xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 65417d9f)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched/mm.h>
25 #include <linux/sched/hotplug.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/interrupt.h>
28 #include <linux/cache.h>
29 #include <linux/profile.h>
30 #include <linux/errno.h>
31 #include <linux/mm.h>
32 #include <linux/err.h>
33 #include <linux/cpu.h>
34 #include <linux/smp.h>
35 #include <linux/seq_file.h>
36 #include <linux/irq.h>
37 #include <linux/percpu.h>
38 #include <linux/clockchips.h>
39 #include <linux/completion.h>
40 #include <linux/of.h>
41 #include <linux/irq_work.h>
42 #include <linux/kexec.h>
43 
44 #include <asm/alternative.h>
45 #include <asm/atomic.h>
46 #include <asm/cacheflush.h>
47 #include <asm/cpu.h>
48 #include <asm/cputype.h>
49 #include <asm/cpu_ops.h>
50 #include <asm/daifflags.h>
51 #include <asm/mmu_context.h>
52 #include <asm/numa.h>
53 #include <asm/pgtable.h>
54 #include <asm/pgalloc.h>
55 #include <asm/processor.h>
56 #include <asm/smp_plat.h>
57 #include <asm/sections.h>
58 #include <asm/tlbflush.h>
59 #include <asm/ptrace.h>
60 #include <asm/virt.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/ipi.h>
64 
65 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
66 EXPORT_PER_CPU_SYMBOL(cpu_number);
67 
68 /*
69  * as from 2.5, kernels no longer have an init_tasks structure
70  * so we need some other way of telling a new secondary core
71  * where to place its SVC stack
72  */
73 struct secondary_data secondary_data;
74 /* Number of CPUs which aren't online, but looping in kernel text. */
75 int cpus_stuck_in_kernel;
76 
77 enum ipi_msg_type {
78 	IPI_RESCHEDULE,
79 	IPI_CALL_FUNC,
80 	IPI_CPU_STOP,
81 	IPI_CPU_CRASH_STOP,
82 	IPI_TIMER,
83 	IPI_IRQ_WORK,
84 	IPI_WAKEUP
85 };
86 
87 #ifdef CONFIG_ARM64_VHE
88 
89 /* Whether the boot CPU is running in HYP mode or not*/
90 static bool boot_cpu_hyp_mode;
91 
92 static inline void save_boot_cpu_run_el(void)
93 {
94 	boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
95 }
96 
97 static inline bool is_boot_cpu_in_hyp_mode(void)
98 {
99 	return boot_cpu_hyp_mode;
100 }
101 
102 /*
103  * Verify that a secondary CPU is running the kernel at the same
104  * EL as that of the boot CPU.
105  */
106 void verify_cpu_run_el(void)
107 {
108 	bool in_el2 = is_kernel_in_hyp_mode();
109 	bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
110 
111 	if (in_el2 ^ boot_cpu_el2) {
112 		pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
113 					smp_processor_id(),
114 					in_el2 ? 2 : 1,
115 					boot_cpu_el2 ? 2 : 1);
116 		cpu_panic_kernel();
117 	}
118 }
119 
120 #else
121 static inline void save_boot_cpu_run_el(void) {}
122 #endif
123 
124 #ifdef CONFIG_HOTPLUG_CPU
125 static int op_cpu_kill(unsigned int cpu);
126 #else
127 static inline int op_cpu_kill(unsigned int cpu)
128 {
129 	return -ENOSYS;
130 }
131 #endif
132 
133 
134 /*
135  * Boot a secondary CPU, and assign it the specified idle task.
136  * This also gives us the initial stack to use for this CPU.
137  */
138 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
139 {
140 	if (cpu_ops[cpu]->cpu_boot)
141 		return cpu_ops[cpu]->cpu_boot(cpu);
142 
143 	return -EOPNOTSUPP;
144 }
145 
146 static DECLARE_COMPLETION(cpu_running);
147 
148 int __cpu_up(unsigned int cpu, struct task_struct *idle)
149 {
150 	int ret;
151 	long status;
152 
153 	/*
154 	 * We need to tell the secondary core where to find its stack and the
155 	 * page tables.
