPU_STOP,
74 	IPI_TIMER,
75 	IPI_IRQ_WORK,
76 	IPI_WAKEUP
77 };
78 
79 #ifdef CONFIG_ARM64_VHE
80 
81 /* Whether the boot CPU is running in HYP mode or not*/
82 static bool boot_cpu_hyp_mode;
83 
84 static inline void save_boot_cpu_run_el(void)
85 {
86 	boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
87 }
88 
89 static inline bool is_boot_cpu_in_hyp_mode(void)
90 {
91 	return boot_cpu_hyp_mode;
92 }
93 
94 /*
95  * Verify that a secondary CPU is running the kernel at the same
96  * EL as that of the boot CPU.
97  */
98 void verify_cpu_run_el(void)
99 {
100 	bool in_el2 = is_kernel_in_hyp_mode();
101 	bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
102 
103 	if (in_el2 ^ boot_cpu_el2) {
104 		pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
105 					smp_processor_id(),
106 					in_el2 ? 2 : 1,
107 					boot_cpu_el2 ? 2 : 1);
108 		cpu_panic_kernel();
109 	}
110 }
111 
112 #else
113 static inline void save_boot_cpu_run_el(void) {}
114 #endif
115 
116 #ifdef CONFIG_HOTPLUG_CPU
117 static int op_cpu_kill(unsigned int cpu);
118 #else
119 static inline int op_cpu_kill(unsigned int cpu)
120 {
121 	return -ENOSYS;
122 }
123 #endif
124 
125 
126 /*
127  * Boot a secondary CPU, and assign it the specified idle task.
128  * This also gives us the initial stack to use for this CPU.
129  */
130 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
131 {
132 	if (cpu_ops[cpu]->cpu_boot)
133 		return cpu_ops[cpu]->cpu_boot(cpu);
134 
135 	return -EOPNOTSUPP;
136 }
137 
138 static DECLARE_COMPLETION(cpu_running);
139 
140 int __cpu_up(unsigned int cpu, struct task_struct *idle)
141 {
142 	int ret;
143 	long status;
144 
145 	/*
146 	 * We need to tell the secondary core where to find its stack and the
147 	 * page tables.
148 	 */
149 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
150 	update_cpu_boot_status(CPU_MMU_OFF);
151 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
152 
153 	/*
154 	 * Now bring the CPU into our world.
155 	 */
156 	ret = boot_secondary(cpu, idle);
157 	if (ret == 0) {
158 		/*
159 		 * CPU was successfully started, wait for it to come online or
160 		 * time out.
161 		 */
162 		wait_for_completion_timeout(&cpu_running,
163 					    msecs_to_jiffies(1000));
164 
165 		if (!cpu_online(cpu)) {
166 			pr_crit("CPU%u: failed to come online\n", cpu);
167 			ret = -EIO;
168 		}
169 	} else {
170 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
171 	}
172 
173 	secondary_data.stack = NULL;
174 	status = READ_ONCE(secondary_data.status);
175 	if (ret && status) {
176 
177 		if (status == CPU_MMU_OFF)
178 			status = READ_ONCE(__early_cpu_boot_status);
179 
180 		switch (status) {
181 		default:
182 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
183 					cpu, status);
184 			break;
185 		case CPU_KILL_ME:
186 			if (!op_cpu_kill(cpu)) {
187 				pr_crit("CPU%u: died during early boot\n", cpu);
188 				break;
189 			}
190 			/* Fall through */
191 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
192 		case CPU_STUCK_IN_KERNEL:
193 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
194 			cpus_stuck_in_kernel++;
195 			break;
196 		case CPU_PANIC_KERNEL:
197 			panic("CPU%u detected unsupported configuration\n", cpu);
198 		}
199 	}
200 
201 	return ret;
202 }
203 
204 static void smp_store_cpu_info(unsigned int cpuid)
205 {
206 	store_cpu_topology(cpuid);
207 	numa_store_cpu_info(cpuid);
208 }
209 
210 /*
211  * This is the secondary CPU boot entry.  We're using this CPUs
212  * idle thread stack, but a set of temporary page tables.
