xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 5f32c314)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/spinlock.h>
23 #include <linux/sched.h>
24 #include <linux/interrupt.h>
25 #include <linux/cache.h>
26 #include <linux/profile.h>
27 #include <linux/errno.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/cpu.h>
31 #include <linux/smp.h>
32 #include <linux/seq_file.h>
33 #include <linux/irq.h>
34 #include <linux/percpu.h>
35 #include <linux/clockchips.h>
36 #include <linux/completion.h>
37 #include <linux/of.h>
38 
39 #include <asm/atomic.h>
40 #include <asm/cacheflush.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/mmu_context.h>
44 #include <asm/pgtable.h>
45 #include <asm/pgalloc.h>
46 #include <asm/processor.h>
47 #include <asm/smp_plat.h>
48 #include <asm/sections.h>
49 #include <asm/tlbflush.h>
50 #include <asm/ptrace.h>
51 
52 /*
53  * as from 2.5, kernels no longer have an init_tasks structure
54  * so we need some other way of telling a new secondary core
55  * where to place its SVC stack
56  */
57 struct secondary_data secondary_data;
58 
59 enum ipi_msg_type {
60 	IPI_RESCHEDULE,
61 	IPI_CALL_FUNC,
62 	IPI_CALL_FUNC_SINGLE,
63 	IPI_CPU_STOP,
64 	IPI_TIMER,
65 };
66 
67 /*
68  * Boot a secondary CPU, and assign it the specified idle task.
69  * This also gives us the initial stack to use for this CPU.
70  */
71 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
72 {
73 	if (cpu_ops[cpu]->cpu_boot)
74 		return cpu_ops[cpu]->cpu_boot(cpu);
75 
76 	return -EOPNOTSUPP;
77 }
78 
79 static DECLARE_COMPLETION(cpu_running);
80 
81 int __cpu_up(unsigned int cpu, struct task_struct *idle)
82 {
83 	int ret;
84 
85 	/*
86 	 * We need to tell the secondary core where to find its stack and the
87 	 * page tables.
88 	 */
89 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
90 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
91 
92 	/*
93 	 * Now bring the CPU into our world.
94 	 */
95 	ret = boot_secondary(cpu, idle);
96 	if (ret == 0) {
97 		/*
98 		 * CPU was successfully started, wait for it to come online or
99 		 * time out.
100 		 */
101 		wait_for_completion_timeout(&cpu_running,
102 					    msecs_to_jiffies(1000));
103 
104 		if (!cpu_online(cpu)) {
105 			pr_crit("CPU%u: failed to come online\n", cpu);
106 			ret = -EIO;
107 		}
108 	} else {
109 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
110 	}
111 
112 	secondary_data.stack = NULL;
113 
114 	return ret;
115 }
116 
117 /*
118  * This is the secondary CPU boot entry.  We're using this CPUs
119  * idle thread stack, but a set of temporary page tables.
120  */
121 asmlinkage void secondary_start_kernel(void)
122 {
123 	struct mm_struct *mm = &init_mm;
124 	unsigned int cpu = smp_processor_id();
125 
126 	/*
127 	 * All kernel threads share the same mm context; grab a
128 	 * reference and switch to it.
129 	 */
130 	atomic_inc(&mm->mm_count);
131 	current->active_mm = mm;
132 	cpumask_set_cpu(cpu, mm_cpumask(mm));
133 
134 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
135 	printk("CPU%u: Booted secondary processor\n", cpu);
136 
137 	/*
138 	 * TTBR0 is only used for the identity mapping at this stage. Make it
139 	 * point to zero page to avoid speculatively fetching new entries.
140 	 */
141 	cpu_set_reserved_ttbr0();
142 	flush_tlb_all();
143 
144 	preempt_disable();
145 	trace_hardirqs_off();
146 
147 	if (cpu_ops[cpu]->cpu_postboot)
148 		cpu_ops[cpu]->cpu_postboot();
149 
150 	/*
151 	 * Enable GIC and timers.
152 	 */
153 	notify_cpu_starting(cpu);
154 
155 	/*
156 	 * OK, now it's safe to let the boot CPU continue.  Wait for
157 	 * the CPU migration code to notice that the CPU is online
158 	 * before we continue.
