xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 60772e48)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/arm_sdei.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/spinlock.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/hotplug.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/interrupt.h>
29 #include <linux/cache.h>
30 #include <linux/profile.h>
31 #include <linux/errno.h>
32 #include <linux/mm.h>
33 #include <linux/err.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/seq_file.h>
37 #include <linux/irq.h>
38 #include <linux/percpu.h>
39 #include <linux/clockchips.h>
40 #include <linux/completion.h>
41 #include <linux/of.h>
42 #include <linux/irq_work.h>
43 #include <linux/kexec.h>
44 
45 #include <asm/alternative.h>
46 #include <asm/atomic.h>
47 #include <asm/cacheflush.h>
48 #include <asm/cpu.h>
49 #include <asm/cputype.h>
50 #include <asm/cpu_ops.h>
51 #include <asm/daifflags.h>
52 #include <asm/mmu_context.h>
53 #include <asm/numa.h>
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/processor.h>
57 #include <asm/smp_plat.h>
58 #include <asm/sections.h>
59 #include <asm/tlbflush.h>
60 #include <asm/ptrace.h>
61 #include <asm/virt.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/ipi.h>
65 
66 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
67 EXPORT_PER_CPU_SYMBOL(cpu_number);
68 
69 /*
70  * as from 2.5, kernels no longer have an init_tasks structure
71  * so we need some other way of telling a new secondary core
72  * where to place its SVC stack
73  */
74 struct secondary_data secondary_data;
75 /* Number of CPUs which aren't online, but looping in kernel text. */
76 int cpus_stuck_in_kernel;
77 
78 enum ipi_msg_type {
79 	IPI_RESCHEDULE,
80 	IPI_CALL_FUNC,
81 	IPI_CPU_STOP,
82 	IPI_CPU_CRASH_STOP,
83 	IPI_TIMER,
84 	IPI_IRQ_WORK,
85 	IPI_WAKEUP
86 };
87 
88 #ifdef CONFIG_ARM64_VHE
89 
90 /* Whether the boot CPU is running in HYP mode or not*/
91 static bool boot_cpu_hyp_mode;
92 
93 static inline void save_boot_cpu_run_el(void)
94 {
95 	boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
96 }
97 
98 static inline bool is_boot_cpu_in_hyp_mode(void)
99 {
100 	return boot_cpu_hyp_mode;
101 }
102 
103 /*
104  * Verify that a secondary CPU is running the kernel at the same
105  * EL as that of the boot CPU.
106  */
107 void verify_cpu_run_el(void)
108 {
109 	bool in_el2 = is_kernel_in_hyp_mode();
110 	bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
111 
112 	if (in_el2 ^ boot_cpu_el2) {
113 		pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
114 					smp_processor_id(),
115 					in_el2 ? 2 : 1,
116 					boot_cpu_el2 ? 2 : 1);
117 		cpu_panic_kernel();
118 	}
119 }
120 
121 #else
122 static inline void save_boot_cpu_run_el(void) {}
123 #endif
124 
125 #ifdef CONFIG_HOTPLUG_CPU
126 static int op_cpu_kill(unsigned int cpu);
127 #else
128 static inline int op_cpu_kill(unsigned int cpu)
129 {
130 	return -ENOSYS;
131 }
132 #endif
133 
134 
135 /*
136  * Boot a secondary CPU, and assign it the specified idle task.
137  * This also gives us the initial stack to use for this CPU.
138  */
139 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
140 {
141 	if (cpu_ops[cpu]->cpu_boot)
142 		return cpu_ops[cpu]->cpu_boot(cpu);
143 
144 	return -EOPNOTSUPP;
145 }
146 
147 static DECLARE_COMPLETION(cpu_running);
148 
149 int __cpu_up(unsigned int cpu, struct task_struct *idle)
150 {
151 	int ret;
152 	long status;
153 
154 	/*
155 	 * We need to tell the secondary core where to find its stack and the
156 	 * page tables.
157 	 */
158 	secondary_data.task = idle;
159 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
160 	update_cpu_boot_status(CPU_MMU_OFF);
161 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
162 
163 	/*
164 	 * Now bring the CPU into our world.
