1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/acpi.h> 21 #include <linux/delay.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/sched/mm.h> 25 #include <linux/sched/hotplug.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/interrupt.h> 28 #include <linux/cache.h> 29 #include <linux/profile.h> 30 #include <linux/errno.h> 31 #include <linux/mm.h> 32 #include <linux/err.h> 33 #include <linux/cpu.h> 34 #include <linux/smp.h> 35 #include <linux/seq_file.h> 36 #include <linux/irq.h> 37 #include <linux/percpu.h> 38 #include <linux/clockchips.h> 39 #include <linux/completion.h> 40 #include <linux/of.h> 41 #include <linux/irq_work.h> 42 #include <linux/kexec.h> 43 44 #include <asm/alternative.h> 45 #include <asm/atomic.h> 46 #include <asm/cacheflush.h> 47 #include <asm/cpu.h> 48 #include <asm/cputype.h> 49 #include <asm/cpu_ops.h> 50 #include <asm/daifflags.h> 51 #include <asm/mmu_context.h> 52 #include <asm/numa.h> 53 #include <asm/pgtable.h> 54 #include <asm/pgalloc.h> 55 #include <asm/processor.h> 56 #include <asm/smp_plat.h> 57 #include <asm/sections.h> 58 #include <asm/tlbflush.h> 59 #include <asm/ptrace.h> 60 #include <asm/virt.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/ipi.h> 64 65 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 66 EXPORT_PER_CPU_SYMBOL(cpu_number); 67 68 /* 69 * as from 2.5, kernels no longer have an init_tasks structure 70 * so we need some other way of telling a new secondary core 71 * where to place its SVC stack 72 */ 73 struct secondary_data secondary_data; 74 /* Number of CPUs which aren't online, but looping in kernel text. */ 75 int cpus_stuck_in_kernel; 76 77 enum ipi_msg_type { 78 IPI_RESCHEDULE, 79 IPI_CALL_FUNC, 80 IPI_CPU_STOP, 81 IPI_CPU_CRASH_STOP, 82 IPI_TIMER, 83 IPI_IRQ_WORK, 84 IPI_WAKEUP 85 }; 86 87 #ifdef CONFIG_ARM64_VHE 88 89 /* Whether the boot CPU is running in HYP mode or not*/ 90 static bool boot_cpu_hyp_mode; 91 92 static inline void save_boot_cpu_run_el(void) 93 { 94 boot_cpu_hyp_mode = is_kernel_in_hyp_mode(); 95 } 96 97 static inline bool is_boot_cpu_in_hyp_mode(void) 98 { 99 return boot_cpu_hyp_mode; 100 } 101 102 /* 103 * Verify that a secondary CPU is running the kernel at the same 104 * EL as that of the boot CPU. 105 */ 106 void verify_cpu_run_el(void) 107 { 108 bool in_el2 = is_kernel_in_hyp_mode(); 109 bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode(); 110 111 if (in_el2 ^ boot_cpu_el2) { 112 pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n", 113 smp_processor_id(), 114 in_el2 ? 2 : 1, 115 boot_cpu_el2 ? 2 : 1); 116 cpu_panic_kernel(); 117 } 118 } 119 120 #else 121 static inline void save_boot_cpu_run_el(void) {} 122 #endif 123 124 #ifdef CONFIG_HOTPLUG_CPU 125 static int op_cpu_kill(unsigned int cpu); 126 #else 127 static inline int op_cpu_kill(unsigned int cpu) 128 { 129 return -ENOSYS; 130 } 131 #endif 132 133 134 /* 135 * Boot a secondary CPU, and assign it the specified idle task. 136 * This also gives us the initial stack to use for this CPU. 137 */ 138 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 139 { 140 if (cpu_ops[cpu]->cpu_boot) 141 return cpu_ops[cpu]->cpu_boot(cpu); 142 143 return -EOPNOTSUPP; 144 } 145 146 static DECLARE_COMPLETION(cpu_running); 147 148 int __cpu_up(unsigned int cpu, struct task_struct *idle) 149 { 150 int ret; 151 long status; 152 153 /* 154 * We need to tell the secondary core where to find its stack and the 155 * page tables. 156 */ 157 secondary_data.task = idle; 158 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 159 update_cpu_boot_status(CPU_MMU_OFF); 160 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 161 162 /* 163 * Now bring the CPU into our world. 