xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 64933513)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40 
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/pgtable.h>
50 #include <asm/pgalloc.h>
51 #include <asm/processor.h>
52 #include <asm/smp_plat.h>
53 #include <asm/sections.h>
54 #include <asm/tlbflush.h>
55 #include <asm/ptrace.h>
56 #include <asm/virt.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ipi.h>
60 
61 /*
62  * as from 2.5, kernels no longer have an init_tasks structure
63  * so we need some other way of telling a new secondary core
64  * where to place its SVC stack
65  */
66 struct secondary_data secondary_data;
67 /* Number of CPUs which aren't online, but looping in kernel text. */
68 int cpus_stuck_in_kernel;
69 
70 enum ipi_msg_type {
71 	IPI_RESCHEDULE,
72 	IPI_CALL_FUNC,
73 	IPI_CPU_STOP,
74 	IPI_TIMER,
75 	IPI_IRQ_WORK,
76 	IPI_WAKEUP
77 };
78 
79 #ifdef CONFIG_ARM64_VHE
80 
81 /* Whether the boot CPU is running in HYP mode or not*/
82 static bool boot_cpu_hyp_mode;
83 
84 static inline void save_boot_cpu_run_el(void)
85 {
86 	boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
87 }
88 
89 static inline bool is_boot_cpu_in_hyp_mode(void)
90 {
91 	return boot_cpu_hyp_mode;
92 }
93 
94 /*
95  * Verify that a secondary CPU is running the kernel at the same
96  * EL as that of the boot CPU.
97  */
98 void verify_cpu_run_el(void)
99 {
100 	bool in_el2 = is_kernel_in_hyp_mode();
101 	bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
102 
103 	if (in_el2 ^ boot_cpu_el2) {
104 		pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
105 					smp_processor_id(),
106 					in_el2 ? 2 : 1,
107 					boot_cpu_el2 ? 2 : 1);
108 		cpu_panic_kernel();
109 	}
110 }
111 
112 #else
113 static inline void save_boot_cpu_run_el(void) {}
114 #endif
115 
116 #ifdef CONFIG_HOTPLUG_CPU
117 static int op_cpu_kill(unsigned int cpu);
118 #else
119 static inline int op_cpu_kill(unsigned int cpu)
120 {
121 	return -ENOSYS;
122 }
123 #endif
124 
125 
126 /*
127  * Boot a secondary CPU, and assign it the specified idle task.
128  * This also gives us the initial stack to use for this CPU.
129  */
130 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
131 {
132 	if (cpu_ops[cpu]->cpu_boot)
133 		return cpu_ops[cpu]->cpu_boot(cpu);
134 
135 	return -EOPNOTSUPP;
136 }
137 
138 static DECLARE_COMPLETION(cpu_running);
139 
140 int __cpu_up(unsigned int cpu, struct task_struct *idle)
141 {
142 	int ret;
143 	long status;
144 
145 	/*
146 	 * We need to tell the secondary core where to find its stack and the
147 	 * page tables.
148 	 */
149 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
150 	update_cpu_boot_status(CPU_MMU_OFF);
151 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
152 
153 	/*
154 	 * Now bring the CPU into our world.
155 	 */
156 	ret = boot_secondary(cpu, idle);
157 	if (ret == 0) {
158 		/*
159 		 * CPU was successfully started, wait for it to come online or
160 		 * time out.
161 		 */
162 		wait_for_completion_timeout(&cpu_running,
163 					    msecs_to_jiffies(1000));
164 
165 		if (!cpu_online(cpu)) {
166 			pr_crit("CPU%u: failed to come online\n", cpu);
167 			ret = -EIO;
168 		}
169 	} else {
170 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
171 	}
172 
173 	secondary_data.stack = NULL;
174 	status = READ_ONCE(secondary_data.status);
175 	if (ret && status) {
176 
177 		if (status == CPU_MMU_OFF)
178 			status = READ_ONCE(__early_cpu_boot_status);
179 
180 		switch (status) {
181 		default:
182 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
183 					cpu, status);
184 			break;
185 		case CPU_KILL_ME:
186 			if (!op_cpu_kill(cpu)) {
187 				pr_crit("CPU%u: died during early boot\n", cpu);
188 				break;
189 			}
190 			/* Fall through */
191 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
192 		case CPU_STUCK_IN_KERNEL:
193 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
194 			cpus_stuck_in_kernel++;
195 			break;
196 		case CPU_PANIC_KERNEL:
197 			panic("CPU%u detected unsupported configuration\n", cpu);
198 		}
199 	}
200 
201 	return ret;
202 }
203 
204 /*
205  * This is the secondary CPU boot entry.  We're using this CPUs
206  * idle thread stack, but a set of temporary page tables.