156 	 */
157 	secondary_data.task = idle;
158 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
159 	update_cpu_boot_status(CPU_MMU_OFF);
160 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
161 
162 	/*
163 	 * Now bring the CPU into our world.
164 	 */
165 	ret = boot_secondary(cpu, idle);
166 	if (ret == 0) {
167 		/*
168 		 * CPU was successfully started, wait for it to come online or
169 		 * time out.
170 		 */
171 		wait_for_completion_timeout(&cpu_running,
172 					    msecs_to_jiffies(1000));
173 
174 		if (!cpu_online(cpu)) {
175 			pr_crit("CPU%u: failed to come online\n", cpu);
176 			ret = -EIO;
177 		}
178 	} else {
179 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
180 	}
181 
182 	secondary_data.task = NULL;
183 	secondary_data.stack = NULL;
184 	status = READ_ONCE(secondary_data.status);
185 	if (ret && status) {
186 
187 		if (status == CPU_MMU_OFF)
188 			status = READ_ONCE(__early_cpu_boot_status);
189 
190 		switch (status) {
191 		default:
192 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
193 					cpu, status);
194 			break;
195 		case CPU_KILL_ME:
196 			if (!op_cpu_kill(cpu)) {
197 				pr_crit("CPU%u: died during early boot\n", cpu);
198 				break;
199 			}
200 			/* Fall through */
201 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
202 		case CPU_STUCK_IN_KERNEL:
203 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
204 			cpus_stuck_in_kernel++;
205 			break;
206 		case CPU_PANIC_KERNEL:
207 			panic("CPU%u detected unsupported configuration\n", cpu);
208 		}
209 	}
210 
211 	return ret;
212 }
213 
214 /*
215  * This is the secondary CPU boot entry.  We're using this CPUs
216  * idle thread stack, but a set of temporary page tables.
217  */
218 asmlinkage void secondary_start_kernel(void)
219 {
220 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
221 	struct mm_struct *mm = &init_mm;
222 	unsigned int cpu;
223 
224 	cpu = task_cpu(current);
225 	set_my_cpu_offset(per_cpu_offset(cpu));
226 
227 	/*
228 	 * All kernel threads share the same mm context; grab a
229 	 * reference and switch to it.
230 	 */
231 	mmgrab(mm);
232 	current->active_mm = mm;
233 
234 	/*
235 	 * TTBR0 is only used for the identity mapping at this stage. Make it
236 	 * point to zero page to avoid speculatively fetching new entries.
237 	 */
238 	cpu_uninstall_idmap();
239 
240 	preempt_disable();
241 	trace_hardirqs_off();
242 
243 	/*
244 	 * If the system has established the capabilities, make sure
245 	 * this CPU ticks all of those. If it doesn't, the CPU will
246 	 * fail to come online.
247 	 */
248 	check_local_cpu_capabilities();
249 
250 	if (cpu_ops[cpu]->cpu_postboot)
251 		cpu_ops[cpu]->cpu_postboot();
252 
253 	/*
254 	 * Log the CPU info before it is marked online and might get read.
255 	 */
256 	cpuinfo_store_cpu();
257 
258 	/*
259 	 * Enable GIC and timers.
260 	 */
261 	notify_cpu_starting(cpu);
262 
263 	store_cpu_topology(cpu);
264 
265 	/*
266 	 * OK, now it's safe to let the boot CPU continue.  Wait for
267 	 * the CPU migration code to notice that the CPU is online
268 	 * before we continue.
269 	 */
270 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
271 					 cpu, (unsigned long)mpidr,
272 					 read_cpuid_id());
273 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
274 	set_cpu_online(cpu, true);
275 	complete(&cpu_running);
276 
277 	local_daif_restore(DAIF_PROCCTX);
278 
279 	/*
280 	 * OK, it's off to the idle thread for us
281 	 */
282 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
283 }
284 
285 #ifdef CONFIG_HOTPLUG_CPU
286 static int op_cpu_disable(unsigned int cpu)
287 {
288 	/*
289 	 * If we don't have a cpu_die method, abort before we reach the point
290 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
291 	 */
292 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
293 		return -EOPNOTSUPP;
294 
295 	/*
296 	 * We may need to abort a hot unplug for some other mechanism-specific
297 	 * reason.