165 	 */
166 	ret = boot_secondary(cpu, idle);
167 	if (ret == 0) {
168 		/*
169 		 * CPU was successfully started, wait for it to come online or
170 		 * time out.
171 		 */
172 		wait_for_completion_timeout(&cpu_running,
173 					    msecs_to_jiffies(1000));
174 
175 		if (!cpu_online(cpu)) {
176 			pr_crit("CPU%u: failed to come online\n", cpu);
177 			ret = -EIO;
178 		}
179 	} else {
180 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
181 	}
182 
183 	secondary_data.task = NULL;
184 	secondary_data.stack = NULL;
185 	status = READ_ONCE(secondary_data.status);
186 	if (ret && status) {
187 
188 		if (status == CPU_MMU_OFF)
189 			status = READ_ONCE(__early_cpu_boot_status);
190 
191 		switch (status) {
192 		default:
193 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
194 					cpu, status);
195 			break;
196 		case CPU_KILL_ME:
197 			if (!op_cpu_kill(cpu)) {
198 				pr_crit("CPU%u: died during early boot\n", cpu);
199 				break;
200 			}
201 			/* Fall through */
202 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
203 		case CPU_STUCK_IN_KERNEL:
204 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
205 			cpus_stuck_in_kernel++;
206 			break;
207 		case CPU_PANIC_KERNEL:
208 			panic("CPU%u detected unsupported configuration\n", cpu);
209 		}
210 	}
211 
212 	return ret;
213 }
214 
215 /*
216  * This is the secondary CPU boot entry.  We're using this CPUs
217  * idle thread stack, but a set of temporary page tables.
218  */
219 asmlinkage void secondary_start_kernel(void)
220 {
221 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
222 	struct mm_struct *mm = &init_mm;
223 	unsigned int cpu;
224 
225 	cpu = task_cpu(current);
226 	set_my_cpu_offset(per_cpu_offset(cpu));
227 
228 	/*
229 	 * All kernel threads share the same mm context; grab a
230 	 * reference and switch to it.
231 	 */
232 	mmgrab(mm);
233 	current->active_mm = mm;
234 
235 	/*
236 	 * TTBR0 is only used for the identity mapping at this stage. Make it
237 	 * point to zero page to avoid speculatively fetching new entries.
238 	 */
239 	cpu_uninstall_idmap();
240 
241 	preempt_disable();
242 	trace_hardirqs_off();
243 
244 	/*
245 	 * If the system has established the capabilities, make sure
246 	 * this CPU ticks all of those. If it doesn't, the CPU will
247 	 * fail to come online.
248 	 */
249 	check_local_cpu_capabilities();
250 
251 	if (cpu_ops[cpu]->cpu_postboot)
252 		cpu_ops[cpu]->cpu_postboot();
253 
254 	/*
255 	 * Log the CPU info before it is marked online and might get read.
256 	 */
257 	cpuinfo_store_cpu();
258 
259 	/*
260 	 * Enable GIC and timers.
261 	 */
262 	notify_cpu_starting(cpu);
263 
264 	store_cpu_topology(cpu);
265 
266 	/*
267 	 * OK, now it's safe to let the boot CPU continue.  Wait for
268 	 * the CPU migration code to notice that the CPU is online
269 	 * before we continue.
270 	 */
271 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
272 					 cpu, (unsigned long)mpidr,
273 					 read_cpuid_id());
274 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
275 	set_cpu_online(cpu, true);
276 	complete(&cpu_running);
277 
278 	local_daif_restore(DAIF_PROCCTX);
279 
280 	/*
281 	 * OK, it's off to the idle thread for us
282 	 */
283 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
284 }
285 
286 #ifdef CONFIG_HOTPLUG_CPU
287 static int op_cpu_disable(unsigned int cpu)
288 {
289 	/*
290 	 * If we don't have a cpu_die method, abort before we reach the point
291 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
292 	 */
293 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
294 		return -EOPNOTSUPP;
295 
296 	/*
297 	 * We may need to abort a hot unplug for some other mechanism-specific
298 	 * reason.