164 */ 165 ret = boot_secondary(cpu, idle); 166 if (ret == 0) { 167 /* 168 * CPU was successfully started, wait for it to come online or 169 * time out. 170 */ 171 wait_for_completion_timeout(&cpu_running, 172 msecs_to_jiffies(1000)); 173 174 if (!cpu_online(cpu)) { 175 pr_crit("CPU%u: failed to come online\n", cpu); 176 ret = -EIO; 177 } 178 } else { 179 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 180 } 181 182 secondary_data.task = NULL; 183 secondary_data.stack = NULL; 184 status = READ_ONCE(secondary_data.status); 185 if (ret && status) { 186 187 if (status == CPU_MMU_OFF) 188 status = READ_ONCE(__early_cpu_boot_status); 189 190 switch (status) { 191 default: 192 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 193 cpu, status); 194 break; 195 case CPU_KILL_ME: 196 if (!op_cpu_kill(cpu)) { 197 pr_crit("CPU%u: died during early boot\n", cpu); 198 break; 199 } 200 /* Fall through */ 201 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 202 case CPU_STUCK_IN_KERNEL: 203 pr_crit("CPU%u: is stuck in kernel\n", cpu); 204 cpus_stuck_in_kernel++; 205 break; 206 case CPU_PANIC_KERNEL: 207 panic("CPU%u detected unsupported configuration\n", cpu); 208 } 209 } 210 211 return ret; 212 } 213 214 /* 215 * This is the secondary CPU boot entry. We're using this CPUs 216 * idle thread stack, but a set of temporary page tables. 217 */ 218 asmlinkage void secondary_start_kernel(void) 219 { 220 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 221 struct mm_struct *mm = &init_mm; 222 unsigned int cpu; 223 224 cpu = task_cpu(current); 225 set_my_cpu_offset(per_cpu_offset(cpu)); 226 227 /* 228 * All kernel threads share the same mm context; grab a 229 * reference and switch to it. 230 */ 231 mmgrab(mm); 232 current->active_mm = mm; 233 234 /* 235 * TTBR0 is only used for the identity mapping at this stage. Make it 236 * point to zero page to avoid speculatively fetching new entries. 237 */ 238 cpu_uninstall_idmap(); 239 240 preempt_disable(); 241 trace_hardirqs_off(); 242 243 /* 244 * If the system has established the capabilities, make sure 245 * this CPU ticks all of those. If it doesn't, the CPU will 246 * fail to come online. 247 */ 248 check_local_cpu_capabilities(); 249 250 if (cpu_ops[cpu]->cpu_postboot) 251 cpu_ops[cpu]->cpu_postboot(); 252 253 /* 254 * Log the CPU info before it is marked online and might get read. 255 */ 256 cpuinfo_store_cpu(); 257 258 /* 259 * Enable GIC and timers. 260 */ 261 notify_cpu_starting(cpu); 262 263 store_cpu_topology(cpu); 264 265 /* 266 * OK, now it's safe to let the boot CPU continue. Wait for 267 * the CPU migration code to notice that the CPU is online 268 * before we continue. 269 */ 270 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 271 cpu, (unsigned long)mpidr, 272 read_cpuid_id()); 273 update_cpu_boot_status(CPU_BOOT_SUCCESS); 274 set_cpu_online(cpu, true); 275 complete(&cpu_running); 276 277 local_daif_restore(DAIF_PROCCTX); 278 279 /* 280 * OK, it's off to the idle thread for us 281 */ 282 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 283 } 284 285 #ifdef CONFIG_HOTPLUG_CPU 286 static int op_cpu_disable(unsigned int cpu) 287 { 288 /* 289 * If we don't have a cpu_die method, abort before we reach the point 290 * of no return. CPU0 may not have an cpu_ops, so test for it. 291 */ 292 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 293 return -EOPNOTSUPP; 294 295 /* 296 * We may need to abort a hot unplug for some other mechanism-specific 297 * reason. 298 */ 299 if (cpu_ops[cpu]->cpu_disable) 300 return cpu_ops[cpu]->cpu_disable(cpu); 301 302 return 0; 303 } 304 305 /* 306 * __cpu_disable runs on the processor to be shutdown. 