207  */
208 asmlinkage void secondary_start_kernel(void)
209 {
210 	struct mm_struct *mm = &init_mm;
211 	unsigned int cpu = smp_processor_id();
212 
213 	/*
214 	 * All kernel threads share the same mm context; grab a
215 	 * reference and switch to it.
216 	 */
217 	atomic_inc(&mm->mm_count);
218 	current->active_mm = mm;
219 
220 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
221 
222 	/*
223 	 * TTBR0 is only used for the identity mapping at this stage. Make it
224 	 * point to zero page to avoid speculatively fetching new entries.
225 	 */
226 	cpu_uninstall_idmap();
227 
228 	preempt_disable();
229 	trace_hardirqs_off();
230 
231 	/*
232 	 * If the system has established the capabilities, make sure
233 	 * this CPU ticks all of those. If it doesn't, the CPU will
234 	 * fail to come online.
235 	 */
236 	check_local_cpu_capabilities();
237 
238 	if (cpu_ops[cpu]->cpu_postboot)
239 		cpu_ops[cpu]->cpu_postboot();
240 
241 	/*
242 	 * Log the CPU info before it is marked online and might get read.
243 	 */
244 	cpuinfo_store_cpu();
245 
246 	/*
247 	 * Enable GIC and timers.
248 	 */
249 	notify_cpu_starting(cpu);
250 
251 	store_cpu_topology(cpu);
252 
253 	/*
254 	 * OK, now it's safe to let the boot CPU continue.  Wait for
255 	 * the CPU migration code to notice that the CPU is online
256 	 * before we continue.
257 	 */
258 	pr_info("CPU%u: Booted secondary processor [%08x]\n",
259 					 cpu, read_cpuid_id());
260 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
261 	set_cpu_online(cpu, true);
262 	complete(&cpu_running);
263 
264 	local_irq_enable();
265 	local_async_enable();
266 
267 	/*
268 	 * OK, it's off to the idle thread for us
269 	 */
270 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
271 }
272 
273 #ifdef CONFIG_HOTPLUG_CPU
274 static int op_cpu_disable(unsigned int cpu)
275 {
276 	/*
277 	 * If we don't have a cpu_die method, abort before we reach the point
278 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
279 	 */
280 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
281 		return -EOPNOTSUPP;
282 
283 	/*
284 	 * We may need to abort a hot unplug for some other mechanism-specific
285 	 * reason.
286 	 */
287 	if (cpu_ops[cpu]->cpu_disable)
288 		return cpu_ops[cpu]->cpu_disable(cpu);
289 
290 	return 0;
291 }
292 
293 /*
294  * __cpu_disable runs on the processor to be shutdown.
295  */
296 int __cpu_disable(void)
297 {
298 	unsigned int cpu = smp_processor_id();
299 	int ret;
300 
301 	ret = op_cpu_disable(cpu);
302 	if (ret)
303 		return ret;
304 
305 	/*
306 	 * Take this CPU offline.  Once we clear this, we can't return,
307 	 * and we must not schedule until we're ready to give up the cpu.
308 	 */
309 	set_cpu_online(cpu, false);
310 
311 	/*
312 	 * OK - migrate IRQs away from this CPU
313 	 */
314 	irq_migrate_all_off_this_cpu();
315 
316 	return 0;
317 }
318 
319 static int op_cpu_kill(unsigned int cpu)
320 {
321 	/*
322 	 * If we have no means of synchronising with the dying CPU, then assume
323 	 * that it is really dead. We can only wait for an arbitrary length of
324 	 * time and hope that it's dead, so let's skip the wait and just hope.
325 	 */
326 	if (!cpu_ops[cpu]->cpu_kill)
327 		return 0;
328 
329 	return cpu_ops[cpu]->cpu_kill(cpu);
330 }
331 
332 /*
333  * called on the thread which is asking for a CPU to be shutdown -
334  * waits until shutdown has completed, or it is timed out.
