xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 62e7ca52)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/spinlock.h>
23 #include <linux/sched.h>
24 #include <linux/interrupt.h>
25 #include <linux/cache.h>
26 #include <linux/profile.h>
27 #include <linux/errno.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/cpu.h>
31 #include <linux/smp.h>
32 #include <linux/seq_file.h>
33 #include <linux/irq.h>
34 #include <linux/percpu.h>
35 #include <linux/clockchips.h>
36 #include <linux/completion.h>
37 #include <linux/of.h>
38 #include <linux/irq_work.h>
39 
40 #include <asm/atomic.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cpu.h>
43 #include <asm/cputype.h>
44 #include <asm/cpu_ops.h>
45 #include <asm/mmu_context.h>
46 #include <asm/pgtable.h>
47 #include <asm/pgalloc.h>
48 #include <asm/processor.h>
49 #include <asm/smp_plat.h>
50 #include <asm/sections.h>
51 #include <asm/tlbflush.h>
52 #include <asm/ptrace.h>
53 
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60 
61 enum ipi_msg_type {
62 	IPI_RESCHEDULE,
63 	IPI_CALL_FUNC,
64 	IPI_CALL_FUNC_SINGLE,
65 	IPI_CPU_STOP,
66 	IPI_TIMER,
67 	IPI_IRQ_WORK,
68 };
69 
70 /*
71  * Boot a secondary CPU, and assign it the specified idle task.
72  * This also gives us the initial stack to use for this CPU.
73  */
74 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
75 {
76 	if (cpu_ops[cpu]->cpu_boot)
77 		return cpu_ops[cpu]->cpu_boot(cpu);
78 
79 	return -EOPNOTSUPP;
80 }
81 
82 static DECLARE_COMPLETION(cpu_running);
83 
84 int __cpu_up(unsigned int cpu, struct task_struct *idle)
85 {
86 	int ret;
87 
88 	/*
89 	 * We need to tell the secondary core where to find its stack and the
90 	 * page tables.
91 	 */
92 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
93 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
94 
95 	/*
96 	 * Now bring the CPU into our world.
97 	 */
98 	ret = boot_secondary(cpu, idle);
99 	if (ret == 0) {
100 		/*
101 		 * CPU was successfully started, wait for it to come online or
102 		 * time out.
103 		 */
104 		wait_for_completion_timeout(&cpu_running,
105 					    msecs_to_jiffies(1000));
106 
107 		if (!cpu_online(cpu)) {
108 			pr_crit("CPU%u: failed to come online\n", cpu);
109 			ret = -EIO;
110 		}
111 	} else {
112 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
113 	}
114 
115 	secondary_data.stack = NULL;
116 
117 	return ret;
118 }
119 
120 static void smp_store_cpu_info(unsigned int cpuid)
121 {
122 	store_cpu_topology(cpuid);
123 }
124 
125 /*
126  * This is the secondary CPU boot entry.  We're using this CPUs
127  * idle thread stack, but a set of temporary page tables.
128  */
129 asmlinkage void secondary_start_kernel(void)
130 {
131 	struct mm_struct *mm = &init_mm;
132 	unsigned int cpu = smp_processor_id();
133 
134 	/*
135 	 * All kernel threads share the same mm context; grab a
136 	 * reference and switch to it.
137 	 */
138 	atomic_inc(&mm->mm_count);
139 	current->active_mm = mm;
140 	cpumask_set_cpu(cpu, mm_cpumask(mm));
141 
142 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
143 	printk("CPU%u: Booted secondary processor\n", cpu);
144 
145 	/*
146 	 * TTBR0 is only used for the identity mapping at this stage. Make it
147 	 * point to zero page to avoid speculatively fetching new entries.
148 	 */
149 	cpu_set_reserved_ttbr0();
150 	flush_tlb_all();
151 
152 	preempt_disable();
153 	trace_hardirqs_off();
154 
155 	if (cpu_ops[cpu]->cpu_postboot)
156 		cpu_ops[cpu]->cpu_postboot();
157 
158 	/*
159 	 * Log the CPU info before it is marked online and might get read.
160 	 */
161 	cpuinfo_store_cpu();
162 
163 	/*
164 	 * Enable GIC and timers.
165 	 */
166 	notify_cpu_starting(cpu);
167 
168 	smp_store_cpu_info(cpu);
169 
170 	/*
171 	 * OK, now it's safe to let the boot CPU continue.  Wait for
172 	 * the CPU migration code to notice that the CPU is online
173 	 * before we continue.