299 	 */
300 	if (cpu_ops[cpu]->cpu_disable)
301 		return cpu_ops[cpu]->cpu_disable(cpu);
302 
303 	return 0;
304 }
305 
306 /*
307  * __cpu_disable runs on the processor to be shutdown.
308  */
309 int __cpu_disable(void)
310 {
311 	unsigned int cpu = smp_processor_id();
312 	int ret;
313 
314 	ret = op_cpu_disable(cpu);
315 	if (ret)
316 		return ret;
317 
318 	/*
319 	 * Take this CPU offline.  Once we clear this, we can't return,
320 	 * and we must not schedule until we're ready to give up the cpu.
321 	 */
322 	set_cpu_online(cpu, false);
323 
324 	/*
325 	 * OK - migrate IRQs away from this CPU
326 	 */
327 	irq_migrate_all_off_this_cpu();
328 
329 	return 0;
330 }
331 
332 static int op_cpu_kill(unsigned int cpu)
333 {
334 	/*
335 	 * If we have no means of synchronising with the dying CPU, then assume
336 	 * that it is really dead. We can only wait for an arbitrary length of
337 	 * time and hope that it's dead, so let's skip the wait and just hope.
338 	 */
339 	if (!cpu_ops[cpu]->cpu_kill)
340 		return 0;
341 
342 	return cpu_ops[cpu]->cpu_kill(cpu);
343 }
344 
345 /*
346  * called on the thread which is asking for a CPU to be shutdown -
347  * waits until shutdown has completed, or it is timed out.
348  */
349 void __cpu_die(unsigned int cpu)
350 {
351 	int err;
352 
353 	if (!cpu_wait_death(cpu, 5)) {
354 		pr_crit("CPU%u: cpu didn't die\n", cpu);
355 		return;
356 	}
357 	pr_notice("CPU%u: shutdown\n", cpu);
358 
359 	/*
360 	 * Now that the dying CPU is beyond the point of no return w.r.t.
361 	 * in-kernel synchronisation, try to get the firwmare to help us to
362 	 * verify that it has really left the kernel before we consider
363 	 * clobbering anything it might still be using.
364 	 */
365 	err = op_cpu_kill(cpu);
366 	if (err)
367 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
368 			cpu, err);
369 }
370 
371 /*
372  * Called from the idle thread for the CPU which has been shutdown.
373  *
374  */
375 void cpu_die(void)
376 {
377 	unsigned int cpu = smp_processor_id();
378 
379 	idle_task_exit();
380 
381 	local_daif_mask();
382 
383 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
384 	(void)cpu_report_death();
385 
386 	/*
387 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
388 	 * mechanism must perform all required cache maintenance to ensure that
389 	 * no dirty lines are lost in the process of shutting down the CPU.
390 	 */
391 	cpu_ops[cpu]->cpu_die(cpu);
392 
393 	BUG();
394 }
395 #endif
396 
397 /*
398  * Kill the calling secondary CPU, early in bringup before it is turned
399  * online.
400  */
401 void cpu_die_early(void)
402 {
403 	int cpu = smp_processor_id();
404 
405 	pr_crit("CPU%d: will not boot\n", cpu);
406 
407 	/* Mark this CPU absent */
408 	set_cpu_present(cpu, 0);
409 
410 #ifdef CONFIG_HOTPLUG_CPU
411 	update_cpu_boot_status(CPU_KILL_ME);
412 	/* Check if we can park ourselves */
413 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
414 		cpu_ops[cpu]->cpu_die(cpu);
415 #endif
416 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
417 
418 	cpu_park_loop();
419 }
420 
421 static void __init hyp_mode_check(void)
422 {
423 	if (is_hyp_mode_available())
424 		pr_info("CPU: All CPU(s) started at EL2\n");
425 	else if (is_hyp_mode_mismatched())
426 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
427 			   "CPU: CPUs started in inconsistent modes");
428 	else
429 		pr_info("CPU: All CPU(s) started at EL1\n");
430 }
431 
432 void __init smp_cpus_done(unsigned int max_cpus)
433 {
434 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
435 	setup_cpu_features();
436 	hyp_mode_check();
437 	apply_alternatives_all();
438 	mark_linear_text_alias_ro();
439 }
440 
441 void __init smp_prepare_boot_cpu(void)
442 {
443 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
444 	/*
445 	 * Initialise the static keys early as they may be enabled by the
446 	 * cpufeature code.