335  */
336 void __cpu_die(unsigned int cpu)
337 {
338 	int err;
339 
340 	if (!cpu_wait_death(cpu, 5)) {
341 		pr_crit("CPU%u: cpu didn't die\n", cpu);
342 		return;
343 	}
344 	pr_notice("CPU%u: shutdown\n", cpu);
345 
346 	/*
347 	 * Now that the dying CPU is beyond the point of no return w.r.t.
348 	 * in-kernel synchronisation, try to get the firwmare to help us to
349 	 * verify that it has really left the kernel before we consider
350 	 * clobbering anything it might still be using.
351 	 */
352 	err = op_cpu_kill(cpu);
353 	if (err)
354 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
355 			cpu, err);
356 }
357 
358 /*
359  * Called from the idle thread for the CPU which has been shutdown.
360  *
361  * Note that we disable IRQs here, but do not re-enable them
362  * before returning to the caller. This is also the behaviour
363  * of the other hotplug-cpu capable cores, so presumably coming
364  * out of idle fixes this.
365  */
366 void cpu_die(void)
367 {
368 	unsigned int cpu = smp_processor_id();
369 
370 	idle_task_exit();
371 
372 	local_irq_disable();
373 
374 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
375 	(void)cpu_report_death();
376 
377 	/*
378 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
379 	 * mechanism must perform all required cache maintenance to ensure that
380 	 * no dirty lines are lost in the process of shutting down the CPU.
381 	 */
382 	cpu_ops[cpu]->cpu_die(cpu);
383 
384 	BUG();
385 }
386 #endif
387 
388 /*
389  * Kill the calling secondary CPU, early in bringup before it is turned
390  * online.
391  */
392 void cpu_die_early(void)
393 {
394 	int cpu = smp_processor_id();
395 
396 	pr_crit("CPU%d: will not boot\n", cpu);
397 
398 	/* Mark this CPU absent */
399 	set_cpu_present(cpu, 0);
400 
401 #ifdef CONFIG_HOTPLUG_CPU
402 	update_cpu_boot_status(CPU_KILL_ME);
403 	/* Check if we can park ourselves */
404 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
405 		cpu_ops[cpu]->cpu_die(cpu);
406 #endif
407 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
408 
409 	cpu_park_loop();
410 }
411 
412 static void __init hyp_mode_check(void)
413 {
414 	if (is_hyp_mode_available())
415 		pr_info("CPU: All CPU(s) started at EL2\n");
416 	else if (is_hyp_mode_mismatched())
417 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
418 			   "CPU: CPUs started in inconsistent modes");
419 	else
420 		pr_info("CPU: All CPU(s) started at EL1\n");
421 }
422 
423 void __init smp_cpus_done(unsigned int max_cpus)
424 {
425 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
426 	setup_cpu_features();
427 	hyp_mode_check();
428 	apply_alternatives_all();
429 }
430 
431 void __init smp_prepare_boot_cpu(void)
432 {
433 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
434 	/*
435 	 * Initialise the static keys early as they may be enabled by the
436 	 * cpufeature code.
437 	 */
438 	jump_label_init();
439 	cpuinfo_store_boot_cpu();
440 	save_boot_cpu_run_el();
441 	/*
442 	 * Run the errata work around checks on the boot CPU, once we have
443 	 * initialised the cpu feature infrastructure from
444 	 * cpuinfo_store_boot_cpu() above.
445 	 */
446 	update_cpu_errata_workarounds();
447 }
448 
449 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
450 {
451 	const __be32 *cell;
452 	u64 hwid;
453 
454 	/*
455 	 * A cpu node with missing "reg" property is
456 	 * considered invalid to build a cpu_logical_map
457 	 * entry.
458 	 */
459 	cell = of_get_property(dn, "reg", NULL);
460 	if (!cell) {
461 		pr_err("%s: missing reg property\n", dn->full_name);
462 		return INVALID_HWID;
463 	}
464 
465 	hwid = of_read_number(cell, of_n_addr_cells(dn));
466 	/*
467 	 * Non affinity bits must be set to 0 in the DT
468 	 */
469 	if (hwid & ~MPIDR_HWID_BITMASK) {
470 		pr_err("%s: invalid reg property\n", dn->full_name);
471 		return INVALID_HWID;
472 	}
473 	return hwid;
474 }
475 
476 /*
477  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
478  * entries and check for duplicates. If any is found just ignore the
479  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
480  * matching valid MPIDR values.