159 	 */
160 	set_cpu_online(cpu, true);
161 	complete(&cpu_running);
162 
163 	local_irq_enable();
164 	local_async_enable();
165 
166 	/*
167 	 * OK, it's off to the idle thread for us
168 	 */
169 	cpu_startup_entry(CPUHP_ONLINE);
170 }
171 
172 #ifdef CONFIG_HOTPLUG_CPU
173 static int op_cpu_disable(unsigned int cpu)
174 {
175 	/*
176 	 * If we don't have a cpu_die method, abort before we reach the point
177 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
178 	 */
179 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
180 		return -EOPNOTSUPP;
181 
182 	/*
183 	 * We may need to abort a hot unplug for some other mechanism-specific
184 	 * reason.
185 	 */
186 	if (cpu_ops[cpu]->cpu_disable)
187 		return cpu_ops[cpu]->cpu_disable(cpu);
188 
189 	return 0;
190 }
191 
192 /*
193  * __cpu_disable runs on the processor to be shutdown.
194  */
195 int __cpu_disable(void)
196 {
197 	unsigned int cpu = smp_processor_id();
198 	int ret;
199 
200 	ret = op_cpu_disable(cpu);
201 	if (ret)
202 		return ret;
203 
204 	/*
205 	 * Take this CPU offline.  Once we clear this, we can't return,
206 	 * and we must not schedule until we're ready to give up the cpu.
207 	 */
208 	set_cpu_online(cpu, false);
209 
210 	/*
211 	 * OK - migrate IRQs away from this CPU
212 	 */
213 	migrate_irqs();
214 
215 	/*
216 	 * Remove this CPU from the vm mask set of all processes.
217 	 */
218 	clear_tasks_mm_cpumask(cpu);
219 
220 	return 0;
221 }
222 
223 static DECLARE_COMPLETION(cpu_died);
224 
225 /*
226  * called on the thread which is asking for a CPU to be shutdown -
227  * waits until shutdown has completed, or it is timed out.
228  */
229 void __cpu_die(unsigned int cpu)
230 {
231 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
232 		pr_crit("CPU%u: cpu didn't die\n", cpu);
233 		return;
234 	}
235 	pr_notice("CPU%u: shutdown\n", cpu);
236 }
237 
238 /*
239  * Called from the idle thread for the CPU which has been shutdown.
240  *
241  * Note that we disable IRQs here, but do not re-enable them
242  * before returning to the caller. This is also the behaviour
243  * of the other hotplug-cpu capable cores, so presumably coming
244  * out of idle fixes this.
245  */
246 void cpu_die(void)
247 {
248 	unsigned int cpu = smp_processor_id();
249 
250 	idle_task_exit();
251 
252 	local_irq_disable();
253 
254 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
255 	complete(&cpu_died);
256 
257 	/*
258 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
259 	 * mechanism must perform all required cache maintenance to ensure that
260 	 * no dirty lines are lost in the process of shutting down the CPU.
261 	 */
262 	cpu_ops[cpu]->cpu_die(cpu);
263 
264 	BUG();
265 }
266 #endif
267 
268 void __init smp_cpus_done(unsigned int max_cpus)
269 {
270 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
271 }
272 
273 void __init smp_prepare_boot_cpu(void)
274 {
275 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
276 }
277 
278 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
279 
280 /*
281  * Enumerate the possible CPU set from the device tree and build the
282  * cpu logical map array containing MPIDR values related to logical
283  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
284  */
285 void __init smp_init_cpus(void)
286 {
287 	struct device_node *dn = NULL;
288 	unsigned int i, cpu = 1;
289 	bool bootcpu_valid = false;
290 
291 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
292 		const u32 *cell;
293 		u64 hwid;
294 
295 		/*
296 		 * A cpu node with missing "reg" property is
297 		 * considered invalid to build a cpu_logical_map
298 		 * entry.
299 		 */
300 		cell = of_get_property(dn, "reg", NULL);
301 		if (!cell) {
302 			pr_err("%s: missing reg property\n", dn->full_name);
303 			goto next;
304 		}
305 		hwid = of_read_number(cell, of_n_addr_cells(dn));
306 
307 		/*
308 		 * Non affinity bits must be set to 0 in the DT
309 		 */
310 		if (hwid & ~MPIDR_HWID_BITMASK) {
311 			pr_err("%s: invalid reg property\n", dn->full_name);
312 			goto next;
313 		}
314 
315 		/*
316 		 * Duplicate MPIDRs are a recipe for disaster. Scan
317 		 * all initialized entries and check for
318 		 * duplicates. If any is found just ignore the cpu.