447 	 */
448 	jump_label_init();
449 	cpuinfo_store_boot_cpu();
450 	save_boot_cpu_run_el();
451 	/*
452 	 * Run the errata work around checks on the boot CPU, once we have
453 	 * initialised the cpu feature infrastructure from
454 	 * cpuinfo_store_boot_cpu() above.
455 	 */
456 	update_cpu_errata_workarounds();
457 }
458 
459 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
460 {
461 	const __be32 *cell;
462 	u64 hwid;
463 
464 	/*
465 	 * A cpu node with missing "reg" property is
466 	 * considered invalid to build a cpu_logical_map
467 	 * entry.
468 	 */
469 	cell = of_get_property(dn, "reg", NULL);
470 	if (!cell) {
471 		pr_err("%pOF: missing reg property\n", dn);
472 		return INVALID_HWID;
473 	}
474 
475 	hwid = of_read_number(cell, of_n_addr_cells(dn));
476 	/*
477 	 * Non affinity bits must be set to 0 in the DT
478 	 */
479 	if (hwid & ~MPIDR_HWID_BITMASK) {
480 		pr_err("%pOF: invalid reg property\n", dn);
481 		return INVALID_HWID;
482 	}
483 	return hwid;
484 }
485 
486 /*
487  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
488  * entries and check for duplicates. If any is found just ignore the
489  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
490  * matching valid MPIDR values.
491  */
492 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
493 {
494 	unsigned int i;
495 
496 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
497 		if (cpu_logical_map(i) == hwid)
498 			return true;
499 	return false;
500 }
501 
502 /*
503  * Initialize cpu operations for a logical cpu and
504  * set it in the possible mask on success
505  */
506 static int __init smp_cpu_setup(int cpu)
507 {
508 	if (cpu_read_ops(cpu))
509 		return -ENODEV;
510 
511 	if (cpu_ops[cpu]->cpu_init(cpu))
512 		return -ENODEV;
513 
514 	set_cpu_possible(cpu, true);
515 
516 	return 0;
517 }
518 
519 static bool bootcpu_valid __initdata;
520 static unsigned int cpu_count = 1;
521 
522 #ifdef CONFIG_ACPI
523 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
524 
525 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
526 {
527 	return &cpu_madt_gicc[cpu];
528 }
529 
530 /*
531  * acpi_map_gic_cpu_interface - parse processor MADT entry
532  *
533  * Carry out sanity checks on MADT processor entry and initialize
534  * cpu_logical_map on success
535  */
536 static void __init
537 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
538 {
539 	u64 hwid = processor->arm_mpidr;
540 
541 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
542 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
543 		return;
544 	}
545 
546 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
547 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
548 		return;
549 	}
550 
551 	if (is_mpidr_duplicate(cpu_count, hwid)) {
552 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
553 		return;
554 	}
555 
556 	/* Check if GICC structure of boot CPU is available in the MADT */
557 	if (cpu_logical_map(0) == hwid) {
558 		if (bootcpu_valid) {
559 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
560 			       hwid);
561 			return;
562 		}
563 		bootcpu_valid = true;
564 		cpu_madt_gicc[0] = *processor;
565 		early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid));
566 		return;
567 	}
568 
569 	if (cpu_count >= NR_CPUS)
570 		return;
571 
572 	/* map the logical cpu id to cpu MPIDR */
573 	cpu_logical_map(cpu_count) = hwid;
574 
575 	cpu_madt_gicc[cpu_count] = *processor;
576 
577 	/*
578 	 * Set-up the ACPI parking protocol cpu entries
579 	 * while initializing the cpu_logical_map to
580 	 * avoid parsing MADT entries multiple times for
581 	 * nothing (ie a valid cpu_logical_map entry should
582 	 * contain a valid parking protocol data set to
583 	 * initialize the cpu if the parking protocol is
584 	 * the only available enable method).