481  */
482 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
483 {
484 	unsigned int i;
485 
486 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
487 		if (cpu_logical_map(i) == hwid)
488 			return true;
489 	return false;
490 }
491 
492 /*
493  * Initialize cpu operations for a logical cpu and
494  * set it in the possible mask on success
495  */
496 static int __init smp_cpu_setup(int cpu)
497 {
498 	if (cpu_read_ops(cpu))
499 		return -ENODEV;
500 
501 	if (cpu_ops[cpu]->cpu_init(cpu))
502 		return -ENODEV;
503 
504 	set_cpu_possible(cpu, true);
505 
506 	return 0;
507 }
508 
509 static bool bootcpu_valid __initdata;
510 static unsigned int cpu_count = 1;
511 
512 #ifdef CONFIG_ACPI
513 /*
514  * acpi_map_gic_cpu_interface - parse processor MADT entry
515  *
516  * Carry out sanity checks on MADT processor entry and initialize
517  * cpu_logical_map on success
518  */
519 static void __init
520 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
521 {
522 	u64 hwid = processor->arm_mpidr;
523 
524 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
525 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
526 		return;
527 	}
528 
529 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
530 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
531 		return;
532 	}
533 
534 	if (is_mpidr_duplicate(cpu_count, hwid)) {
535 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
536 		return;
537 	}
538 
539 	/* Check if GICC structure of boot CPU is available in the MADT */
540 	if (cpu_logical_map(0) == hwid) {
541 		if (bootcpu_valid) {
542 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
543 			       hwid);
544 			return;
545 		}
546 		bootcpu_valid = true;
547 		return;
548 	}
549 
550 	if (cpu_count >= NR_CPUS)
551 		return;
552 
553 	/* map the logical cpu id to cpu MPIDR */
554 	cpu_logical_map(cpu_count) = hwid;
555 
556 	/*
557 	 * Set-up the ACPI parking protocol cpu entries
558 	 * while initializing the cpu_logical_map to
559 	 * avoid parsing MADT entries multiple times for
560 	 * nothing (ie a valid cpu_logical_map entry should
561 	 * contain a valid parking protocol data set to
562 	 * initialize the cpu if the parking protocol is
563 	 * the only available enable method).
564 	 */
565 	acpi_set_mailbox_entry(cpu_count, processor);
566 
567 	early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
568 
569 	cpu_count++;
570 }
571 
572 static int __init
573 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
574 			     const unsigned long end)
575 {
576 	struct acpi_madt_generic_interrupt *processor;
577 
578 	processor = (struct acpi_madt_generic_interrupt *)header;
579 	if (BAD_MADT_GICC_ENTRY(processor, end))
580 		return -EINVAL;
581 
582 	acpi_table_print_madt_entry(header);
583 
584 	acpi_map_gic_cpu_interface(processor);
585 
586 	return 0;
587 }
588 #else
589 #define acpi_table_parse_madt(...)	do { } while (0)
590 #endif
591 
592 /*
593  * Enumerate the possible CPU set from the device tree and build the
594  * cpu logical map array containing MPIDR values related to logical
595  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
596  */
597 static void __init of_parse_and_init_cpus(void)
598 {
599 	struct device_node *dn = NULL;
600 
601 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
602 		u64 hwid = of_get_cpu_mpidr(dn);
603 
604 		if (hwid == INVALID_HWID)
605 			goto next;
606 
607 		if (is_mpidr_duplicate(cpu_count, hwid)) {
608 			pr_err("%s: duplicate cpu reg properties in the DT\n",
609 				dn->full_name);
610 			goto next;
611 		}
612 
613 		/*
614 		 * The numbering scheme requires that the boot CPU
615 		 * must be assigned logical id 0. Record it so that
616 		 * the logical map built from DT is validated and can
617 		 * be used.
618 		 */
619 		if (hwid == cpu_logical_map(0)) {
620 			if (bootcpu_valid) {
621 				pr_err("%s: duplicate boot cpu reg property in DT\n",
622 					dn->full_name);
623 				goto next;
624 			}
625 
626 			bootcpu_valid = true;
627 			early_map_cpu_to_node(0, of_node_to_nid(dn));
628 
629 			/*
630 			 * cpu_logical_map has already been
631 			 * initialized and the boot cpu doesn't need
632 			 * the enable-method so continue without
633 			 * incrementing cpu.