213  */
214 asmlinkage void secondary_start_kernel(void)
215 {
216 	struct mm_struct *mm = &init_mm;
217 	unsigned int cpu = smp_processor_id();
218 
219 	/*
220 	 * All kernel threads share the same mm context; grab a
221 	 * reference and switch to it.
222 	 */
223 	atomic_inc(&mm->mm_count);
224 	current->active_mm = mm;
225 
226 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
227 
228 	/*
229 	 * TTBR0 is only used for the identity mapping at this stage. Make it
230 	 * point to zero page to avoid speculatively fetching new entries.
231 	 */
232 	cpu_uninstall_idmap();
233 
234 	preempt_disable();
235 	trace_hardirqs_off();
236 
237 	/*
238 	 * If the system has established the capabilities, make sure
239 	 * this CPU ticks all of those. If it doesn't, the CPU will
240 	 * fail to come online.
241 	 */
242 	verify_local_cpu_capabilities();
243 
244 	if (cpu_ops[cpu]->cpu_postboot)
245 		cpu_ops[cpu]->cpu_postboot();
246 
247 	/*
248 	 * Log the CPU info before it is marked online and might get read.
249 	 */
250 	cpuinfo_store_cpu();
251 
252 	/*
253 	 * Enable GIC and timers.
254 	 */
255 	notify_cpu_starting(cpu);
256 
257 	smp_store_cpu_info(cpu);
258 
259 	/*
260 	 * OK, now it's safe to let the boot CPU continue.  Wait for
261 	 * the CPU migration code to notice that the CPU is online
262 	 * before we continue.
263 	 */
264 	pr_info("CPU%u: Booted secondary processor [%08x]\n",
265 					 cpu, read_cpuid_id());
266 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
267 	set_cpu_online(cpu, true);
268 	complete(&cpu_running);
269 
270 	local_irq_enable();
271 	local_async_enable();
272 
273 	/*
274 	 * OK, it's off to the idle thread for us
275 	 */
276 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
277 }
278 
279 #ifdef CONFIG_HOTPLUG_CPU
280 static int op_cpu_disable(unsigned int cpu)
281 {
282 	/*
283 	 * If we don't have a cpu_die method, abort before we reach the point
284 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
285 	 */
286 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
287 		return -EOPNOTSUPP;
288 
289 	/*
290 	 * We may need to abort a hot unplug for some other mechanism-specific
291 	 * reason.
292 	 */
293 	if (cpu_ops[cpu]->cpu_disable)
294 		return cpu_ops[cpu]->cpu_disable(cpu);
295 
296 	return 0;
297 }
298 
299 /*
300  * __cpu_disable runs on the processor to be shutdown.
301  */
302 int __cpu_disable(void)
303 {
304 	unsigned int cpu = smp_processor_id();
305 	int ret;
306 
307 	ret = op_cpu_disable(cpu);
308 	if (ret)
309 		return ret;
310 
311 	/*
312 	 * Take this CPU offline.  Once we clear this, we can't return,
313 	 * and we must not schedule until we're ready to give up the cpu.
314 	 */
315 	set_cpu_online(cpu, false);
316 
317 	/*
318 	 * OK - migrate IRQs away from this CPU
319 	 */
320 	irq_migrate_all_off_this_cpu();
321 
322 	return 0;
323 }
324 
325 static int op_cpu_kill(unsigned int cpu)
326 {
327 	/*
328 	 * If we have no means of synchronising with the dying CPU, then assume
329 	 * that it is really dead. We can only wait for an arbitrary length of
330 	 * time and hope that it's dead, so let's skip the wait and just hope.
331 	 */
332 	if (!cpu_ops[cpu]->cpu_kill)
333 		return 0;
334 
335 	return cpu_ops[cpu]->cpu_kill(cpu);
336 }
337 
338 /*
339  * called on the thread which is asking for a CPU to be shutdown -
340  * waits until shutdown has completed, or it is timed out.