298 	 */
299 	if (cpu_ops[cpu]->cpu_disable)
300 		return cpu_ops[cpu]->cpu_disable(cpu);
301 
302 	return 0;
303 }
304 
305 /*
306  * __cpu_disable runs on the processor to be shutdown.
307  */
308 int __cpu_disable(void)
309 {
310 	unsigned int cpu = smp_processor_id();
311 	int ret;
312 
313 	ret = op_cpu_disable(cpu);
314 	if (ret)
315 		return ret;
316 
317 	/*
318 	 * Take this CPU offline.  Once we clear this, we can't return,
319 	 * and we must not schedule until we're ready to give up the cpu.
320 	 */
321 	set_cpu_online(cpu, false);
322 
323 	/*
324 	 * OK - migrate IRQs away from this CPU
325 	 */
326 	irq_migrate_all_off_this_cpu();
327 
328 	return 0;
329 }
330 
331 static int op_cpu_kill(unsigned int cpu)
332 {
333 	/*
334 	 * If we have no means of synchronising with the dying CPU, then assume
335 	 * that it is really dead. We can only wait for an arbitrary length of
336 	 * time and hope that it's dead, so let's skip the wait and just hope.
337 	 */
338 	if (!cpu_ops[cpu]->cpu_kill)
339 		return 0;
340 
341 	return cpu_ops[cpu]->cpu_kill(cpu);
342 }
343 
344 /*
345  * called on the thread which is asking for a CPU to be shutdown -
346  * waits until shutdown has completed, or it is timed out.
347  */
348 void __cpu_die(unsigned int cpu)
349 {
350 	int err;
351 
352 	if (!cpu_wait_death(cpu, 5)) {
353 		pr_crit("CPU%u: cpu didn't die\n", cpu);
354 		return;
355 	}
356 	pr_notice("CPU%u: shutdown\n", cpu);
357 
358 	/*
359 	 * Now that the dying CPU is beyond the point of no return w.r.t.
360 	 * in-kernel synchronisation, try to get the firwmare to help us to
361 	 * verify that it has really left the kernel before we consider
362 	 * clobbering anything it might still be using.
363 	 */
364 	err = op_cpu_kill(cpu);
365 	if (err)
366 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
367 			cpu, err);
368 }
369 
370 /*
371  * Called from the idle thread for the CPU which has been shutdown.
372  *
373  */
374 void cpu_die(void)
375 {
376 	unsigned int cpu = smp_processor_id();
377 
378 	idle_task_exit();
379 
380 	local_daif_mask();
381 
382 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
383 	(void)cpu_report_death();
384 
385 	/*
386 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
387 	 * mechanism must perform all required cache maintenance to ensure that
388 	 * no dirty lines are lost in the process of shutting down the CPU.
389 	 */
390 	cpu_ops[cpu]->cpu_die(cpu);
391 
392 	BUG();
393 }
394 #endif
395 
396 /*
397  * Kill the calling secondary CPU, early in bringup before it is turned
398  * online.
399  */
400 void cpu_die_early(void)
401 {
402 	int cpu = smp_processor_id();
403 
404 	pr_crit("CPU%d: will not boot\n", cpu);
405 
406 	/* Mark this CPU absent */
407 	set_cpu_present(cpu, 0);
408 
409 #ifdef CONFIG_HOTPLUG_CPU
410 	update_cpu_boot_status(CPU_KILL_ME);
411 	/* Check if we can park ourselves */
412 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
413 		cpu_ops[cpu]->cpu_die(cpu);
414 #endif
415 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
416 
417 	cpu_park_loop();
418 }
419 
420 static void __init hyp_mode_check(void)
421 {
422 	if (is_hyp_mode_available())
423 		pr_info("CPU: All CPU(s) started at EL2\n");
424 	else if (is_hyp_mode_mismatched())
425 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
426 			   "CPU: CPUs started in inconsistent modes");
427 	else
428 		pr_info("CPU: All CPU(s) started at EL1\n");
429 }
430 
431 void __init smp_cpus_done(unsigned int max_cpus)
432 {
433 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
434 	setup_cpu_features();
435 	hyp_mode_check();
436 	apply_alternatives_all();
437 	mark_linear_text_alias_ro();
438 }
439 
440 void __init smp_prepare_boot_cpu(void)
441 {
442 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
443 	/*
444 	 * Initialise the static keys early as they may be enabled by the
445 	 * cpufeature code.