174 	 */
175 	set_cpu_online(cpu, true);
176 	complete(&cpu_running);
177 
178 	local_dbg_enable();
179 	local_irq_enable();
180 	local_async_enable();
181 
182 	/*
183 	 * OK, it's off to the idle thread for us
184 	 */
185 	cpu_startup_entry(CPUHP_ONLINE);
186 }
187 
188 #ifdef CONFIG_HOTPLUG_CPU
189 static int op_cpu_disable(unsigned int cpu)
190 {
191 	/*
192 	 * If we don't have a cpu_die method, abort before we reach the point
193 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
194 	 */
195 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
196 		return -EOPNOTSUPP;
197 
198 	/*
199 	 * We may need to abort a hot unplug for some other mechanism-specific
200 	 * reason.
201 	 */
202 	if (cpu_ops[cpu]->cpu_disable)
203 		return cpu_ops[cpu]->cpu_disable(cpu);
204 
205 	return 0;
206 }
207 
208 /*
209  * __cpu_disable runs on the processor to be shutdown.
210  */
211 int __cpu_disable(void)
212 {
213 	unsigned int cpu = smp_processor_id();
214 	int ret;
215 
216 	ret = op_cpu_disable(cpu);
217 	if (ret)
218 		return ret;
219 
220 	/*
221 	 * Take this CPU offline.  Once we clear this, we can't return,
222 	 * and we must not schedule until we're ready to give up the cpu.
223 	 */
224 	set_cpu_online(cpu, false);
225 
226 	/*
227 	 * OK - migrate IRQs away from this CPU
228 	 */
229 	migrate_irqs();
230 
231 	/*
232 	 * Remove this CPU from the vm mask set of all processes.
233 	 */
234 	clear_tasks_mm_cpumask(cpu);
235 
236 	return 0;
237 }
238 
239 static int op_cpu_kill(unsigned int cpu)
240 {
241 	/*
242 	 * If we have no means of synchronising with the dying CPU, then assume
243 	 * that it is really dead. We can only wait for an arbitrary length of
244 	 * time and hope that it's dead, so let's skip the wait and just hope.
245 	 */
246 	if (!cpu_ops[cpu]->cpu_kill)
247 		return 1;
248 
249 	return cpu_ops[cpu]->cpu_kill(cpu);
250 }
251 
252 static DECLARE_COMPLETION(cpu_died);
253 
254 /*
255  * called on the thread which is asking for a CPU to be shutdown -
256  * waits until shutdown has completed, or it is timed out.
257  */
258 void __cpu_die(unsigned int cpu)
259 {
260 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
261 		pr_crit("CPU%u: cpu didn't die\n", cpu);
262 		return;
263 	}
264 	pr_notice("CPU%u: shutdown\n", cpu);
265 
266 	/*
267 	 * Now that the dying CPU is beyond the point of no return w.r.t.
268 	 * in-kernel synchronisation, try to get the firwmare to help us to
269 	 * verify that it has really left the kernel before we consider
270 	 * clobbering anything it might still be using.
271 	 */
272 	if (!op_cpu_kill(cpu))
273 		pr_warn("CPU%d may not have shut down cleanly\n", cpu);
274 }
275 
276 /*
277  * Called from the idle thread for the CPU which has been shutdown.
278  *
279  * Note that we disable IRQs here, but do not re-enable them
280  * before returning to the caller. This is also the behaviour
281  * of the other hotplug-cpu capable cores, so presumably coming
282  * out of idle fixes this.
283  */
284 void cpu_die(void)
285 {
286 	unsigned int cpu = smp_processor_id();
287 
288 	idle_task_exit();
289 
290 	local_irq_disable();
291 
292 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
293 	complete(&cpu_died);
294 
295 	/*
296 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
297 	 * mechanism must perform all required cache maintenance to ensure that
298 	 * no dirty lines are lost in the process of shutting down the CPU.
299 	 */
300 	cpu_ops[cpu]->cpu_die(cpu);
301 
302 	BUG();
303 }
304 #endif
305 
306 void __init smp_cpus_done(unsigned int max_cpus)
307 {
308 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
309 }
310 
311 void __init smp_prepare_boot_cpu(void)
312 {
313 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
314 }
315 
316 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
317 
318 /*
319  * Enumerate the possible CPU set from the device tree and build the
320  * cpu logical map array containing MPIDR values related to logical
321  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
322  */
323 void __init smp_init_cpus(void)
324 {
325 	struct device_node *dn = NULL;
326 	unsigned int i, cpu = 1;
327 	bool bootcpu_valid = false;
328 
329 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
330 		const u32 *cell;
331 		u64 hwid;
332 
333 		/*
334 		 * A cpu node with missing "reg" property is
335 		 * considered invalid to build a cpu_logical_map
336 		 * entry.