341  */
342 void __cpu_die(unsigned int cpu)
343 {
344 	int err;
345 
346 	if (!cpu_wait_death(cpu, 5)) {
347 		pr_crit("CPU%u: cpu didn't die\n", cpu);
348 		return;
349 	}
350 	pr_notice("CPU%u: shutdown\n", cpu);
351 
352 	/*
353 	 * Now that the dying CPU is beyond the point of no return w.r.t.
354 	 * in-kernel synchronisation, try to get the firwmare to help us to
355 	 * verify that it has really left the kernel before we consider
356 	 * clobbering anything it might still be using.
357 	 */
358 	err = op_cpu_kill(cpu);
359 	if (err)
360 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
361 			cpu, err);
362 }
363 
364 /*
365  * Called from the idle thread for the CPU which has been shutdown.
366  *
367  * Note that we disable IRQs here, but do not re-enable them
368  * before returning to the caller. This is also the behaviour
369  * of the other hotplug-cpu capable cores, so presumably coming
370  * out of idle fixes this.
371  */
372 void cpu_die(void)
373 {
374 	unsigned int cpu = smp_processor_id();
375 
376 	idle_task_exit();
377 
378 	local_irq_disable();
379 
380 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
381 	(void)cpu_report_death();
382 
383 	/*
384 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
385 	 * mechanism must perform all required cache maintenance to ensure that
386 	 * no dirty lines are lost in the process of shutting down the CPU.
387 	 */
388 	cpu_ops[cpu]->cpu_die(cpu);
389 
390 	BUG();
391 }
392 #endif
393 
394 /*
395  * Kill the calling secondary CPU, early in bringup before it is turned
396  * online.
397  */
398 void cpu_die_early(void)
399 {
400 	int cpu = smp_processor_id();
401 
402 	pr_crit("CPU%d: will not boot\n", cpu);
403 
404 	/* Mark this CPU absent */
405 	set_cpu_present(cpu, 0);
406 
407 #ifdef CONFIG_HOTPLUG_CPU
408 	update_cpu_boot_status(CPU_KILL_ME);
409 	/* Check if we can park ourselves */
410 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
411 		cpu_ops[cpu]->cpu_die(cpu);
412 #endif
413 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
414 
415 	cpu_park_loop();
416 }
417 
418 static void __init hyp_mode_check(void)
419 {
420 	if (is_hyp_mode_available())
421 		pr_info("CPU: All CPU(s) started at EL2\n");
422 	else if (is_hyp_mode_mismatched())
423 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
424 			   "CPU: CPUs started in inconsistent modes");
425 	else
426 		pr_info("CPU: All CPU(s) started at EL1\n");
427 }
428 
429 void __init smp_cpus_done(unsigned int max_cpus)
430 {
431 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
432 	setup_cpu_features();
433 	hyp_mode_check();
434 	apply_alternatives_all();
435 }
436 
437 void __init smp_prepare_boot_cpu(void)
438 {
439 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
440 	cpuinfo_store_boot_cpu();
441 	save_boot_cpu_run_el();
442 }
443 
444 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
445 {
446 	const __be32 *cell;
447 	u64 hwid;
448 
449 	/*
450 	 * A cpu node with missing "reg" property is
451 	 * considered invalid to build a cpu_logical_map
452 	 * entry.
453 	 */
454 	cell = of_get_property(dn, "reg", NULL);
455 	if (!cell) {
456 		pr_err("%s: missing reg property\n", dn->full_name);
457 		return INVALID_HWID;
458 	}
459 
460 	hwid = of_read_number(cell, of_n_addr_cells(dn));
461 	/*
462 	 * Non affinity bits must be set to 0 in the DT
463 	 */
464 	if (hwid & ~MPIDR_HWID_BITMASK) {
465 		pr_err("%s: invalid reg property\n", dn->full_name);
466 		return INVALID_HWID;
467 	}
468 	return hwid;
469 }
470 
471 /*
472  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
473  * entries and check for duplicates. If any is found just ignore the
474  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
475  * matching valid MPIDR values.
