1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/delay.h> 21 #include <linux/init.h> 22 #include <linux/spinlock.h> 23 #include <linux/sched.h> 24 #include <linux/interrupt.h> 25 #include <linux/cache.h> 26 #include <linux/profile.h> 27 #include <linux/errno.h> 28 #include <linux/mm.h> 29 #include <linux/err.h> 30 #include <linux/cpu.h> 31 #include <linux/smp.h> 32 #include <linux/seq_file.h> 33 #include <linux/irq.h> 34 #include <linux/percpu.h> 35 #include <linux/clockchips.h> 36 #include <linux/completion.h> 37 #include <linux/of.h> 38 #include <linux/irq_work.h> 39 40 #include <asm/atomic.h> 41 #include <asm/cacheflush.h> 42 #include <asm/cpu.h> 43 #include <asm/cputype.h> 44 #include <asm/cpu_ops.h> 45 #include <asm/mmu_context.h> 46 #include <asm/pgtable.h> 47 #include <asm/pgalloc.h> 48 #include <asm/processor.h> 49 #include <asm/smp_plat.h> 50 #include <asm/sections.h> 51 #include <asm/tlbflush.h> 52 #include <asm/ptrace.h> 53 54 /* 55 * as from 2.5, kernels no longer have an init_tasks structure 56 * so we need some other way of telling a new secondary core 57 * where to place its SVC stack 58 */ 59 struct secondary_data secondary_data; 60 61 enum ipi_msg_type { 62 IPI_RESCHEDULE, 63 IPI_CALL_FUNC, 64 IPI_CALL_FUNC_SINGLE, 65 IPI_CPU_STOP, 66 IPI_TIMER, 67 IPI_IRQ_WORK, 68 }; 69 70 /* 71 * Boot a secondary CPU, and assign it the specified idle task. 72 * This also gives us the initial stack to use for this CPU. 73 */ 74 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 75 { 76 if (cpu_ops[cpu]->cpu_boot) 77 return cpu_ops[cpu]->cpu_boot(cpu); 78 79 return -EOPNOTSUPP; 80 } 81 82 static DECLARE_COMPLETION(cpu_running); 83 84 int __cpu_up(unsigned int cpu, struct task_struct *idle) 85 { 86 int ret; 87 88 /* 89 * We need to tell the secondary core where to find its stack and the 90 * page tables. 91 */ 92 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 93 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 94 95 /* 96 * Now bring the CPU into our world. 97 */ 98 ret = boot_secondary(cpu, idle); 99 if (ret == 0) { 100 /* 101 * CPU was successfully started, wait for it to come online or 102 * time out. 103 */ 104 wait_for_completion_timeout(&cpu_running, 105 msecs_to_jiffies(1000)); 106 107 if (!cpu_online(cpu)) { 108 pr_crit("CPU%u: failed to come online\n", cpu); 109 ret = -EIO; 110 } 111 } else { 112 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 113 } 114 115 secondary_data.stack = NULL; 116 117 return ret; 118 } 119 120 static void smp_store_cpu_info(unsigned int cpuid) 121 { 122 store_cpu_topology(cpuid); 123 } 124 125 /* 126 * This is the secondary CPU boot entry. We're using this CPUs 127 * idle thread stack, but a set of temporary page tables. 128 */ 129 asmlinkage void secondary_start_kernel(void) 130 { 131 struct mm_struct *mm = &init_mm; 132 unsigned int cpu = smp_processor_id(); 133 134 /* 135 * All kernel threads share the same mm context; grab a 136 * reference and switch to it. 137 */ 138 atomic_inc(&mm->mm_count); 139 current->active_mm = mm; 140 cpumask_set_cpu(cpu, mm_cpumask(mm)); 141 142 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 143 printk("CPU%u: Booted secondary processor\n", cpu); 144 145 /* 146 * TTBR0 is only used for the identity mapping at this stage. Make it 147 * point to zero page to avoid speculatively fetching new entries. 148 */ 149 cpu_set_reserved_ttbr0(); 150 flush_tlb_all(); 151 152 preempt_disable(); 153 trace_hardirqs_off(); 154 155 if (cpu_ops[cpu]->cpu_postboot) 156 cpu_ops[cpu]->cpu_postboot(); 157 158 /* 159 * Log the CPU info before it is marked online and might get read. 160 */ 161 cpuinfo_store_cpu(); 162 163 /* 164 * Enable GIC and timers. 165 */ 166 notify_cpu_starting(cpu); 167 168 smp_store_cpu_info(cpu); 169 170 /* 171 * OK, now it's safe to let the boot CPU continue. Wait for 172 * the CPU migration code to notice that the CPU is online 173 * before we continue. 