307 */ 308 int __cpu_disable(void) 309 { 310 unsigned int cpu = smp_processor_id(); 311 int ret; 312 313 ret = op_cpu_disable(cpu); 314 if (ret) 315 return ret; 316 317 /* 318 * Take this CPU offline. Once we clear this, we can't return, 319 * and we must not schedule until we're ready to give up the cpu. 320 */ 321 set_cpu_online(cpu, false); 322 323 /* 324 * OK - migrate IRQs away from this CPU 325 */ 326 irq_migrate_all_off_this_cpu(); 327 328 return 0; 329 } 330 331 static int op_cpu_kill(unsigned int cpu) 332 { 333 /* 334 * If we have no means of synchronising with the dying CPU, then assume 335 * that it is really dead. We can only wait for an arbitrary length of 336 * time and hope that it's dead, so let's skip the wait and just hope. 337 */ 338 if (!cpu_ops[cpu]->cpu_kill) 339 return 0; 340 341 return cpu_ops[cpu]->cpu_kill(cpu); 342 } 343 344 /* 345 * called on the thread which is asking for a CPU to be shutdown - 346 * waits until shutdown has completed, or it is timed out. 347 */ 348 void __cpu_die(unsigned int cpu) 349 { 350 int err; 351 352 if (!cpu_wait_death(cpu, 5)) { 353 pr_crit("CPU%u: cpu didn't die\n", cpu); 354 return; 355 } 356 pr_notice("CPU%u: shutdown\n", cpu); 357 358 /* 359 * Now that the dying CPU is beyond the point of no return w.r.t. 360 * in-kernel synchronisation, try to get the firwmare to help us to 361 * verify that it has really left the kernel before we consider 362 * clobbering anything it might still be using. 363 */ 364 err = op_cpu_kill(cpu); 365 if (err) 366 pr_warn("CPU%d may not have shut down cleanly: %d\n", 367 cpu, err); 368 } 369 370 /* 371 * Called from the idle thread for the CPU which has been shutdown. 372 * 373 */ 374 void cpu_die(void) 375 { 376 unsigned int cpu = smp_processor_id(); 377 378 idle_task_exit(); 379 380 local_daif_mask(); 381 382 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 383 (void)cpu_report_death(); 384 385 /* 386 * Actually shutdown the CPU. This must never fail. The specific hotplug 387 * mechanism must perform all required cache maintenance to ensure that 388 * no dirty lines are lost in the process of shutting down the CPU. 389 */ 390 cpu_ops[cpu]->cpu_die(cpu); 391 392 BUG(); 393 } 394 #endif 395 396 /* 397 * Kill the calling secondary CPU, early in bringup before it is turned 398 * online. 399 */ 400 void cpu_die_early(void) 401 { 402 int cpu = smp_processor_id(); 403 404 pr_crit("CPU%d: will not boot\n", cpu); 405 406 /* Mark this CPU absent */ 407 set_cpu_present(cpu, 0); 408 409 #ifdef CONFIG_HOTPLUG_CPU 410 update_cpu_boot_status(CPU_KILL_ME); 411 /* Check if we can park ourselves */ 412 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 413 cpu_ops[cpu]->cpu_die(cpu); 414 #endif 415 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 416 417 cpu_park_loop(); 418 } 419 420 static void __init hyp_mode_check(void) 421 { 422 if (is_hyp_mode_available()) 423 pr_info("CPU: All CPU(s) started at EL2\n"); 424 else if (is_hyp_mode_mismatched()) 425 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 426 "CPU: CPUs started in inconsistent modes"); 427 else 428 pr_info("CPU: All CPU(s) started at EL1\n"); 429 } 430 431 void __init smp_cpus_done(unsigned int max_cpus) 432 { 433 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 434 setup_cpu_features(); 435 hyp_mode_check(); 436 apply_alternatives_all(); 437 mark_linear_text_alias_ro(); 438 } 439 440 void __init smp_prepare_boot_cpu(void) 441 { 442 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 443 /* 444 * Initialise the static keys early as they may be enabled by the 445 * cpufeature code. 446 */ 447 jump_label_init(); 448 cpuinfo_store_boot_cpu(); 449 save_boot_cpu_run_el(); 450 /* 451 * Run the errata work around checks on the boot CPU, once we have 452 * initialised the cpu feature infrastructure from 453 * cpuinfo_store_boot_cpu() above. 