634 			 */
635 			continue;
636 		}
637 
638 		if (cpu_count >= NR_CPUS)
639 			goto next;
640 
641 		pr_debug("cpu logical map 0x%llx\n", hwid);
642 		cpu_logical_map(cpu_count) = hwid;
643 
644 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
645 next:
646 		cpu_count++;
647 	}
648 }
649 
650 /*
651  * Enumerate the possible CPU set from the device tree or ACPI and build the
652  * cpu logical map array containing MPIDR values related to logical
653  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
654  */
655 void __init smp_init_cpus(void)
656 {
657 	int i;
658 
659 	if (acpi_disabled)
660 		of_parse_and_init_cpus();
661 	else
662 		/*
663 		 * do a walk of MADT to determine how many CPUs
664 		 * we have including disabled CPUs, and get information
665 		 * we need for SMP init
666 		 */
667 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
668 				      acpi_parse_gic_cpu_interface, 0);
669 
670 	if (cpu_count > nr_cpu_ids)
671 		pr_warn("Number of cores (%d) exceeds configured maximum of %d - clipping\n",
672 			cpu_count, nr_cpu_ids);
673 
674 	if (!bootcpu_valid) {
675 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
676 		return;
677 	}
678 
679 	/*
680 	 * We need to set the cpu_logical_map entries before enabling
681 	 * the cpus so that cpu processor description entries (DT cpu nodes
682 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
683 	 * with entries in cpu_logical_map while initializing the cpus.
684 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
685 	 */
686 	for (i = 1; i < nr_cpu_ids; i++) {
687 		if (cpu_logical_map(i) != INVALID_HWID) {
688 			if (smp_cpu_setup(i))
689 				cpu_logical_map(i) = INVALID_HWID;
690 		}
691 	}
692 }
693 
694 void __init smp_prepare_cpus(unsigned int max_cpus)
695 {
696 	int err;
697 	unsigned int cpu;
698 	unsigned int this_cpu;
699 
700 	init_cpu_topology();
701 
702 	this_cpu = smp_processor_id();
703 	store_cpu_topology(this_cpu);
704 	numa_store_cpu_info(this_cpu);
705 
706 	/*
707 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
708 	 * secondary CPUs present.
709 	 */
710 	if (max_cpus == 0)
711 		return;
712 
713 	/*
714 	 * Initialise the present map (which describes the set of CPUs
715 	 * actually populated at the present time) and release the
716 	 * secondaries from the bootloader.
717 	 */
718 	for_each_possible_cpu(cpu) {
719 
720 		if (cpu == smp_processor_id())
721 			continue;
722 
723 		if (!cpu_ops[cpu])
724 			continue;
725 
726 		err = cpu_ops[cpu]->cpu_prepare(cpu);
727 		if (err)
728 			continue;
729 
730 		set_cpu_present(cpu, true);
731 		numa_store_cpu_info(cpu);
732 	}
733 }
734 
735 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
736 
737 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
738 {
739 	__smp_cross_call = fn;
740 }
741 
742 static const char *ipi_types[NR_IPI] __tracepoint_string = {
743 #define S(x,s)	[x] = s
744 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
745 	S(IPI_CALL_FUNC, "Function call interrupts"),
746 	S(IPI_CPU_STOP, "CPU stop interrupts"),
747 	S(IPI_TIMER, "Timer broadcast interrupts"),
748 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
749 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
750 };
751 
752 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
753 {
754 	trace_ipi_raise(target, ipi_types[ipinr]);
755 	__smp_cross_call(target, ipinr);
756 }
757 
758 void show_ipi_list(struct seq_file *p, int prec)
759 {
760 	unsigned int cpu, i;
761 
762 	for (i = 0; i < NR_IPI; i++) {
763 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
764 			   prec >= 4 ? " " : "");
765 		for_each_online_cpu(cpu)
766 			seq_printf(p, "%10u ",
767 				   __get_irq_stat(cpu, ipi_irqs[i]));
768 		seq_printf(p, "      %s\n", ipi_types[i]);
769 	}
770 }
771 
772 u64 smp_irq_stat_cpu(unsigned int cpu)
773 {
774 	u64 sum = 0;
775 	int i;
776 
777 	for (i = 0; i < NR_IPI; i++)