174 */ 175 set_cpu_online(cpu, true); 176 complete(&cpu_running); 177 178 local_dbg_enable(); 179 local_irq_enable(); 180 local_async_enable(); 181 182 /* 183 * OK, it's off to the idle thread for us 184 */ 185 cpu_startup_entry(CPUHP_ONLINE); 186 } 187 188 #ifdef CONFIG_HOTPLUG_CPU 189 static int op_cpu_disable(unsigned int cpu) 190 { 191 /* 192 * If we don't have a cpu_die method, abort before we reach the point 193 * of no return. CPU0 may not have an cpu_ops, so test for it. 194 */ 195 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 196 return -EOPNOTSUPP; 197 198 /* 199 * We may need to abort a hot unplug for some other mechanism-specific 200 * reason. 201 */ 202 if (cpu_ops[cpu]->cpu_disable) 203 return cpu_ops[cpu]->cpu_disable(cpu); 204 205 return 0; 206 } 207 208 /* 209 * __cpu_disable runs on the processor to be shutdown. 210 */ 211 int __cpu_disable(void) 212 { 213 unsigned int cpu = smp_processor_id(); 214 int ret; 215 216 ret = op_cpu_disable(cpu); 217 if (ret) 218 return ret; 219 220 /* 221 * Take this CPU offline. Once we clear this, we can't return, 222 * and we must not schedule until we're ready to give up the cpu. 223 */ 224 set_cpu_online(cpu, false); 225 226 /* 227 * OK - migrate IRQs away from this CPU 228 */ 229 migrate_irqs(); 230 231 /* 232 * Remove this CPU from the vm mask set of all processes. 233 */ 234 clear_tasks_mm_cpumask(cpu); 235 236 return 0; 237 } 238 239 static int op_cpu_kill(unsigned int cpu) 240 { 241 /* 242 * If we have no means of synchronising with the dying CPU, then assume 243 * that it is really dead. We can only wait for an arbitrary length of 244 * time and hope that it's dead, so let's skip the wait and just hope. 245 */ 246 if (!cpu_ops[cpu]->cpu_kill) 247 return 1; 248 249 return cpu_ops[cpu]->cpu_kill(cpu); 250 } 251 252 static DECLARE_COMPLETION(cpu_died); 253 254 /* 255 * called on the thread which is asking for a CPU to be shutdown - 256 * waits until shutdown has completed, or it is timed out. 257 */ 258 void __cpu_die(unsigned int cpu) 259 { 260 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 261 pr_crit("CPU%u: cpu didn't die\n", cpu); 262 return; 263 } 264 pr_notice("CPU%u: shutdown\n", cpu); 265 266 /* 267 * Now that the dying CPU is beyond the point of no return w.r.t. 268 * in-kernel synchronisation, try to get the firwmare to help us to 269 * verify that it has really left the kernel before we consider 270 * clobbering anything it might still be using. 271 */ 272 if (!op_cpu_kill(cpu)) 273 pr_warn("CPU%d may not have shut down cleanly\n", cpu); 274 } 275 276 /* 277 * Called from the idle thread for the CPU which has been shutdown. 278 * 279 * Note that we disable IRQs here, but do not re-enable them 280 * before returning to the caller. This is also the behaviour 281 * of the other hotplug-cpu capable cores, so presumably coming 282 * out of idle fixes this. 283 */ 284 void cpu_die(void) 285 { 286 unsigned int cpu = smp_processor_id(); 287 288 idle_task_exit(); 289 290 local_irq_disable(); 291 292 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 293 complete(&cpu_died); 294 295 /* 296 * Actually shutdown the CPU. This must never fail. The specific hotplug 297 * mechanism must perform all required cache maintenance to ensure that 298 * no dirty lines are lost in the process of shutting down the CPU. 299 */ 300 cpu_ops[cpu]->cpu_die(cpu); 301 302 BUG(); 303 } 304 #endif 305 306 void __init smp_cpus_done(unsigned int max_cpus) 307 { 308 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 309 } 310 311 void __init smp_prepare_boot_cpu(void) 312 { 313 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 314 } 315 316 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 317 318 /* 319 * Enumerate the possible CPU set from the device tree and build the 320 * cpu logical map array containing MPIDR values related to logical 321 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 322 */ 323 void __init smp_init_cpus(void) 324 { 325 struct device_node *dn = NULL; 326 unsigned int i, cpu = 1; 327 bool bootcpu_valid = false; 328 329 while ((dn = of_find_node_by_type(dn, "cpu"))) { 330 const u32 *cell; 331 u64 hwid; 332 333 /* 334 * A cpu node with missing "reg" property is 335 * considered invalid to build a cpu_logical_map 336 * entry. 