337 		 */
338 		cell = of_get_property(dn, "reg", NULL);
339 		if (!cell) {
340 			pr_err("%s: missing reg property\n", dn->full_name);
341 			goto next;
342 		}
343 		hwid = of_read_number(cell, of_n_addr_cells(dn));
344 
345 		/*
346 		 * Non affinity bits must be set to 0 in the DT
347 		 */
348 		if (hwid & ~MPIDR_HWID_BITMASK) {
349 			pr_err("%s: invalid reg property\n", dn->full_name);
350 			goto next;
351 		}
352 
353 		/*
354 		 * Duplicate MPIDRs are a recipe for disaster. Scan
355 		 * all initialized entries and check for
356 		 * duplicates. If any is found just ignore the cpu.
357 		 * cpu_logical_map was initialized to INVALID_HWID to
358 		 * avoid matching valid MPIDR values.
359 		 */
360 		for (i = 1; (i < cpu) && (i < NR_CPUS); i++) {
361 			if (cpu_logical_map(i) == hwid) {
362 				pr_err("%s: duplicate cpu reg properties in the DT\n",
363 					dn->full_name);
364 				goto next;
365 			}
366 		}
367 
368 		/*
369 		 * The numbering scheme requires that the boot CPU
370 		 * must be assigned logical id 0. Record it so that
371 		 * the logical map built from DT is validated and can
372 		 * be used.
373 		 */
374 		if (hwid == cpu_logical_map(0)) {
375 			if (bootcpu_valid) {
376 				pr_err("%s: duplicate boot cpu reg property in DT\n",
377 					dn->full_name);
378 				goto next;
379 			}
380 
381 			bootcpu_valid = true;
382 
383 			/*
384 			 * cpu_logical_map has already been
385 			 * initialized and the boot cpu doesn't need
386 			 * the enable-method so continue without
387 			 * incrementing cpu.
388 			 */
389 			continue;
390 		}
391 
392 		if (cpu >= NR_CPUS)
393 			goto next;
394 
395 		if (cpu_read_ops(dn, cpu) != 0)
396 			goto next;
397 
398 		if (cpu_ops[cpu]->cpu_init(dn, cpu))
399 			goto next;
400 
401 		pr_debug("cpu logical map 0x%llx\n", hwid);
402 		cpu_logical_map(cpu) = hwid;
403 next:
404 		cpu++;
405 	}
406 
407 	/* sanity check */
408 	if (cpu > NR_CPUS)
409 		pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n",
410 			   cpu, NR_CPUS);
411 
412 	if (!bootcpu_valid) {
413 		pr_err("DT missing boot CPU MPIDR, not enabling secondaries\n");
414 		return;
415 	}
416 
417 	/*
418 	 * All the cpus that made it to the cpu_logical_map have been
419 	 * validated so set them as possible cpus.
420 	 */
421 	for (i = 0; i < NR_CPUS; i++)
422 		if (cpu_logical_map(i) != INVALID_HWID)
423 			set_cpu_possible(i, true);
424 }
425 
426 void __init smp_prepare_cpus(unsigned int max_cpus)
427 {
428 	int err;
429 	unsigned int cpu, ncores = num_possible_cpus();
430 
431 	init_cpu_topology();
432 
433 	smp_store_cpu_info(smp_processor_id());
434 
435 	/*
436 	 * are we trying to boot more cores than exist?
437 	 */
438 	if (max_cpus > ncores)
439 		max_cpus = ncores;
440 
441 	/* Don't bother if we're effectively UP */
442 	if (max_cpus <= 1)
443 		return;
444 
445 	/*
446 	 * Initialise the present map (which describes the set of CPUs
447 	 * actually populated at the present time) and release the
448 	 * secondaries from the bootloader.
449 	 *
450 	 * Make sure we online at most (max_cpus - 1) additional CPUs.