454 */ 455 update_cpu_errata_workarounds(); 456 } 457 458 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 459 { 460 const __be32 *cell; 461 u64 hwid; 462 463 /* 464 * A cpu node with missing "reg" property is 465 * considered invalid to build a cpu_logical_map 466 * entry. 467 */ 468 cell = of_get_property(dn, "reg", NULL); 469 if (!cell) { 470 pr_err("%pOF: missing reg property\n", dn); 471 return INVALID_HWID; 472 } 473 474 hwid = of_read_number(cell, of_n_addr_cells(dn)); 475 /* 476 * Non affinity bits must be set to 0 in the DT 477 */ 478 if (hwid & ~MPIDR_HWID_BITMASK) { 479 pr_err("%pOF: invalid reg property\n", dn); 480 return INVALID_HWID; 481 } 482 return hwid; 483 } 484 485 /* 486 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 487 * entries and check for duplicates. If any is found just ignore the 488 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 489 * matching valid MPIDR values. 490 */ 491 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 492 { 493 unsigned int i; 494 495 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 496 if (cpu_logical_map(i) == hwid) 497 return true; 498 return false; 499 } 500 501 /* 502 * Initialize cpu operations for a logical cpu and 503 * set it in the possible mask on success 504 */ 505 static int __init smp_cpu_setup(int cpu) 506 { 507 if (cpu_read_ops(cpu)) 508 return -ENODEV; 509 510 if (cpu_ops[cpu]->cpu_init(cpu)) 511 return -ENODEV; 512 513 set_cpu_possible(cpu, true); 514 515 return 0; 516 } 517 518 static bool bootcpu_valid __initdata; 519 static unsigned int cpu_count = 1; 520 521 #ifdef CONFIG_ACPI 522 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 523 524 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 525 { 526 return &cpu_madt_gicc[cpu]; 527 } 528 529 /* 530 * acpi_map_gic_cpu_interface - parse processor MADT entry 531 * 532 * Carry out sanity checks on MADT processor entry and initialize 533 * cpu_logical_map on success 534 */ 535 static void __init 536 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 537 { 538 u64 hwid = processor->arm_mpidr; 539 540 if (!(processor->flags & ACPI_MADT_ENABLED)) { 541 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 542 return; 543 } 544 545 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 546 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 547 return; 548 } 549 550 if (is_mpidr_duplicate(cpu_count, hwid)) { 551 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 552 return; 553 } 554 555 /* Check if GICC structure of boot CPU is available in the MADT */ 556 if (cpu_logical_map(0) == hwid) { 557 if (bootcpu_valid) { 558 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 559 hwid); 560 return; 561 } 562 bootcpu_valid = true; 563 cpu_madt_gicc[0] = *processor; 564 early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid)); 565 return; 566 } 567 568 if (cpu_count >= NR_CPUS) 569 return; 570 571 /* map the logical cpu id to cpu MPIDR */ 572 cpu_logical_map(cpu_count) = hwid; 573 574 cpu_madt_gicc[cpu_count] = *processor; 575 576 /* 577 * Set-up the ACPI parking protocol cpu entries 578 * while initializing the cpu_logical_map to 579 * avoid parsing MADT entries multiple times for 580 * nothing (ie a valid cpu_logical_map entry should 581 * contain a valid parking protocol data set to 582 * initialize the cpu if the parking protocol is 583 * the only available enable method). 