xref: /openbmc/linux/arch/arm64/kernel/smp.c (revision 4f205687)
1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40 
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/pgtable.h>
50 #include <asm/pgalloc.h>
51 #include <asm/processor.h>
52 #include <asm/smp_plat.h>
53 #include <asm/sections.h>
54 #include <asm/tlbflush.h>
55 #include <asm/ptrace.h>
56 #include <asm/virt.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ipi.h>
60 
61 /*
62  * as from 2.5, kernels no longer have an init_tasks structure
63  * so we need some other way of telling a new secondary core
64  * where to place its SVC stack
65  */
66 struct secondary_data secondary_data;
67 /* Number of CPUs which aren't online, but looping in kernel text. */
68 int cpus_stuck_in_kernel;
69 
70 enum ipi_msg_type {
71 	IPI_RESCHEDULE,
72 	IPI_CALL_FUNC,
73 	IPI_CPU_STOP,
74 	IPI_TIMER,
75 	IPI_IRQ_WORK,
76 	IPI_WAKEUP
77 };
78 
79 #ifdef CONFIG_ARM64_VHE
80 
81 /* Whether the boot CPU is running in HYP mode or not*/
82 static bool boot_cpu_hyp_mode;
83 
84 static inline void save_boot_cpu_run_el(void)
85 {
86 	boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
87 }
88 
89 static inline bool is_boot_cpu_in_hyp_mode(void)
90 {
91 	return boot_cpu_hyp_mode;
92 }
93 
94 /*
95  * Verify that a secondary CPU is running the kernel at the same
96  * EL as that of the boot CPU.
97  */
98 void verify_cpu_run_el(void)
99 {
100 	bool in_el2 = is_kernel_in_hyp_mode();
101 	bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
102 
103 	if (in_el2 ^ boot_cpu_el2) {
104 		pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
105 					smp_processor_id(),
106 					in_el2 ? 2 : 1,
107 					boot_cpu_el2 ? 2 : 1);
108 		cpu_panic_kernel();
109 	}
110 }
111 
112 #else
113 static inline void save_boot_cpu_run_el(void) {}
114 #endif
115 
116 #ifdef CONFIG_HOTPLUG_CPU
117 static int op_cpu_kill(unsigned int cpu);
118 #else
119 static inline int op_cpu_kill(unsigned int cpu)
120 {
121 	return -ENOSYS;
122 }
123 #endif
124 
125 
126 /*
127  * Boot a secondary CPU, and assign it the specified idle task.
128  * This also gives us the initial stack to use for this CPU.
129  */
130 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
131 {
132 	if (cpu_ops[cpu]->cpu_boot)
133 		return cpu_ops[cpu]->cpu_boot(cpu);
134 
135 	return -EOPNOTSUPP;
136 }
137 
138 static DECLARE_COMPLETION(cpu_running);
139 
140 int __cpu_up(unsigned int cpu, struct task_struct *idle)
141 {
142 	int ret;
143 	long status;
144 
145 	/*
146 	 * We need to tell the secondary core where to find its stack and the
147 	 * page tables.
148 	 */
149 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
150 	update_cpu_boot_status(CPU_MMU_OFF);
151 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
152 
153 	/*
154 	 * Now bring the CPU into our world.
155 	 */
156 	ret = boot_secondary(cpu, idle);
157 	if (ret == 0) {
158 		/*
159 		 * CPU was successfully started, wait for it to come online or
160 		 * time out.
161 		 */
162 		wait_for_completion_timeout(&cpu_running,
163 					    msecs_to_jiffies(1000));
164 
165 		if (!cpu_online(cpu)) {
166 			pr_crit("CPU%u: failed to come online\n", cpu);
167 			ret = -EIO;
168 		}
169 	} else {
170 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
171 	}
172 
173 	secondary_data.stack = NULL;
174 	status = READ_ONCE(secondary_data.status);
175 	if (ret && status) {
176 
177 		if (status == CPU_MMU_OFF)
178 			status = READ_ONCE(__early_cpu_boot_status);
179 
180 		switch (status) {
181 		default:
182 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
183 					cpu, status);
184 			break;
185 		case CPU_KILL_ME:
186 			if (!op_cpu_kill(cpu)) {
187 				pr_crit("CPU%u: died during early boot\n", cpu);
188 				break;
189 			}
190 			/* Fall through */
191 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
192 		case CPU_STUCK_IN_KERNEL:
193 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
194 			cpus_stuck_in_kernel++;
195 			break;
196 		case CPU_PANIC_KERNEL:
197 			panic("CPU%u detected unsupported configuration\n", cpu);
198 		}
199 	}
200 
201 	return ret;
202 }
203 
204 static void smp_store_cpu_info(unsigned int cpuid)
205 {
206 	store_cpu_topology(cpuid);
207 	numa_store_cpu_info(cpuid);
208 }
209 
210 /*
211  * This is the secondary CPU boot entry.  We're using this CPUs
212  * idle thread stack, but a set of temporary page tables.