778 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
779 
780 	return sum;
781 }
782 
783 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
784 {
785 	smp_cross_call(mask, IPI_CALL_FUNC);
786 }
787 
788 void arch_send_call_function_single_ipi(int cpu)
789 {
790 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
791 }
792 
793 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
794 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
795 {
796 	smp_cross_call(mask, IPI_WAKEUP);
797 }
798 #endif
799 
800 #ifdef CONFIG_IRQ_WORK
801 void arch_irq_work_raise(void)
802 {
803 	if (__smp_cross_call)
804 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
805 }
806 #endif
807 
808 /*
809  * ipi_cpu_stop - handle IPI from smp_send_stop()
810  */
811 static void ipi_cpu_stop(unsigned int cpu)
812 {
813 	set_cpu_online(cpu, false);
814 
815 	local_irq_disable();
816 
817 	while (1)
818 		cpu_relax();
819 }
820 
821 /*
822  * Main handler for inter-processor interrupts
823  */
824 void handle_IPI(int ipinr, struct pt_regs *regs)
825 {
826 	unsigned int cpu = smp_processor_id();
827 	struct pt_regs *old_regs = set_irq_regs(regs);
828 
829 	if ((unsigned)ipinr < NR_IPI) {
830 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
831 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
832 	}
833 
834 	switch (ipinr) {
835 	case IPI_RESCHEDULE:
836 		scheduler_ipi();
837 		break;
838 
839 	case IPI_CALL_FUNC:
840 		irq_enter();
841 		generic_smp_call_function_interrupt();
842 		irq_exit();
843 		break;
844 
845 	case IPI_CPU_STOP:
846 		irq_enter();
847 		ipi_cpu_stop(cpu);
848 		irq_exit();
849 		break;
850 
851 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
852 	case IPI_TIMER:
853 		irq_enter();
854 		tick_receive_broadcast();
855 		irq_exit();
856 		break;
857 #endif
858 
859 #ifdef CONFIG_IRQ_WORK
860 	case IPI_IRQ_WORK:
861 		irq_enter();
862 		irq_work_run();
863 		irq_exit();
864 		break;
865 #endif
866 
867 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
868 	case IPI_WAKEUP:
869 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
870 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
871 			  cpu);
872 		break;
873 #endif
874 
875 	default:
876 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
877 		break;
878 	}
879 
880 	if ((unsigned)ipinr < NR_IPI)
881 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
882 	set_irq_regs(old_regs);
883 }
884 
885 void smp_send_reschedule(int cpu)
886 {
887 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
888 }
889 
890 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
891 void tick_broadcast(const struct cpumask *mask)
892 {
893 	smp_cross_call(mask, IPI_TIMER);
894 }
895 #endif
896 
897 void smp_send_stop(void)
898 {
899 	unsigned long timeout;
900 
901 	if (num_online_cpus() > 1) {
902 		cpumask_t mask;
903 
904 		cpumask_copy(&mask, cpu_online_mask);
905 		cpumask_clear_cpu(smp_processor_id(), &mask);
906 
907 		if (system_state == SYSTEM_BOOTING ||
908 		    system_state == SYSTEM_RUNNING)
909 			pr_crit("SMP: stopping secondary CPUs\n");
910 		smp_cross_call(&mask, IPI_CPU_STOP);
911 	}
912 
913 	/* Wait up to one second for other CPUs to stop */
914 	timeout = USEC_PER_SEC;
915 	while (num_online_cpus() > 1 && timeout--)
916 		udelay(1);
917 
918 	if (num_online_cpus() > 1)
919 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
920 			   cpumask_pr_args(cpu_online_mask));
921 }
922 
923 /*
924  * not supported here
925  */
926 int setup_profiling_timer(unsigned int multiplier)
927 {
928 	return -EINVAL;
929 }
930 
931 static bool have_cpu_die(void)
932 {
933 #ifdef CONFIG_HOTPLUG_CPU
934 	int any_cpu = raw_smp_processor_id();
935 
936 	if (cpu_ops[any_cpu]->cpu_die)
937 		return true;
938 #endif
939 	return false;
940 }
941 
942 bool cpus_are_stuck_in_kernel(void)
943 {
944 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
945 
946 	return !!cpus_stuck_in_kernel || smp_spin_tables;
947 }
948