584 */ 585 acpi_set_mailbox_entry(cpu_count, processor); 586 587 early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid)); 588 589 cpu_count++; 590 } 591 592 static int __init 593 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, 594 const unsigned long end) 595 { 596 struct acpi_madt_generic_interrupt *processor; 597 598 processor = (struct acpi_madt_generic_interrupt *)header; 599 if (BAD_MADT_GICC_ENTRY(processor, end)) 600 return -EINVAL; 601 602 acpi_table_print_madt_entry(header); 603 604 acpi_map_gic_cpu_interface(processor); 605 606 return 0; 607 } 608 #else 609 #define acpi_table_parse_madt(...) do { } while (0) 610 #endif 611 612 /* 613 * Enumerate the possible CPU set from the device tree and build the 614 * cpu logical map array containing MPIDR values related to logical 615 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 616 */ 617 static void __init of_parse_and_init_cpus(void) 618 { 619 struct device_node *dn; 620 621 for_each_node_by_type(dn, "cpu") { 622 u64 hwid = of_get_cpu_mpidr(dn); 623 624 if (hwid == INVALID_HWID) 625 goto next; 626 627 if (is_mpidr_duplicate(cpu_count, hwid)) { 628 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 629 dn); 630 goto next; 631 } 632 633 /* 634 * The numbering scheme requires that the boot CPU 635 * must be assigned logical id 0. Record it so that 636 * the logical map built from DT is validated and can 637 * be used. 638 */ 639 if (hwid == cpu_logical_map(0)) { 640 if (bootcpu_valid) { 641 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 642 dn); 643 goto next; 644 } 645 646 bootcpu_valid = true; 647 early_map_cpu_to_node(0, of_node_to_nid(dn)); 648 649 /* 650 * cpu_logical_map has already been 651 * initialized and the boot cpu doesn't need 652 * the enable-method so continue without 653 * incrementing cpu. 654 */ 655 continue; 656 } 657 658 if (cpu_count >= NR_CPUS) 659 goto next; 660 661 pr_debug("cpu logical map 0x%llx\n", hwid); 662 cpu_logical_map(cpu_count) = hwid; 663 664 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 665 next: 666 cpu_count++; 667 } 668 } 669 670 /* 671 * Enumerate the possible CPU set from the device tree or ACPI and build the 672 * cpu logical map array containing MPIDR values related to logical 673 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 674 */ 675 void __init smp_init_cpus(void) 676 { 677 int i; 678 679 if (acpi_disabled) 680 of_parse_and_init_cpus(); 681 else 682 /* 683 * do a walk of MADT to determine how many CPUs 684 * we have including disabled CPUs, and get information 685 * we need for SMP init 686 */ 687 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 688 acpi_parse_gic_cpu_interface, 0); 689 690 if (cpu_count > nr_cpu_ids) 691 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 692 cpu_count, nr_cpu_ids); 693 694 if (!bootcpu_valid) { 695 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 696 return; 697 } 698 699 /* 700 * We need to set the cpu_logical_map entries before enabling 701 * the cpus so that cpu processor description entries (DT cpu nodes 702 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 703 * with entries in cpu_logical_map while initializing the cpus. 704 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 705 */ 706 for (i = 1; i < nr_cpu_ids; i++) { 707 if (cpu_logical_map(i) != INVALID_HWID) { 708 if (smp_cpu_setup(i)) 709 cpu_logical_map(i) = INVALID_HWID; 710 } 711 } 712 } 713 714 void __init smp_prepare_cpus(unsigned int max_cpus) 715 { 716 int err; 717 unsigned int cpu; 718 unsigned int this_cpu; 719 720 init_cpu_topology(); 721 722 this_cpu = smp_processor_id(); 723 store_cpu_topology(this_cpu); 724 numa_store_cpu_info(this_cpu); 725 726 /* 727 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 728 * secondary CPUs present. 