476  */
477 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
478 {
479 	unsigned int i;
480 
481 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
482 		if (cpu_logical_map(i) == hwid)
483 			return true;
484 	return false;
485 }
486 
487 /*
488  * Initialize cpu operations for a logical cpu and
489  * set it in the possible mask on success
490  */
491 static int __init smp_cpu_setup(int cpu)
492 {
493 	if (cpu_read_ops(cpu))
494 		return -ENODEV;
495 
496 	if (cpu_ops[cpu]->cpu_init(cpu))
497 		return -ENODEV;
498 
499 	set_cpu_possible(cpu, true);
500 
501 	return 0;
502 }
503 
504 static bool bootcpu_valid __initdata;
505 static unsigned int cpu_count = 1;
506 
507 #ifdef CONFIG_ACPI
508 /*
509  * acpi_map_gic_cpu_interface - parse processor MADT entry
510  *
511  * Carry out sanity checks on MADT processor entry and initialize
512  * cpu_logical_map on success
513  */
514 static void __init
515 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
516 {
517 	u64 hwid = processor->arm_mpidr;
518 
519 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
520 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
521 		return;
522 	}
523 
524 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
525 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
526 		return;
527 	}
528 
529 	if (is_mpidr_duplicate(cpu_count, hwid)) {
530 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
531 		return;
532 	}
533 
534 	/* Check if GICC structure of boot CPU is available in the MADT */
535 	if (cpu_logical_map(0) == hwid) {
536 		if (bootcpu_valid) {
537 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
538 			       hwid);
539 			return;
540 		}
541 		bootcpu_valid = true;
542 		return;
543 	}
544 
545 	if (cpu_count >= NR_CPUS)
546 		return;
547 
548 	/* map the logical cpu id to cpu MPIDR */
549 	cpu_logical_map(cpu_count) = hwid;
550 
551 	/*
552 	 * Set-up the ACPI parking protocol cpu entries
553 	 * while initializing the cpu_logical_map to
554 	 * avoid parsing MADT entries multiple times for
555 	 * nothing (ie a valid cpu_logical_map entry should
556 	 * contain a valid parking protocol data set to
557 	 * initialize the cpu if the parking protocol is
558 	 * the only available enable method).
559 	 */
560 	acpi_set_mailbox_entry(cpu_count, processor);
561 
562 	early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
563 
564 	cpu_count++;
565 }
566 
567 static int __init
568 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
569 			     const unsigned long end)
570 {
571 	struct acpi_madt_generic_interrupt *processor;
572 
573 	processor = (struct acpi_madt_generic_interrupt *)header;
574 	if (BAD_MADT_GICC_ENTRY(processor, end))
575 		return -EINVAL;
576 
577 	acpi_table_print_madt_entry(header);
578 
579 	acpi_map_gic_cpu_interface(processor);
580 
581 	return 0;
582 }
583 #else
584 #define acpi_table_parse_madt(...)	do { } while (0)
585 #endif
586 
587 /*
588  * Enumerate the possible CPU set from the device tree and build the
589  * cpu logical map array containing MPIDR values related to logical
590  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
591  */
592 static void __init of_parse_and_init_cpus(void)
593 {
594 	struct device_node *dn = NULL;
595 
596 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
597 		u64 hwid = of_get_cpu_mpidr(dn);
598 
599 		if (hwid == INVALID_HWID)
600 			goto next;
601 
602 		if (is_mpidr_duplicate(cpu_count, hwid)) {
603 			pr_err("%s: duplicate cpu reg properties in the DT\n",
604 				dn->full_name);
605 			goto next;
606 		}
607 
608 		/*
609 		 * The numbering scheme requires that the boot CPU
610 		 * must be assigned logical id 0. Record it so that
611 		 * the logical map built from DT is validated and can
612 		 * be used.
613 		 */
614 		if (hwid == cpu_logical_map(0)) {
615 			if (bootcpu_valid) {
616 				pr_err("%s: duplicate boot cpu reg property in DT\n",
617 					dn->full_name);
618 				goto next;
619 			}
620 
621 			bootcpu_valid = true;
622 
623 			/*
624 			 * cpu_logical_map has already been
625 			 * initialized and the boot cpu doesn't need
626 			 * the enable-method so continue without
627 			 * incrementing cpu.