319 		 * cpu_logical_map was initialized to INVALID_HWID to
320 		 * avoid matching valid MPIDR values.
321 		 */
322 		for (i = 1; (i < cpu) && (i < NR_CPUS); i++) {
323 			if (cpu_logical_map(i) == hwid) {
324 				pr_err("%s: duplicate cpu reg properties in the DT\n",
325 					dn->full_name);
326 				goto next;
327 			}
328 		}
329 
330 		/*
331 		 * The numbering scheme requires that the boot CPU
332 		 * must be assigned logical id 0. Record it so that
333 		 * the logical map built from DT is validated and can
334 		 * be used.
335 		 */
336 		if (hwid == cpu_logical_map(0)) {
337 			if (bootcpu_valid) {
338 				pr_err("%s: duplicate boot cpu reg property in DT\n",
339 					dn->full_name);
340 				goto next;
341 			}
342 
343 			bootcpu_valid = true;
344 
345 			/*
346 			 * cpu_logical_map has already been
347 			 * initialized and the boot cpu doesn't need
348 			 * the enable-method so continue without
349 			 * incrementing cpu.
350 			 */
351 			continue;
352 		}
353 
354 		if (cpu >= NR_CPUS)
355 			goto next;
356 
357 		if (cpu_read_ops(dn, cpu) != 0)
358 			goto next;
359 
360 		if (cpu_ops[cpu]->cpu_init(dn, cpu))
361 			goto next;
362 
363 		pr_debug("cpu logical map 0x%llx\n", hwid);
364 		cpu_logical_map(cpu) = hwid;
365 next:
366 		cpu++;
367 	}
368 
369 	/* sanity check */
370 	if (cpu > NR_CPUS)
371 		pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n",
372 			   cpu, NR_CPUS);
373 
374 	if (!bootcpu_valid) {
375 		pr_err("DT missing boot CPU MPIDR, not enabling secondaries\n");
376 		return;
377 	}
378 
379 	/*
380 	 * All the cpus that made it to the cpu_logical_map have been
381 	 * validated so set them as possible cpus.
382 	 */
383 	for (i = 0; i < NR_CPUS; i++)
384 		if (cpu_logical_map(i) != INVALID_HWID)
385 			set_cpu_possible(i, true);
386 }
387 
388 void __init smp_prepare_cpus(unsigned int max_cpus)
389 {
390 	int err;
391 	unsigned int cpu, ncores = num_possible_cpus();
392 
393 	/*
394 	 * are we trying to boot more cores than exist?
395 	 */
396 	if (max_cpus > ncores)
397 		max_cpus = ncores;
398 
399 	/* Don't bother if we're effectively UP */
400 	if (max_cpus <= 1)
401 		return;
402 
403 	/*
404 	 * Initialise the present map (which describes the set of CPUs
405 	 * actually populated at the present time) and release the
406 	 * secondaries from the bootloader.
407 	 *
408 	 * Make sure we online at most (max_cpus - 1) additional CPUs.