729 */ 730 if (max_cpus == 0) 731 return; 732 733 /* 734 * Initialise the present map (which describes the set of CPUs 735 * actually populated at the present time) and release the 736 * secondaries from the bootloader. 737 */ 738 for_each_possible_cpu(cpu) { 739 740 per_cpu(cpu_number, cpu) = cpu; 741 742 if (cpu == smp_processor_id()) 743 continue; 744 745 if (!cpu_ops[cpu]) 746 continue; 747 748 err = cpu_ops[cpu]->cpu_prepare(cpu); 749 if (err) 750 continue; 751 752 set_cpu_present(cpu, true); 753 numa_store_cpu_info(cpu); 754 } 755 } 756 757 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 758 759 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 760 { 761 __smp_cross_call = fn; 762 } 763 764 static const char *ipi_types[NR_IPI] __tracepoint_string = { 765 #define S(x,s) [x] = s 766 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 767 S(IPI_CALL_FUNC, "Function call interrupts"), 768 S(IPI_CPU_STOP, "CPU stop interrupts"), 769 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 770 S(IPI_TIMER, "Timer broadcast interrupts"), 771 S(IPI_IRQ_WORK, "IRQ work interrupts"), 772 S(IPI_WAKEUP, "CPU wake-up interrupts"), 773 }; 774 775 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 776 { 777 trace_ipi_raise(target, ipi_types[ipinr]); 778 __smp_cross_call(target, ipinr); 779 } 780 781 void show_ipi_list(struct seq_file *p, int prec) 782 { 783 unsigned int cpu, i; 784 785 for (i = 0; i < NR_IPI; i++) { 786 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 787 prec >= 4 ? " " : ""); 788 for_each_online_cpu(cpu) 789 seq_printf(p, "%10u ", 790 __get_irq_stat(cpu, ipi_irqs[i])); 791 seq_printf(p, " %s\n", ipi_types[i]); 792 } 793 } 794 795 u64 smp_irq_stat_cpu(unsigned int cpu) 796 { 797 u64 sum = 0; 798 int i; 799 800 for (i = 0; i < NR_IPI; i++) 801 sum += __get_irq_stat(cpu, ipi_irqs[i]); 802 803 return sum; 804 } 805 806 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 807 { 808 smp_cross_call(mask, IPI_CALL_FUNC); 809 } 810 811 void arch_send_call_function_single_ipi(int cpu) 812 { 813 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 814 } 815 816 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 817 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 818 { 819 smp_cross_call(mask, IPI_WAKEUP); 820 } 821 #endif 822 823 #ifdef CONFIG_IRQ_WORK 824 void arch_irq_work_raise(void) 825 { 826 if (__smp_cross_call) 827 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 828 } 829 #endif 830 831 /* 832 * ipi_cpu_stop - handle IPI from smp_send_stop() 833 */ 834 static void ipi_cpu_stop(unsigned int cpu) 835 { 836 set_cpu_online(cpu, false); 837 838 local_daif_mask(); 839 840 while (1) 841 cpu_relax(); 842 } 843 844 #ifdef CONFIG_KEXEC_CORE 845 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 846 #endif 847 848 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 849 { 850 #ifdef CONFIG_KEXEC_CORE 851 crash_save_cpu(regs, cpu); 852 853 atomic_dec(&waiting_for_crash_ipi); 854 855 local_irq_disable(); 856 857 #ifdef CONFIG_HOTPLUG_CPU 858 if (cpu_ops[cpu]->cpu_die) 859 cpu_ops[cpu]->cpu_die(cpu); 860 #endif 861 862 /* just in case */ 863 cpu_park_loop(); 864 #endif 865 } 866 867 /* 868 * Main handler for inter-processor interrupts 869 */ 870 void handle_IPI(int ipinr, struct pt_regs *regs) 871 { 872 unsigned int cpu = smp_processor_id(); 873 struct pt_regs *old_regs = set_irq_regs(regs); 874 875 if ((unsigned)ipinr < NR_IPI) { 876 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 877 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 878 } 879 880 switch (ipinr) { 881 case IPI_RESCHEDULE: 882 scheduler_ipi(); 883 break; 884 885 case IPI_CALL_FUNC: 886 irq_enter(); 887 