213  */
214 asmlinkage void secondary_start_kernel(void)
215 {
216 	struct mm_struct *mm = &init_mm;
217 	unsigned int cpu = smp_processor_id();
218 
219 	/*
220 	 * All kernel threads share the same mm context; grab a
221 	 * reference and switch to it.
222 	 */
223 	atomic_inc(&mm->mm_count);
224 	current->active_mm = mm;
225 
226 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
227 
228 	/*
229 	 * TTBR0 is only used for the identity mapping at this stage. Make it
230 	 * point to zero page to avoid speculatively fetching new entries.
231 	 */
232 	cpu_uninstall_idmap();
233 
234 	preempt_disable();
235 	trace_hardirqs_off();
236 
237 	/*
238 	 * If the system has established the capabilities, make sure
239 	 * this CPU ticks all of those. If it doesn't, the CPU will
240 	 * fail to come online.
241 	 */
242 	verify_local_cpu_capabilities();
243 
244 	if (cpu_ops[cpu]->cpu_postboot)
245 		cpu_ops[cpu]->cpu_postboot();
246 
247 	/*
248 	 * Log the CPU info before it is marked online and might get read.
249 	 */
250 	cpuinfo_store_cpu();
251 
252 	/*
253 	 * Enable GIC and timers.
254 	 */
255 	notify_cpu_starting(cpu);
256 
257 	smp_store_cpu_info(cpu);
258 
259 	/*
260 	 * OK, now it's safe to let the boot CPU continue.  Wait for
261 	 * the CPU migration code to notice that the CPU is online
262 	 * before we continue.
263 	 */
264 	pr_info("CPU%u: Booted secondary processor [%08x]\n",
265 					 cpu, read_cpuid_id());
266 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
267 	set_cpu_online(cpu, true);
268 	complete(&cpu_running);
269 
270 	local_dbg_enable();
271 	local_irq_enable();
272 	local_async_enable();
273 
274 	/*
275 	 * OK, it's off to the idle thread for us
276 	 */
277 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
278 }
279 
280 #ifdef CONFIG_HOTPLUG_CPU
281 static int op_cpu_disable(unsigned int cpu)
282 {
283 	/*
284 	 * If we don't have a cpu_die method, abort before we reach the point
285 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
286 	 */
287 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
288 		return -EOPNOTSUPP;
289 
290 	/*
291 	 * We may need to abort a hot unplug for some other mechanism-specific
292 	 * reason.
293 	 */
294 	if (cpu_ops[cpu]->cpu_disable)
295 		return cpu_ops[cpu]->cpu_disable(cpu);
296 
297 	return 0;
298 }
299 
300 /*
301  * __cpu_disable runs on the processor to be shutdown.
302  */
303 int __cpu_disable(void)
304 {
305 	unsigned int cpu = smp_processor_id();
306 	int ret;
307 
308 	ret = op_cpu_disable(cpu);
309 	if (ret)
310 		return ret;
311 
312 	/*
313 	 * Take this CPU offline.  Once we clear this, we can't return,
314 	 * and we must not schedule until we're ready to give up the cpu.
315 	 */
316 	set_cpu_online(cpu, false);
317 
318 	/*
319 	 * OK - migrate IRQs away from this CPU
320 	 */
321 	irq_migrate_all_off_this_cpu();
322 
323 	return 0;
324 }
325 
326 static int op_cpu_kill(unsigned int cpu)
327 {
328 	/*
329 	 * If we have no means of synchronising with the dying CPU, then assume
330 	 * that it is really dead. We can only wait for an arbitrary length of
331 	 * time and hope that it's dead, so let's skip the wait and just hope.