585 	 */
586 	acpi_set_mailbox_entry(cpu_count, processor);
587 
588 	early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
589 
590 	cpu_count++;
591 }
592 
593 static int __init
594 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
595 			     const unsigned long end)
596 {
597 	struct acpi_madt_generic_interrupt *processor;
598 
599 	processor = (struct acpi_madt_generic_interrupt *)header;
600 	if (BAD_MADT_GICC_ENTRY(processor, end))
601 		return -EINVAL;
602 
603 	acpi_table_print_madt_entry(header);
604 
605 	acpi_map_gic_cpu_interface(processor);
606 
607 	return 0;
608 }
609 #else
610 #define acpi_table_parse_madt(...)	do { } while (0)
611 #endif
612 
613 /*
614  * Enumerate the possible CPU set from the device tree and build the
615  * cpu logical map array containing MPIDR values related to logical
616  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
617  */
618 static void __init of_parse_and_init_cpus(void)
619 {
620 	struct device_node *dn;
621 
622 	for_each_node_by_type(dn, "cpu") {
623 		u64 hwid = of_get_cpu_mpidr(dn);
624 
625 		if (hwid == INVALID_HWID)
626 			goto next;
627 
628 		if (is_mpidr_duplicate(cpu_count, hwid)) {
629 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
630 				dn);
631 			goto next;
632 		}
633 
634 		/*
635 		 * The numbering scheme requires that the boot CPU
636 		 * must be assigned logical id 0. Record it so that
637 		 * the logical map built from DT is validated and can
638 		 * be used.
639 		 */
640 		if (hwid == cpu_logical_map(0)) {
641 			if (bootcpu_valid) {
642 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
643 					dn);
644 				goto next;
645 			}
646 
647 			bootcpu_valid = true;
648 			early_map_cpu_to_node(0, of_node_to_nid(dn));
649 
650 			/*
651 			 * cpu_logical_map has already been
652 			 * initialized and the boot cpu doesn't need
653 			 * the enable-method so continue without
654 			 * incrementing cpu.
655 			 */
656 			continue;
657 		}
658 
659 		if (cpu_count >= NR_CPUS)
660 			goto next;
661 
662 		pr_debug("cpu logical map 0x%llx\n", hwid);
663 		cpu_logical_map(cpu_count) = hwid;
664 
665 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
666 next:
667 		cpu_count++;
668 	}
669 }
670 
671 /*
672  * Enumerate the possible CPU set from the device tree or ACPI and build the
673  * cpu logical map array containing MPIDR values related to logical
674  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
675  */
676 void __init smp_init_cpus(void)
677 {
678 	int i;
679 
680 	if (acpi_disabled)
681 		of_parse_and_init_cpus();
682 	else
683 		/*
684 		 * do a walk of MADT to determine how many CPUs
685 		 * we have including disabled CPUs, and get information
686 		 * we need for SMP init
687 		 */
688 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
689 				      acpi_parse_gic_cpu_interface, 0);
690 
691 	if (cpu_count > nr_cpu_ids)
692 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
693 			cpu_count, nr_cpu_ids);
694 
695 	if (!bootcpu_valid) {
696 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
697 		return;
698 	}
699 
700 	/*
701 	 * We need to set the cpu_logical_map entries before enabling
702 	 * the cpus so that cpu processor description entries (DT cpu nodes
703 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
704 	 * with entries in cpu_logical_map while initializing the cpus.
705 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
706 	 */
707 	for (i = 1; i < nr_cpu_ids; i++) {
708 		if (cpu_logical_map(i) != INVALID_HWID) {
709 			if (smp_cpu_setup(i))
710 				cpu_logical_map(i) = INVALID_HWID;
711 		}
712 	}
713 }
714 
715 void __init smp_prepare_cpus(unsigned int max_cpus)
716 {
717 	int err;
718 	unsigned int cpu;
719 	unsigned int this_cpu;
720 
721 	init_cpu_topology();
722 
723 	this_cpu = smp_processor_id();
724 	store_cpu_topology(this_cpu);
725 	numa_store_cpu_info(this_cpu);
726 
727 	/*
728 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
729 	 * secondary CPUs present.
730 	 */
731 	if (max_cpus == 0)
732 		return;
733 
734 	/*
735 	 * Initialise the present map (which describes the set of CPUs
736 	 * actually populated at the present time) and release the
737 	 * secondaries from the bootloader.