generic_smp_call_function_interrupt(); 888 irq_exit(); 889 break; 890 891 case IPI_CPU_STOP: 892 irq_enter(); 893 ipi_cpu_stop(cpu); 894 irq_exit(); 895 break; 896 897 case IPI_CPU_CRASH_STOP: 898 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 899 irq_enter(); 900 ipi_cpu_crash_stop(cpu, regs); 901 902 unreachable(); 903 } 904 break; 905 906 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 907 case IPI_TIMER: 908 irq_enter(); 909 tick_receive_broadcast(); 910 irq_exit(); 911 break; 912 #endif 913 914 #ifdef CONFIG_IRQ_WORK 915 case IPI_IRQ_WORK: 916 irq_enter(); 917 irq_work_run(); 918 irq_exit(); 919 break; 920 #endif 921 922 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 923 case IPI_WAKEUP: 924 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 925 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 926 cpu); 927 break; 928 #endif 929 930 default: 931 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 932 break; 933 } 934 935 if ((unsigned)ipinr < NR_IPI) 936 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 937 set_irq_regs(old_regs); 938 } 939 940 void smp_send_reschedule(int cpu) 941 { 942 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 943 } 944 945 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 946 void tick_broadcast(const struct cpumask *mask) 947 { 948 smp_cross_call(mask, IPI_TIMER); 949 } 950 #endif 951 952 void smp_send_stop(void) 953 { 954 unsigned long timeout; 955 956 if (num_online_cpus() > 1) { 957 cpumask_t mask; 958 959 cpumask_copy(&mask, cpu_online_mask); 960 cpumask_clear_cpu(smp_processor_id(), &mask); 961 962 if (system_state <= SYSTEM_RUNNING) 963 pr_crit("SMP: stopping secondary CPUs\n"); 964 smp_cross_call(&mask, IPI_CPU_STOP); 965 } 966 967 /* Wait up to one second for other CPUs to stop */ 968 timeout = USEC_PER_SEC; 969 while (num_online_cpus() > 1 && timeout--) 970 udelay(1); 971 972 if (num_online_cpus() > 1) 973 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 974 cpumask_pr_args(cpu_online_mask)); 975 } 976 977 #ifdef CONFIG_KEXEC_CORE 978 void crash_smp_send_stop(void) 979 { 980 static int cpus_stopped; 981 cpumask_t mask; 982 unsigned long timeout; 983 984 /* 985 * This function can be called twice in panic path, but obviously 986 * we execute this only once. 987 */ 988 if (cpus_stopped) 989 return; 990 991 cpus_stopped = 1; 992 993 if (num_online_cpus() == 1) 994 return; 995 996 cpumask_copy(&mask, cpu_online_mask); 997 cpumask_clear_cpu(smp_processor_id(), &mask); 998 999 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); 1000 1001 pr_crit("SMP: stopping secondary CPUs\n"); 1002 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 1003 1004 /* Wait up to one second for other CPUs to stop */ 1005 timeout = USEC_PER_SEC; 1006 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 1007 udelay(1); 1008 1009 if (atomic_read(&waiting_for_crash_ipi) > 0) 1010 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 1011 cpumask_pr_args(&mask)); 1012 } 1013 1014 bool smp_crash_stop_failed(void) 1015 { 1016 return (atomic_read(&waiting_for_crash_ipi) > 0); 1017 } 1018 #endif 1019 1020 /* 1021 * not supported here 1022 */ 1023 int setup_profiling_timer(unsigned int multiplier) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static bool have_cpu_die(void) 1029 { 1030 #ifdef CONFIG_HOTPLUG_CPU 1031 int any_cpu = raw_smp_processor_id(); 1032 1033 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) 1034 return true; 1035 #endif 1036 return false; 1037 } 1038 1039 bool cpus_are_stuck_in_kernel(void) 1040 { 1041 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1042 1043 return !!cpus_stuck_in_kernel || smp_spin_tables; 1044 } 1045