628 			 */
629 			continue;
630 		}
631 
632 		if (cpu_count >= NR_CPUS)
633 			goto next;
634 
635 		pr_debug("cpu logical map 0x%llx\n", hwid);
636 		cpu_logical_map(cpu_count) = hwid;
637 
638 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
639 next:
640 		cpu_count++;
641 	}
642 }
643 
644 /*
645  * Enumerate the possible CPU set from the device tree or ACPI and build the
646  * cpu logical map array containing MPIDR values related to logical
647  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
648  */
649 void __init smp_init_cpus(void)
650 {
651 	int i;
652 
653 	if (acpi_disabled)
654 		of_parse_and_init_cpus();
655 	else
656 		/*
657 		 * do a walk of MADT to determine how many CPUs
658 		 * we have including disabled CPUs, and get information
659 		 * we need for SMP init
660 		 */
661 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
662 				      acpi_parse_gic_cpu_interface, 0);
663 
664 	if (cpu_count > NR_CPUS)
665 		pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n",
666 			cpu_count, NR_CPUS);
667 
668 	if (!bootcpu_valid) {
669 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
670 		return;
671 	}
672 
673 	/*
674 	 * We need to set the cpu_logical_map entries before enabling
675 	 * the cpus so that cpu processor description entries (DT cpu nodes
676 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
677 	 * with entries in cpu_logical_map while initializing the cpus.
678 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
679 	 */
680 	for (i = 1; i < NR_CPUS; i++) {
681 		if (cpu_logical_map(i) != INVALID_HWID) {
682 			if (smp_cpu_setup(i))
683 				cpu_logical_map(i) = INVALID_HWID;
684 		}
685 	}
686 }
687 
688 void __init smp_prepare_cpus(unsigned int max_cpus)
689 {
690 	int err;
691 	unsigned int cpu;
692 
693 	init_cpu_topology();
694 
695 	smp_store_cpu_info(smp_processor_id());
696 
697 	/*
698 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
699 	 * secondary CPUs present.
700 	 */
701 	if (max_cpus == 0)
702 		return;
703 
704 	/*
705 	 * Initialise the present map (which describes the set of CPUs
706 	 * actually populated at the present time) and release the
707 	 * secondaries from the bootloader.
708 	 */
709 	for_each_possible_cpu(cpu) {
710 
711 		if (cpu == smp_processor_id())
712 			continue;
713 
714 		if (!cpu_ops[cpu])
715 			continue;
716 
717 		err = cpu_ops[cpu]->cpu_prepare(cpu);
718 		if (err)
719 			continue;
720 
721 		set_cpu_present(cpu, true);
722 	}
723 }
724 
725 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
726 
727 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
728 {
729 	__smp_cross_call = fn;
730 }
731 
732 static const char *ipi_types[NR_IPI] __tracepoint_string = {
733 #define S(x,s)	[x] = s
734 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
735 	S(IPI_CALL_FUNC, "Function call interrupts"),
736 	S(IPI_CPU_STOP, "CPU stop interrupts"),
737 	S(IPI_TIMER, "Timer broadcast interrupts"),
738 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
739 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
740 };
741 
742 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
743 {
744 	trace_ipi_raise(target, ipi_types[ipinr]);
745 	__smp_cross_call(target, ipinr);
746 }
747 
748 void show_ipi_list(struct seq_file *p, int prec)
749 {
750 	unsigned int cpu, i;
751 
752 	for (i = 0; i < NR_IPI; i++) {
753 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
754 			   prec >= 4 ? " " : "");
755 		for_each_online_cpu(cpu)
756 			seq_printf(p, "%10u ",
757 				   __get_irq_stat(cpu, ipi_irqs[i]));
758 		seq_printf(p, "      %s\n", ipi_types[i]);
759 	}
760 }
761 
762 u64 smp_irq_stat_cpu(unsigned int cpu)
763 {
764 	u64 sum = 0;
765 	int i;
766 
767 	for (i = 0; i < NR_IPI; i++)
768 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
769 
770 	return sum;
771 }
772 