738 	 */
739 	for_each_possible_cpu(cpu) {
740 
741 		per_cpu(cpu_number, cpu) = cpu;
742 
743 		if (cpu == smp_processor_id())
744 			continue;
745 
746 		if (!cpu_ops[cpu])
747 			continue;
748 
749 		err = cpu_ops[cpu]->cpu_prepare(cpu);
750 		if (err)
751 			continue;
752 
753 		set_cpu_present(cpu, true);
754 		numa_store_cpu_info(cpu);
755 	}
756 }
757 
758 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
759 
760 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
761 {
762 	__smp_cross_call = fn;
763 }
764 
765 static const char *ipi_types[NR_IPI] __tracepoint_string = {
766 #define S(x,s)	[x] = s
767 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
768 	S(IPI_CALL_FUNC, "Function call interrupts"),
769 	S(IPI_CPU_STOP, "CPU stop interrupts"),
770 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
771 	S(IPI_TIMER, "Timer broadcast interrupts"),
772 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
773 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
774 };
775 
776 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
777 {
778 	trace_ipi_raise(target, ipi_types[ipinr]);
779 	__smp_cross_call(target, ipinr);
780 }
781 
782 void show_ipi_list(struct seq_file *p, int prec)
783 {
784 	unsigned int cpu, i;
785 
786 	for (i = 0; i < NR_IPI; i++) {
787 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
788 			   prec >= 4 ? " " : "");
789 		for_each_online_cpu(cpu)
790 			seq_printf(p, "%10u ",
791 				   __get_irq_stat(cpu, ipi_irqs[i]));
792 		seq_printf(p, "      %s\n", ipi_types[i]);
793 	}
794 }
795 
796 u64 smp_irq_stat_cpu(unsigned int cpu)
797 {
798 	u64 sum = 0;
799 	int i;
800 
801 	for (i = 0; i < NR_IPI; i++)
802 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
803 
804 	return sum;
805 }
806 
807 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
808 {
809 	smp_cross_call(mask, IPI_CALL_FUNC);
810 }
811 
812 void arch_send_call_function_single_ipi(int cpu)
813 {
814 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
815 }
816 
817 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
818 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
819 {
820 	smp_cross_call(mask, IPI_WAKEUP);
821 }
822 #endif
823 
824 #ifdef CONFIG_IRQ_WORK
825 void arch_irq_work_raise(void)
826 {
827 	if (__smp_cross_call)
828 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
829 }
830 #endif
831 
832 /*
833  * ipi_cpu_stop - handle IPI from smp_send_stop()
834  */
835 static void ipi_cpu_stop(unsigned int cpu)
836 {
837 	set_cpu_online(cpu, false);
838 
839 	local_daif_mask();
840 	sdei_mask_local_cpu();
841 
842 	while (1)
843 		cpu_relax();
844 }
845 
846 #ifdef CONFIG_KEXEC_CORE
847 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
848 #endif
849 
850 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
851 {
852 #ifdef CONFIG_KEXEC_CORE
853 	crash_save_cpu(regs, cpu);
854 
855 	atomic_dec(&waiting_for_crash_ipi);
856 
857 	local_irq_disable();
858 	sdei_mask_local_cpu();
859 
860 #ifdef CONFIG_HOTPLUG_CPU
861 	if (cpu_ops[cpu]->cpu_die)
862 		cpu_ops[cpu]->cpu_die(cpu);
863 #endif
864 
865 	/* just in case */
866 	cpu_park_loop();
867 #endif
868 }
869 
870 /*
871  * Main handler for inter-processor interrupts
872  */
873 void handle_IPI(int ipinr, struct pt_regs *regs)
874 {
875 	unsigned int cpu = smp_processor_id();
876 	struct pt_regs *old_regs = set_irq_regs(regs);
877 
878 	if ((unsigned)ipinr < NR_IPI) {
879 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
880 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
881 	}
882 
883 	switch (ipinr) {
884 	case IPI_RESCHEDULE:
885 		scheduler_ipi();
886 		break;
887 
888 	case IPI_CALL_FUNC:
889 		irq_enter();
890 		generic_smp_call_function_interrupt();
891 		irq_exit();
892 		break;
893 
894 	case IPI_CPU_STOP:
895 		irq_enter();
896 		ipi_cpu_stop(cpu);