337 */ 338 cell = of_get_property(dn, "reg", NULL); 339 if (!cell) { 340 pr_err("%s: missing reg property\n", dn->full_name); 341 goto next; 342 } 343 hwid = of_read_number(cell, of_n_addr_cells(dn)); 344 345 /* 346 * Non affinity bits must be set to 0 in the DT 347 */ 348 if (hwid & ~MPIDR_HWID_BITMASK) { 349 pr_err("%s: invalid reg property\n", dn->full_name); 350 goto next; 351 } 352 353 /* 354 * Duplicate MPIDRs are a recipe for disaster. Scan 355 * all initialized entries and check for 356 * duplicates. If any is found just ignore the cpu. 357 * cpu_logical_map was initialized to INVALID_HWID to 358 * avoid matching valid MPIDR values. 359 */ 360 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) { 361 if (cpu_logical_map(i) == hwid) { 362 pr_err("%s: duplicate cpu reg properties in the DT\n", 363 dn->full_name); 364 goto next; 365 } 366 } 367 368 /* 369 * The numbering scheme requires that the boot CPU 370 * must be assigned logical id 0. Record it so that 371 * the logical map built from DT is validated and can 372 * be used. 373 */ 374 if (hwid == cpu_logical_map(0)) { 375 if (bootcpu_valid) { 376 pr_err("%s: duplicate boot cpu reg property in DT\n", 377 dn->full_name); 378 goto next; 379 } 380 381 bootcpu_valid = true; 382 383 /* 384 * cpu_logical_map has already been 385 * initialized and the boot cpu doesn't need 386 * the enable-method so continue without 387 * incrementing cpu. 388 */ 389 continue; 390 } 391 392 if (cpu >= NR_CPUS) 393 goto next; 394 395 if (cpu_read_ops(dn, cpu) != 0) 396 goto next; 397 398 if (cpu_ops[cpu]->cpu_init(dn, cpu)) 399 goto next; 400 401 pr_debug("cpu logical map 0x%llx\n", hwid); 402 cpu_logical_map(cpu) = hwid; 403 next: 404 cpu++; 405 } 406 407 /* sanity check */ 408 if (cpu > NR_CPUS) 409 pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n", 410 cpu, NR_CPUS); 411 412 if (!bootcpu_valid) { 413 pr_err("DT missing boot CPU MPIDR, not enabling secondaries\n"); 414 return; 415 } 416 417 /* 418 * All the cpus that made it to the cpu_logical_map have been 419 * validated so set them as possible cpus. 420 */ 421 for (i = 0; i < NR_CPUS; i++) 422 if (cpu_logical_map(i) != INVALID_HWID) 423 set_cpu_possible(i, true); 424 } 425 426 void __init smp_prepare_cpus(unsigned int max_cpus) 427 { 428 int err; 429 unsigned int cpu, ncores = num_possible_cpus(); 430 431 init_cpu_topology(); 432 433 smp_store_cpu_info(smp_processor_id()); 434 435 /* 436 * are we trying to boot more cores than exist? 437 */ 438 if (max_cpus > ncores) 439 max_cpus = ncores; 440 441 /* Don't bother if we're effectively UP */ 442 if (max_cpus <= 1) 443 return; 444 445 /* 446 * Initialise the present map (which describes the set of CPUs 447 * actually populated at the present time) and release the 448 * secondaries from the bootloader. 449 * 450 * Make sure we online at most (max_cpus - 1) additional CPUs. 451 */ 452 max_cpus--; 453 for_each_possible_cpu(cpu) { 454 if (max_cpus == 0) 455 break; 456 457 if (cpu == smp_processor_id()) 458 continue; 459 460 if (!cpu_ops[cpu]) 461 continue; 462 463 err = cpu_ops[cpu]->cpu_prepare(cpu); 464 if (err) 465 continue; 466 467 set_cpu_present(cpu, true); 468 max_cpus--; 469 } 470 } 471 472 473 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 474 { 475 smp_cross_call = fn; 476 } 477 478 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 479 { 480 smp_cross_call(mask, IPI_CALL_FUNC); 481 } 482 483 