451 	 */
452 	max_cpus--;
453 	for_each_possible_cpu(cpu) {
454 		if (max_cpus == 0)
455 			break;
456 
457 		if (cpu == smp_processor_id())
458 			continue;
459 
460 		if (!cpu_ops[cpu])
461 			continue;
462 
463 		err = cpu_ops[cpu]->cpu_prepare(cpu);
464 		if (err)
465 			continue;
466 
467 		set_cpu_present(cpu, true);
468 		max_cpus--;
469 	}
470 }
471 
472 
473 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
474 {
475 	smp_cross_call = fn;
476 }
477 
478 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
479 {
480 	smp_cross_call(mask, IPI_CALL_FUNC);
481 }
482 
483 void arch_send_call_function_single_ipi(int cpu)
484 {
485 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
486 }
487 
488 #ifdef CONFIG_IRQ_WORK
489 void arch_irq_work_raise(void)
490 {
491 	if (smp_cross_call)
492 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
493 }
494 #endif
495 
496 static const char *ipi_types[NR_IPI] = {
497 #define S(x,s)	[x - IPI_RESCHEDULE] = s
498 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
499 	S(IPI_CALL_FUNC, "Function call interrupts"),
500 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
501 	S(IPI_CPU_STOP, "CPU stop interrupts"),
502 	S(IPI_TIMER, "Timer broadcast interrupts"),
503 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
504 };
505 
506 void show_ipi_list(struct seq_file *p, int prec)
507 {
508 	unsigned int cpu, i;
509 
510 	for (i = 0; i < NR_IPI; i++) {
511 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i + IPI_RESCHEDULE,
512 			   prec >= 4 ? " " : "");
513 		for_each_online_cpu(cpu)
514 			seq_printf(p, "%10u ",
515 				   __get_irq_stat(cpu, ipi_irqs[i]));
516 		seq_printf(p, "      %s\n", ipi_types[i]);
517 	}
518 }
519 
520 u64 smp_irq_stat_cpu(unsigned int cpu)
521 {
522 	u64 sum = 0;
523 	int i;
524 
525 	for (i = 0; i < NR_IPI; i++)
526 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
527 
528 	return sum;
529 }
530 
531 static DEFINE_RAW_SPINLOCK(stop_lock);
532 
533 /*
534  * ipi_cpu_stop - handle IPI from smp_send_stop()
535  */
536 static void ipi_cpu_stop(unsigned int cpu)
537 {
538 	if (system_state == SYSTEM_BOOTING ||
539 	    system_state == SYSTEM_RUNNING) {
540 		raw_spin_lock(&stop_lock);
541 		pr_crit("CPU%u: stopping\n", cpu);
542 		dump_stack();
543 		raw_spin_unlock(&stop_lock);
544 	}
545 
546 	set_cpu_online(cpu, false);
547 
548 	local_irq_disable();
549 
550 	while (1)
551 		cpu_relax();
552 }
553 
554 /*
555  * Main handler for inter-processor interrupts
556  */
557 void handle_IPI(int ipinr, struct pt_regs *regs)
558 {
559 	unsigned int cpu = smp_processor_id();
560 	struct pt_regs *old_regs = set_irq_regs(regs);
561 
562 	if (ipinr >= IPI_RESCHEDULE && ipinr < IPI_RESCHEDULE + NR_IPI)
563 		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_RESCHEDULE]);
564 
565 	switch (ipinr) {
566 	case IPI_RESCHEDULE:
567 		scheduler_ipi();
568 		break;
569 
570 	case IPI_CALL_FUNC:
571 		irq_enter();
572 		generic_smp_call_function_interrupt();
573 		irq_exit();
574 		break;
575 
576 	case IPI_CALL_FUNC_SINGLE:
577 		irq_enter();
578 		generic_smp_call_function_single_interrupt();
579 		irq_exit();
580 		break;
581 
582 	case IPI_CPU_STOP:
583 		irq_enter();
584 		ipi_cpu_stop(cpu);
585 		irq_exit();
586 		break;
587 
588 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
589 	case IPI_TIMER:
590 		irq_enter();
591 		tick_receive_broadcast();
592 		irq_exit();
593 		break;
594 #endif
595 
596 #ifdef CONFIG_IRQ_WORK
597 	case IPI_IRQ_WORK:
598 		irq_enter();
599 		irq_work_run();
600 		irq_exit();
601 		break;
602 #endif
603 
604 	default:
605 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
606 		break;
607 	}
608 	set_irq_regs(old_regs);
609 }
610 
611 void smp_send_reschedule(int cpu)
612 {
613 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
614 }
615 
616 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
617 void tick_broadcast(const struct cpumask *mask)
618 {
619 	smp_cross_call(mask, IPI_TIMER);
620 }
621 #endif
622 
623 void smp_send_stop(void)
624 {
625 	unsigned long timeout;
626 
627 	if (num_online_cpus() > 1) {
628 		cpumask_t mask;
629 
630 		cpumask_copy(&mask, cpu_online_mask);
631 		cpu_clear(smp_processor_id(), mask);
632 
633 		smp_cross_call(&mask, IPI_CPU_STOP);
634 	}
635 
636 	/* Wait up to one second for other CPUs to stop */
637 	timeout = USEC_PER_SEC;
638 	while (num_online_cpus() > 1 && timeout--)
639 		udelay(1);
640 
641 	if (num_online_cpus() > 1)
642 		pr_warning("SMP: failed to stop secondary CPUs\n");
643 }
644 
645 /*
646  * not supported here
647  */
648 int setup_profiling_timer(unsigned int multiplier)
649 {
650 	return -EINVAL;
651 }
652