446 	 */
447 	jump_label_init();
448 	cpuinfo_store_boot_cpu();
449 	save_boot_cpu_run_el();
450 	/*
451 	 * Run the errata work around checks on the boot CPU, once we have
452 	 * initialised the cpu feature infrastructure from
453 	 * cpuinfo_store_boot_cpu() above.
454 	 */
455 	update_cpu_errata_workarounds();
456 }
457 
458 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
459 {
460 	const __be32 *cell;
461 	u64 hwid;
462 
463 	/*
464 	 * A cpu node with missing "reg" property is
465 	 * considered invalid to build a cpu_logical_map
466 	 * entry.
467 	 */
468 	cell = of_get_property(dn, "reg", NULL);
469 	if (!cell) {
470 		pr_err("%pOF: missing reg property\n", dn);
471 		return INVALID_HWID;
472 	}
473 
474 	hwid = of_read_number(cell, of_n_addr_cells(dn));
475 	/*
476 	 * Non affinity bits must be set to 0 in the DT
477 	 */
478 	if (hwid & ~MPIDR_HWID_BITMASK) {
479 		pr_err("%pOF: invalid reg property\n", dn);
480 		return INVALID_HWID;
481 	}
482 	return hwid;
483 }
484 
485 /*
486  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
487  * entries and check for duplicates. If any is found just ignore the
488  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
489  * matching valid MPIDR values.
490  */
491 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
492 {
493 	unsigned int i;
494 
495 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
496 		if (cpu_logical_map(i) == hwid)
497 			return true;
498 	return false;
499 }
500 
501 /*
502  * Initialize cpu operations for a logical cpu and
503  * set it in the possible mask on success
504  */
505 static int __init smp_cpu_setup(int cpu)
506 {
507 	if (cpu_read_ops(cpu))
508 		return -ENODEV;
509 
510 	if (cpu_ops[cpu]->cpu_init(cpu))
511 		return -ENODEV;
512 
513 	set_cpu_possible(cpu, true);
514 
515 	return 0;
516 }
517 
518 static bool bootcpu_valid __initdata;
519 static unsigned int cpu_count = 1;
520 
521 #ifdef CONFIG_ACPI
522 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
523 
524 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
525 {
526 	return &cpu_madt_gicc[cpu];
527 }
528 
529 /*
530  * acpi_map_gic_cpu_interface - parse processor MADT entry
531  *
532  * Carry out sanity checks on MADT processor entry and initialize
533  * cpu_logical_map on success
534  */
535 static void __init
536 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
537 {
538 	u64 hwid = processor->arm_mpidr;
539 
540 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
541 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
542 		return;
543 	}
544 
545 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
546 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
547 		return;
548 	}
549 
550 	if (is_mpidr_duplicate(cpu_count, hwid)) {
551 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
552 		return;
553 	}
554 
555 	/* Check if GICC structure of boot CPU is available in the MADT */
556 	if (cpu_logical_map(0) == hwid) {
557 		if (bootcpu_valid) {
558 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
559 			       hwid);
560 			return;
561 		}
562 		bootcpu_valid = true;
563 		cpu_madt_gicc[0] = *processor;
564 		early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid));
565 		return;
566 	}
567 
568 	if (cpu_count >= NR_CPUS)
569 		return;
570 
571 	/* map the logical cpu id to cpu MPIDR */
572 	cpu_logical_map(cpu_count) = hwid;
573 
574 	cpu_madt_gicc[cpu_count] = *processor;
575 
576 	/*
577 	 * Set-up the ACPI parking protocol cpu entries
578 	 * while initializing the cpu_logical_map to
579 	 * avoid parsing MADT entries multiple times for
580 	 * nothing (ie a valid cpu_logical_map entry should
581 	 * contain a valid parking protocol data set to
582 	 * initialize the cpu if the parking protocol is
583 	 * the only available enable method).