897 		irq_exit();
898 		break;
899 
900 	case IPI_CPU_CRASH_STOP:
901 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
902 			irq_enter();
903 			ipi_cpu_crash_stop(cpu, regs);
904 
905 			unreachable();
906 		}
907 		break;
908 
909 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
910 	case IPI_TIMER:
911 		irq_enter();
912 		tick_receive_broadcast();
913 		irq_exit();
914 		break;
915 #endif
916 
917 #ifdef CONFIG_IRQ_WORK
918 	case IPI_IRQ_WORK:
919 		irq_enter();
920 		irq_work_run();
921 		irq_exit();
922 		break;
923 #endif
924 
925 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
926 	case IPI_WAKEUP:
927 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
928 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
929 			  cpu);
930 		break;
931 #endif
932 
933 	default:
934 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
935 		break;
936 	}
937 
938 	if ((unsigned)ipinr < NR_IPI)
939 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
940 	set_irq_regs(old_regs);
941 }
942 
943 void smp_send_reschedule(int cpu)
944 {
945 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
946 }
947 
948 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
949 void tick_broadcast(const struct cpumask *mask)
950 {
951 	smp_cross_call(mask, IPI_TIMER);
952 }
953 #endif
954 
955 void smp_send_stop(void)
956 {
957 	unsigned long timeout;
958 
959 	if (num_online_cpus() > 1) {
960 		cpumask_t mask;
961 
962 		cpumask_copy(&mask, cpu_online_mask);
963 		cpumask_clear_cpu(smp_processor_id(), &mask);
964 
965 		if (system_state <= SYSTEM_RUNNING)
966 			pr_crit("SMP: stopping secondary CPUs\n");
967 		smp_cross_call(&mask, IPI_CPU_STOP);
968 	}
969 
970 	/* Wait up to one second for other CPUs to stop */
971 	timeout = USEC_PER_SEC;
972 	while (num_online_cpus() > 1 && timeout--)
973 		udelay(1);
974 
975 	if (num_online_cpus() > 1)
976 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
977 			   cpumask_pr_args(cpu_online_mask));
978 
979 	sdei_mask_local_cpu();
980 }
981 
982 #ifdef CONFIG_KEXEC_CORE
983 void crash_smp_send_stop(void)
984 {
985 	static int cpus_stopped;
986 	cpumask_t mask;
987 	unsigned long timeout;
988 
989 	/*
990 	 * This function can be called twice in panic path, but obviously
991 	 * we execute this only once.
992 	 */
993 	if (cpus_stopped)
994 		return;
995 
996 	cpus_stopped = 1;
997 
998 	if (num_online_cpus() == 1) {
999 		sdei_mask_local_cpu();
1000 		return;
1001 	}
1002 
1003 	cpumask_copy(&mask, cpu_online_mask);
1004 	cpumask_clear_cpu(smp_processor_id(), &mask);
1005 
1006 	atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1007 
1008 	pr_crit("SMP: stopping secondary CPUs\n");
1009 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1010 
1011 	/* Wait up to one second for other CPUs to stop */
1012 	timeout = USEC_PER_SEC;
1013 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1014 		udelay(1);
1015 
1016 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1017 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1018 			   cpumask_pr_args(&mask));
1019 
1020 	sdei_mask_local_cpu();
1021 }
1022 
1023 bool smp_crash_stop_failed(void)
1024 {
1025 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1026 }
1027 #endif
1028 
1029 /*
1030  * not supported here
1031  */
1032 int setup_profiling_timer(unsigned int multiplier)
1033 {
1034 	return -EINVAL;
1035 }
1036 
1037 static bool have_cpu_die(void)
1038 {
1039 #ifdef CONFIG_HOTPLUG_CPU
1040 	int any_cpu = raw_smp_processor_id();
1041 
1042 	if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1043 		return true;
1044 #endif
1045 	return false;
1046 }
1047 
1048 bool cpus_are_stuck_in_kernel(void)
1049 {
1050 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1051 
1052 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1053 }
1054