773 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
774 {
775 	smp_cross_call(mask, IPI_CALL_FUNC);
776 }
777 
778 void arch_send_call_function_single_ipi(int cpu)
779 {
780 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
781 }
782 
783 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
784 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
785 {
786 	smp_cross_call(mask, IPI_WAKEUP);
787 }
788 #endif
789 
790 #ifdef CONFIG_IRQ_WORK
791 void arch_irq_work_raise(void)
792 {
793 	if (__smp_cross_call)
794 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
795 }
796 #endif
797 
798 /*
799  * ipi_cpu_stop - handle IPI from smp_send_stop()
800  */
801 static void ipi_cpu_stop(unsigned int cpu)
802 {
803 	set_cpu_online(cpu, false);
804 
805 	local_irq_disable();
806 
807 	while (1)
808 		cpu_relax();
809 }
810 
811 /*
812  * Main handler for inter-processor interrupts
813  */
814 void handle_IPI(int ipinr, struct pt_regs *regs)
815 {
816 	unsigned int cpu = smp_processor_id();
817 	struct pt_regs *old_regs = set_irq_regs(regs);
818 
819 	if ((unsigned)ipinr < NR_IPI) {
820 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
821 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
822 	}
823 
824 	switch (ipinr) {
825 	case IPI_RESCHEDULE:
826 		scheduler_ipi();
827 		break;
828 
829 	case IPI_CALL_FUNC:
830 		irq_enter();
831 		generic_smp_call_function_interrupt();
832 		irq_exit();
833 		break;
834 
835 	case IPI_CPU_STOP:
836 		irq_enter();
837 		ipi_cpu_stop(cpu);
838 		irq_exit();
839 		break;
840 
841 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
842 	case IPI_TIMER:
843 		irq_enter();
844 		tick_receive_broadcast();
845 		irq_exit();
846 		break;
847 #endif
848 
849 #ifdef CONFIG_IRQ_WORK
850 	case IPI_IRQ_WORK:
851 		irq_enter();
852 		irq_work_run();
853 		irq_exit();
854 		break;
855 #endif
856 
857 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
858 	case IPI_WAKEUP:
859 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
860 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
861 			  cpu);
862 		break;
863 #endif
864 
865 	default:
866 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
867 		break;
868 	}
869 
870 	if ((unsigned)ipinr < NR_IPI)
871 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
872 	set_irq_regs(old_regs);
873 }
874 
875 void smp_send_reschedule(int cpu)
876 {
877 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
878 }
879 
880 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
881 void tick_broadcast(const struct cpumask *mask)
882 {
883 	smp_cross_call(mask, IPI_TIMER);
884 }
885 #endif
886 
887 void smp_send_stop(void)
888 {
889 	unsigned long timeout;
890 
891 	if (num_online_cpus() > 1) {
892 		cpumask_t mask;
893 
894 		cpumask_copy(&mask, cpu_online_mask);
895 		cpumask_clear_cpu(smp_processor_id(), &mask);
896 
897 		if (system_state == SYSTEM_BOOTING ||
898 		    system_state == SYSTEM_RUNNING)
899 			pr_crit("SMP: stopping secondary CPUs\n");
900 		smp_cross_call(&mask, IPI_CPU_STOP);
901 	}
902 
903 	/* Wait up to one second for other CPUs to stop */
904 	timeout = USEC_PER_SEC;
905 	while (num_online_cpus() > 1 && timeout--)
906 		udelay(1);
907 
908 	if (num_online_cpus() > 1)
909 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
910 			   cpumask_pr_args(cpu_online_mask));
911 }
912 
913 /*
914  * not supported here
915  */
916 int setup_profiling_timer(unsigned int multiplier)
917 {
918 	return -EINVAL;
919 }
920 
921 static bool have_cpu_die(void)
922 {
923 #ifdef CONFIG_HOTPLUG_CPU
924 	int any_cpu = raw_smp_processor_id();
925 
926 	if (cpu_ops[any_cpu]->cpu_die)
927 		return true;
928 #endif
929 	return false;
930 }
931 
932 bool cpus_are_stuck_in_kernel(void)
933 {
934 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
935 
936 	return !!cpus_stuck_in_kernel || smp_spin_tables;
937 }
938