332 	 */
333 	if (!cpu_ops[cpu]->cpu_kill)
334 		return 0;
335 
336 	return cpu_ops[cpu]->cpu_kill(cpu);
337 }
338 
339 /*
340  * called on the thread which is asking for a CPU to be shutdown -
341  * waits until shutdown has completed, or it is timed out.
342  */
343 void __cpu_die(unsigned int cpu)
344 {
345 	int err;
346 
347 	if (!cpu_wait_death(cpu, 5)) {
348 		pr_crit("CPU%u: cpu didn't die\n", cpu);
349 		return;
350 	}
351 	pr_notice("CPU%u: shutdown\n", cpu);
352 
353 	/*
354 	 * Now that the dying CPU is beyond the point of no return w.r.t.
355 	 * in-kernel synchronisation, try to get the firwmare to help us to
356 	 * verify that it has really left the kernel before we consider
357 	 * clobbering anything it might still be using.
358 	 */
359 	err = op_cpu_kill(cpu);
360 	if (err)
361 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
362 			cpu, err);
363 }
364 
365 /*
366  * Called from the idle thread for the CPU which has been shutdown.
367  *
368  * Note that we disable IRQs here, but do not re-enable them
369  * before returning to the caller. This is also the behaviour
370  * of the other hotplug-cpu capable cores, so presumably coming
371  * out of idle fixes this.
372  */
373 void cpu_die(void)
374 {
375 	unsigned int cpu = smp_processor_id();
376 
377 	idle_task_exit();
378 
379 	local_irq_disable();
380 
381 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
382 	(void)cpu_report_death();
383 
384 	/*
385 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
386 	 * mechanism must perform all required cache maintenance to ensure that
387 	 * no dirty lines are lost in the process of shutting down the CPU.
388 	 */
389 	cpu_ops[cpu]->cpu_die(cpu);
390 
391 	BUG();
392 }
393 #endif
394 
395 /*
396  * Kill the calling secondary CPU, early in bringup before it is turned
397  * online.
398  */
399 void cpu_die_early(void)
400 {
401 	int cpu = smp_processor_id();
402 
403 	pr_crit("CPU%d: will not boot\n", cpu);
404 
405 	/* Mark this CPU absent */
406 	set_cpu_present(cpu, 0);
407 
408 #ifdef CONFIG_HOTPLUG_CPU
409 	update_cpu_boot_status(CPU_KILL_ME);
410 	/* Check if we can park ourselves */
411 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
412 		cpu_ops[cpu]->cpu_die(cpu);
413 #endif
414 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
415 
416 	cpu_park_loop();
417 }
418 
419 static void __init hyp_mode_check(void)
420 {
421 	if (is_hyp_mode_available())
422 		pr_info("CPU: All CPU(s) started at EL2\n");
423 	else if (is_hyp_mode_mismatched())
424 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
425 			   "CPU: CPUs started in inconsistent modes");
426 	else
427 		pr_info("CPU: All CPU(s) started at EL1\n");
428 }
429 
430 void __init smp_cpus_done(unsigned int max_cpus)
431 {
432 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
433 	setup_cpu_features();
434 	hyp_mode_check();
435 	apply_alternatives_all();
436 }
437 
438 void __init smp_prepare_boot_cpu(void)
439 {
440 	cpuinfo_store_boot_cpu();
441 	save_boot_cpu_run_el();
442 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
443 }
444 
445 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
446 {
447 	const __be32 *cell;
448 	u64 hwid;
449 
450 	/*
451 	 * A cpu node with missing "reg" property is
452 	 * considered invalid to build a cpu_logical_map
453 	 * entry.
454 	 */
455 	cell = of_get_property(dn, "reg", NULL);
456 	if (!cell) {
457 		pr_err("%s: missing reg property\n", dn->full_name);
458 		return INVALID_HWID;
459 	}
460 
461 	hwid = of_read_number(cell, of_n_addr_cells(dn));
462 	/*
463 	 * Non affinity bits must be set to 0 in the DT
464 	 */
465 	if (hwid & ~MPIDR_HWID_BITMASK) {
466 		pr_err("%s: invalid reg property\n", dn->full_name);
467 		return INVALID_HWID;
468 	}
469 	return hwid;
470 }
471 
472 /*
473  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
474  * entries and check for duplicates. If any is found just ignore the
475  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
476  * matching valid MPIDR values.