584 	 */
585 	acpi_set_mailbox_entry(cpu_count, processor);
586 
587 	early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
588 
589 	cpu_count++;
590 }
591 
592 static int __init
593 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
594 			     const unsigned long end)
595 {
596 	struct acpi_madt_generic_interrupt *processor;
597 
598 	processor = (struct acpi_madt_generic_interrupt *)header;
599 	if (BAD_MADT_GICC_ENTRY(processor, end))
600 		return -EINVAL;
601 
602 	acpi_table_print_madt_entry(header);
603 
604 	acpi_map_gic_cpu_interface(processor);
605 
606 	return 0;
607 }
608 #else
609 #define acpi_table_parse_madt(...)	do { } while (0)
610 #endif
611 
612 /*
613  * Enumerate the possible CPU set from the device tree and build the
614  * cpu logical map array containing MPIDR values related to logical
615  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
616  */
617 static void __init of_parse_and_init_cpus(void)
618 {
619 	struct device_node *dn;
620 
621 	for_each_node_by_type(dn, "cpu") {
622 		u64 hwid = of_get_cpu_mpidr(dn);
623 
624 		if (hwid == INVALID_HWID)
625 			goto next;
626 
627 		if (is_mpidr_duplicate(cpu_count, hwid)) {
628 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
629 				dn);
630 			goto next;
631 		}
632 
633 		/*
634 		 * The numbering scheme requires that the boot CPU
635 		 * must be assigned logical id 0. Record it so that
636 		 * the logical map built from DT is validated and can
637 		 * be used.
638 		 */
639 		if (hwid == cpu_logical_map(0)) {
640 			if (bootcpu_valid) {
641 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
642 					dn);
643 				goto next;
644 			}
645 
646 			bootcpu_valid = true;
647 			early_map_cpu_to_node(0, of_node_to_nid(dn));
648 
649 			/*
650 			 * cpu_logical_map has already been
651 			 * initialized and the boot cpu doesn't need
652 			 * the enable-method so continue without
653 			 * incrementing cpu.
654 			 */
655 			continue;
656 		}
657 
658 		if (cpu_count >= NR_CPUS)
659 			goto next;
660 
661 		pr_debug("cpu logical map 0x%llx\n", hwid);
662 		cpu_logical_map(cpu_count) = hwid;
663 
664 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
665 next:
666 		cpu_count++;
667 	}
668 }
669 
670 /*
671  * Enumerate the possible CPU set from the device tree or ACPI and build the
672  * cpu logical map array containing MPIDR values related to logical
673  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
674  */
675 void __init smp_init_cpus(void)
676 {
677 	int i;
678 
679 	if (acpi_disabled)
680 		of_parse_and_init_cpus();
681 	else
682 		/*
683 		 * do a walk of MADT to determine how many CPUs
684 		 * we have including disabled CPUs, and get information
685 		 * we need for SMP init
686 		 */
687 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
688 				      acpi_parse_gic_cpu_interface, 0);
689 
690 	if (cpu_count > nr_cpu_ids)
691 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
692 			cpu_count, nr_cpu_ids);
693 
694 	if (!bootcpu_valid) {
695 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
696 		return;
697 	}
698 
699 	/*
700 	 * We need to set the cpu_logical_map entries before enabling
701 	 * the cpus so that cpu processor description entries (DT cpu nodes
702 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
703 	 * with entries in cpu_logical_map while initializing the cpus.
704 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
705 	 */
706 	for (i = 1; i < nr_cpu_ids; i++) {
707 		if (cpu_logical_map(i) != INVALID_HWID) {
708 			if (smp_cpu_setup(i))
709 				cpu_logical_map(i) = INVALID_HWID;
710 		}
711 	}
712 }
713 
714 void __init smp_prepare_cpus(unsigned int max_cpus)
715 {
716 	int err;
717 	unsigned int cpu;
718 	unsigned int this_cpu;
719 
720 	init_cpu_topology();
721 
722 	this_cpu = smp_processor_id();
723 	store_cpu_topology(this_cpu);
724 	numa_store_cpu_info(this_cpu);
725 
726 	/*
727 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
728 	 * secondary CPUs present.