void arch_send_call_function_single_ipi(int cpu) 484 { 485 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 486 } 487 488 #ifdef CONFIG_IRQ_WORK 489 void arch_irq_work_raise(void) 490 { 491 if (smp_cross_call) 492 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 493 } 494 #endif 495 496 static const char *ipi_types[NR_IPI] = { 497 #define S(x,s) [x - IPI_RESCHEDULE] = s 498 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 499 S(IPI_CALL_FUNC, "Function call interrupts"), 500 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 501 S(IPI_CPU_STOP, "CPU stop interrupts"), 502 S(IPI_TIMER, "Timer broadcast interrupts"), 503 S(IPI_IRQ_WORK, "IRQ work interrupts"), 504 }; 505 506 void show_ipi_list(struct seq_file *p, int prec) 507 { 508 unsigned int cpu, i; 509 510 for (i = 0; i < NR_IPI; i++) { 511 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i + IPI_RESCHEDULE, 512 prec >= 4 ? " " : ""); 513 for_each_online_cpu(cpu) 514 seq_printf(p, "%10u ", 515 __get_irq_stat(cpu, ipi_irqs[i])); 516 seq_printf(p, " %s\n", ipi_types[i]); 517 } 518 } 519 520 u64 smp_irq_stat_cpu(unsigned int cpu) 521 { 522 u64 sum = 0; 523 int i; 524 525 for (i = 0; i < NR_IPI; i++) 526 sum += __get_irq_stat(cpu, ipi_irqs[i]); 527 528 return sum; 529 } 530 531 static DEFINE_RAW_SPINLOCK(stop_lock); 532 533 /* 534 * ipi_cpu_stop - handle IPI from smp_send_stop() 535 */ 536 static void ipi_cpu_stop(unsigned int cpu) 537 { 538 if (system_state == SYSTEM_BOOTING || 539 system_state == SYSTEM_RUNNING) { 540 raw_spin_lock(&stop_lock); 541 pr_crit("CPU%u: stopping\n", cpu); 542 dump_stack(); 543 raw_spin_unlock(&stop_lock); 544 } 545 546 set_cpu_online(cpu, false); 547 548 local_irq_disable(); 549 550 while (1) 551 cpu_relax(); 552 } 553 554 /* 555 * Main handler for inter-processor interrupts 556 */ 557 void handle_IPI(int ipinr, struct pt_regs *regs) 558 { 559 unsigned int cpu = smp_processor_id(); 560 struct pt_regs *old_regs = set_irq_regs(regs); 561 562 if (ipinr >= IPI_RESCHEDULE && ipinr < IPI_RESCHEDULE + NR_IPI) 563 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_RESCHEDULE]); 564 565 switch (ipinr) { 566 case IPI_RESCHEDULE: 567 scheduler_ipi(); 568 break; 569 570 case IPI_CALL_FUNC: 571 irq_enter(); 572 generic_smp_call_function_interrupt(); 573 irq_exit(); 574 break; 575 576 case IPI_CALL_FUNC_SINGLE: 577 irq_enter(); 578 generic_smp_call_function_single_interrupt(); 579 irq_exit(); 580 break; 581 582 case IPI_CPU_STOP: 583 irq_enter(); 584 ipi_cpu_stop(cpu); 585 irq_exit(); 586 break; 587 588 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 589 case IPI_TIMER: 590 irq_enter(); 591 tick_receive_broadcast(); 592 irq_exit(); 593 break; 594 #endif 595 596 #ifdef CONFIG_IRQ_WORK 597 case IPI_IRQ_WORK: 598 irq_enter(); 599 irq_work_run(); 600 irq_exit(); 601 break; 602 #endif 603 604 default: 605 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 606 break; 607 } 608 set_irq_regs(old_regs); 609 } 610 611 void smp_send_reschedule(int cpu) 612 { 613 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 614 } 615 616 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 617 void tick_broadcast(const struct cpumask *mask) 618 { 619 smp_cross_call(mask, IPI_TIMER); 620 } 621 #endif 622 623 void smp_send_stop(void) 624 { 625 unsigned long timeout; 626 627 if (num_online_cpus() > 1) { 628 cpumask_t mask; 629 630 cpumask_copy(&mask, cpu_online_mask); 631 cpu_clear(smp_processor_id(), mask); 632 633 smp_cross_call(&mask, IPI_CPU_STOP); 634 } 635 636 /* Wait up to one second for other CPUs to stop */ 637 timeout = USEC_PER_SEC; 638 while (num_online_cpus() > 1 && timeout--) 639 udelay(1); 640 641 if (num_online_cpus() > 1) 642 pr_warning("SMP: failed to stop secondary CPUs\n"); 643 } 644 645 /* 646 * not supported here 647 */ 648 int setup_profiling_timer(unsigned int multiplier) 649 { 650 return -EINVAL; 651 } 652