409 	 */
410 	max_cpus--;
411 	for_each_possible_cpu(cpu) {
412 		if (max_cpus == 0)
413 			break;
414 
415 		if (cpu == smp_processor_id())
416 			continue;
417 
418 		if (!cpu_ops[cpu])
419 			continue;
420 
421 		err = cpu_ops[cpu]->cpu_prepare(cpu);
422 		if (err)
423 			continue;
424 
425 		set_cpu_present(cpu, true);
426 		max_cpus--;
427 	}
428 }
429 
430 
431 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
432 {
433 	smp_cross_call = fn;
434 }
435 
436 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
437 {
438 	smp_cross_call(mask, IPI_CALL_FUNC);
439 }
440 
441 void arch_send_call_function_single_ipi(int cpu)
442 {
443 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
444 }
445 
446 static const char *ipi_types[NR_IPI] = {
447 #define S(x,s)	[x - IPI_RESCHEDULE] = s
448 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
449 	S(IPI_CALL_FUNC, "Function call interrupts"),
450 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
451 	S(IPI_CPU_STOP, "CPU stop interrupts"),
452 	S(IPI_TIMER, "Timer broadcast interrupts"),
453 };
454 
455 void show_ipi_list(struct seq_file *p, int prec)
456 {
457 	unsigned int cpu, i;
458 
459 	for (i = 0; i < NR_IPI; i++) {
460 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i + IPI_RESCHEDULE,
461 			   prec >= 4 ? " " : "");
462 		for_each_online_cpu(cpu)
463 			seq_printf(p, "%10u ",
464 				   __get_irq_stat(cpu, ipi_irqs[i]));
465 		seq_printf(p, "      %s\n", ipi_types[i]);
466 	}
467 }
468 
469 u64 smp_irq_stat_cpu(unsigned int cpu)
470 {
471 	u64 sum = 0;
472 	int i;
473 
474 	for (i = 0; i < NR_IPI; i++)
475 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
476 
477 	return sum;
478 }
479 
480 static DEFINE_RAW_SPINLOCK(stop_lock);
481 
482 /*
483  * ipi_cpu_stop - handle IPI from smp_send_stop()
484  */
485 static void ipi_cpu_stop(unsigned int cpu)
486 {
487 	if (system_state == SYSTEM_BOOTING ||
488 	    system_state == SYSTEM_RUNNING) {
489 		raw_spin_lock(&stop_lock);
490 		pr_crit("CPU%u: stopping\n", cpu);
491 		dump_stack();
492 		raw_spin_unlock(&stop_lock);
493 	}
494 
495 	set_cpu_online(cpu, false);
496 
497 	local_irq_disable();
498 
499 	while (1)
500 		cpu_relax();
501 }
502 
503 /*
504  * Main handler for inter-processor interrupts
505  */
506 void handle_IPI(int ipinr, struct pt_regs *regs)
507 {
508 	unsigned int cpu = smp_processor_id();
509 	struct pt_regs *old_regs = set_irq_regs(regs);
510 
511 	if (ipinr >= IPI_RESCHEDULE && ipinr < IPI_RESCHEDULE + NR_IPI)
512 		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_RESCHEDULE]);
513 
514 	switch (ipinr) {
515 	case IPI_RESCHEDULE:
516 		scheduler_ipi();
517 		break;
518 
519 	case IPI_CALL_FUNC:
520 		irq_enter();
521 		generic_smp_call_function_interrupt();
522 		irq_exit();
523 		break;
524 
525 	case IPI_CALL_FUNC_SINGLE:
526 		irq_enter();
527 		generic_smp_call_function_single_interrupt();
528 		irq_exit();
529 		break;
530 
531 	case IPI_CPU_STOP:
532 		irq_enter();
533 		ipi_cpu_stop(cpu);
534 		irq_exit();
535 		break;
536 
537 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
538 	case IPI_TIMER:
539 		irq_enter();
540 		tick_receive_broadcast();
541 		irq_exit();
542 		break;
543 #endif
544 
545 	default:
546 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
547 		break;
548 	}
549 	set_irq_regs(old_regs);
550 }
551 
552 void smp_send_reschedule(int cpu)
553 {
554 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
555 }
556 
557 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
558 void tick_broadcast(const struct cpumask *mask)
559 {
560 	smp_cross_call(mask, IPI_TIMER);
561 }
562 #endif
563 
564 void smp_send_stop(void)
565 {
566 	unsigned long timeout;
567 
568 	if (num_online_cpus() > 1) {
569 		cpumask_t mask;
570 
571 		cpumask_copy(&mask, cpu_online_mask);
572 		cpu_clear(smp_processor_id(), mask);
573 
574 		smp_cross_call(&mask, IPI_CPU_STOP);
575 	}
576 
577 	/* Wait up to one second for other CPUs to stop */
578 	timeout = USEC_PER_SEC;
579 	while (num_online_cpus() > 1 && timeout--)
580 		udelay(1);
581 
582 	if (num_online_cpus() > 1)
583 		pr_warning("SMP: failed to stop secondary CPUs\n");
584 }
585 
586 /*
587  * not supported here
588  */
589 int setup_profiling_timer(unsigned int multiplier)
590 {
591 	return -EINVAL;
592 }
593