729 	 */
730 	if (max_cpus == 0)
731 		return;
732 
733 	/*
734 	 * Initialise the present map (which describes the set of CPUs
735 	 * actually populated at the present time) and release the
736 	 * secondaries from the bootloader.
737 	 */
738 	for_each_possible_cpu(cpu) {
739 
740 		per_cpu(cpu_number, cpu) = cpu;
741 
742 		if (cpu == smp_processor_id())
743 			continue;
744 
745 		if (!cpu_ops[cpu])
746 			continue;
747 
748 		err = cpu_ops[cpu]->cpu_prepare(cpu);
749 		if (err)
750 			continue;
751 
752 		set_cpu_present(cpu, true);
753 		numa_store_cpu_info(cpu);
754 	}
755 }
756 
757 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
758 
759 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
760 {
761 	__smp_cross_call = fn;
762 }
763 
764 static const char *ipi_types[NR_IPI] __tracepoint_string = {
765 #define S(x,s)	[x] = s
766 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
767 	S(IPI_CALL_FUNC, "Function call interrupts"),
768 	S(IPI_CPU_STOP, "CPU stop interrupts"),
769 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
770 	S(IPI_TIMER, "Timer broadcast interrupts"),
771 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
772 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
773 };
774 
775 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
776 {
777 	trace_ipi_raise(target, ipi_types[ipinr]);
778 	__smp_cross_call(target, ipinr);
779 }
780 
781 void show_ipi_list(struct seq_file *p, int prec)
782 {
783 	unsigned int cpu, i;
784 
785 	for (i = 0; i < NR_IPI; i++) {
786 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
787 			   prec >= 4 ? " " : "");
788 		for_each_online_cpu(cpu)
789 			seq_printf(p, "%10u ",
790 				   __get_irq_stat(cpu, ipi_irqs[i]));
791 		seq_printf(p, "      %s\n", ipi_types[i]);
792 	}
793 }
794 
795 u64 smp_irq_stat_cpu(unsigned int cpu)
796 {
797 	u64 sum = 0;
798 	int i;
799 
800 	for (i = 0; i < NR_IPI; i++)
801 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
802 
803 	return sum;
804 }
805 
806 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
807 {
808 	smp_cross_call(mask, IPI_CALL_FUNC);
809 }
810 
811 void arch_send_call_function_single_ipi(int cpu)
812 {
813 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
814 }
815 
816 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
817 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
818 {
819 	smp_cross_call(mask, IPI_WAKEUP);
820 }
821 #endif
822 
823 #ifdef CONFIG_IRQ_WORK
824 void arch_irq_work_raise(void)
825 {
826 	if (__smp_cross_call)
827 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
828 }
829 #endif
830 
831 /*
832  * ipi_cpu_stop - handle IPI from smp_send_stop()
833  */
834 static void ipi_cpu_stop(unsigned int cpu)
835 {
836 	set_cpu_online(cpu, false);
837 
838 	local_daif_mask();
839 
840 	while (1)
841 		cpu_relax();
842 }
843 
844 #ifdef CONFIG_KEXEC_CORE
845 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
846 #endif
847 
848 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
849 {
850 #ifdef CONFIG_KEXEC_CORE
851 	crash_save_cpu(regs, cpu);
852 
853 	atomic_dec(&waiting_for_crash_ipi);
854 
855 	local_irq_disable();
856 
857 #ifdef CONFIG_HOTPLUG_CPU
858 	if (cpu_ops[cpu]->cpu_die)
859 		cpu_ops[cpu]->cpu_die(cpu);
860 #endif
861 
862 	/* just in case */
863 	cpu_park_loop();
864 #endif
865 }
866 
867 /*
868  * Main handler for inter-processor interrupts
869  */
870 void handle_IPI(int ipinr, struct pt_regs *regs)
871 {
872 	unsigned int cpu = smp_processor_id();
873 	struct pt_regs *old_regs = set_irq_regs(regs);
874 
875 	if ((unsigned)ipinr < NR_IPI) {
876 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
877 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
878 	}
879 
880 	switch (ipinr) {
881 	case IPI_RESCHEDULE:
882 		scheduler_ipi();
883 		break;
884 
885 	case IPI_CALL_FUNC:
886 		irq_enter();
887 		generic_smp_call_function_interrupt();
888 		irq_exit();
889 		break;
890 
891 	case IPI_CPU_STOP:
892 		irq_enter();
893 		ipi_cpu_stop(cpu);
894 		irq_exit();
895 		break;
896 
897 	case IPI_CPU_CRASH_STOP:
898 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
899 			irq_enter();
900 			ipi_cpu_crash_stop(cpu, regs);
901 
902 			unreachable();
903 		}
904 		break;
905 
906 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
907 	case IPI_TIMER:
908 		irq_enter();
909 		tick_receive_broadcast();
910 		irq_exit();
911 		break;
912 #endif
913 
914 #ifdef CONFIG_IRQ_WORK
915 	case IPI_IRQ_WORK:
916 		irq_enter();
917 		irq_work_run();
918 		irq_exit();
919 		break;
920 #endif
921 
922 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
923 	case IPI_WAKEUP:
924 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
925 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
926 			  cpu);
927 		break;
928 #endif
929 
930 	default:
931 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
932 		break;
933 	}
934 
935 	if ((unsigned)ipinr < NR_IPI)
936 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
937 	set_irq_regs(old_regs);
938 }
939 
940 void smp_send_reschedule(int cpu)
941 {
942 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
943 }
944 
945 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
946 void tick_broadcast(const struct cpumask *mask)
947 {
948 	smp_cross_call(mask, IPI_TIMER);
949 }
950 #endif
951 
952 void smp_send_stop(void)
953 {
954 	unsigned long timeout;
955 
956 	if (num_online_cpus() > 1) {
957 		cpumask_t mask;
958 
959 		cpumask_copy(&mask, cpu_online_mask);
960 		cpumask_clear_cpu(smp_processor_id(), &mask);
961 
962 		if (system_state <= SYSTEM_RUNNING)
963 			pr_crit("SMP: stopping secondary CPUs\n");
964 		smp_cross_call(&mask, IPI_CPU_STOP);
965 	}
966 
967 	/* Wait up to one second for other CPUs to stop */
968 	timeout = USEC_PER_SEC;
969 	while (num_online_cpus() > 1 && timeout--)
970 		udelay(1);
971 
972 	if (num_online_cpus() > 1)
973 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
974 			   cpumask_pr_args(cpu_online_mask));
975 }
976 
977 #ifdef CONFIG_KEXEC_CORE
978 void crash_smp_send_stop(void)
979 {
980 	static int cpus_stopped;
981 	cpumask_t mask;
982 	unsigned long timeout;
983 
984 	/*
985 	 * This function can be called twice in panic path, but obviously
986 	 * we execute this only once.
987 	 */
988 	if (cpus_stopped)
989 		return;
990 
991 	cpus_stopped = 1;
992 
993 	if (num_online_cpus() == 1)
994 		return;
995 
996 	cpumask_copy(&mask, cpu_online_mask);
997 	cpumask_clear_cpu(smp_processor_id(), &mask);
998 
999 	atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1000 
1001 	pr_crit("SMP: stopping secondary CPUs\n");
1002 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1003 
1004 	/* Wait up to one second for other CPUs to stop */
1005 	timeout = USEC_PER_SEC;
1006 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1007 		udelay(1);
1008 
1009 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1010 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1011 			   cpumask_pr_args(&mask));
1012 }
1013 
1014 bool smp_crash_stop_failed(void)
1015 {
1016 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1017 }
1018 #endif
1019 
1020 /*
1021  * not supported here
1022  */
1023 int setup_profiling_timer(unsigned int multiplier)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static bool have_cpu_die(void)
1029 {
1030 #ifdef CONFIG_HOTPLUG_CPU
1031 	int any_cpu = raw_smp_processor_id();
1032 
1033 	if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1034 		return true;
1035 #endif
1036 	return false;
1037 }
1038 
1039 bool cpus_are_stuck_in_kernel(void)
1040 {
1041 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1042 
1043 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1044 }
1045