477  */
478 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
479 {
480 	unsigned int i;
481 
482 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
483 		if (cpu_logical_map(i) == hwid)
484 			return true;
485 	return false;
486 }
487 
488 /*
489  * Initialize cpu operations for a logical cpu and
490  * set it in the possible mask on success
491  */
492 static int __init smp_cpu_setup(int cpu)
493 {
494 	if (cpu_read_ops(cpu))
495 		return -ENODEV;
496 
497 	if (cpu_ops[cpu]->cpu_init(cpu))
498 		return -ENODEV;
499 
500 	set_cpu_possible(cpu, true);
501 
502 	return 0;
503 }
504 
505 static bool bootcpu_valid __initdata;
506 static unsigned int cpu_count = 1;
507 
508 #ifdef CONFIG_ACPI
509 /*
510  * acpi_map_gic_cpu_interface - parse processor MADT entry
511  *
512  * Carry out sanity checks on MADT processor entry and initialize
513  * cpu_logical_map on success
514  */
515 static void __init
516 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
517 {
518 	u64 hwid = processor->arm_mpidr;
519 
520 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
521 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
522 		return;
523 	}
524 
525 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
526 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
527 		return;
528 	}
529 
530 	if (is_mpidr_duplicate(cpu_count, hwid)) {
531 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
532 		return;
533 	}
534 
535 	/* Check if GICC structure of boot CPU is available in the MADT */
536 	if (cpu_logical_map(0) == hwid) {
537 		if (bootcpu_valid) {
538 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
539 			       hwid);
540 			return;
541 		}
542 		bootcpu_valid = true;
543 		return;
544 	}
545 
546 	if (cpu_count >= NR_CPUS)
547 		return;
548 
549 	/* map the logical cpu id to cpu MPIDR */
550 	cpu_logical_map(cpu_count) = hwid;
551 
552 	/*
553 	 * Set-up the ACPI parking protocol cpu entries
554 	 * while initializing the cpu_logical_map to
555 	 * avoid parsing MADT entries multiple times for
556 	 * nothing (ie a valid cpu_logical_map entry should
557 	 * contain a valid parking protocol data set to
558 	 * initialize the cpu if the parking protocol is
559 	 * the only available enable method).
560 	 */
561 	acpi_set_mailbox_entry(cpu_count, processor);
562 
563 	cpu_count++;
564 }
565 
566 static int __init
567 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
568 			     const unsigned long end)
569 {
570 	struct acpi_madt_generic_interrupt *processor;
571 
572 	processor = (struct acpi_madt_generic_interrupt *)header;
573 	if (BAD_MADT_GICC_ENTRY(processor, end))
574 		return -EINVAL;
575 
576 	acpi_table_print_madt_entry(header);
577 
578 	acpi_map_gic_cpu_interface(processor);
579 
580 	return 0;
581 }
582 #else
583 #define acpi_table_parse_madt(...)	do { } while (0)
584 #endif
585 
586 /*
587  * Enumerate the possible CPU set from the device tree and build the
588  * cpu logical map array containing MPIDR values related to logical
589  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
590  */
591 static void __init of_parse_and_init_cpus(void)
592 {
593 	struct device_node *dn = NULL;
594 
595 	while ((dn = of_find_node_by_type(dn, "cpu"))) {
596 		u64 hwid = of_get_cpu_mpidr(dn);
597 
598 		if (hwid == INVALID_HWID)
599 			goto next;
600 
601 		if (is_mpidr_duplicate(cpu_count, hwid)) {
602 			pr_err("%s: duplicate cpu reg properties in the DT\n",
603 				dn->full_name);
604 			goto next;
605 		}
606 
607 		/*
608 		 * The numbering scheme requires that the boot CPU
609 		 * must be assigned logical id 0. Record it so that
610 		 * the logical map built from DT is validated and can
611 		 * be used.
612 		 */
613 		if (hwid == cpu_logical_map(0)) {
614 			if (bootcpu_valid) {
615 				pr_err("%s: duplicate boot cpu reg property in DT\n",
616 					dn->full_name);
617 				goto next;
618 			}
619 
620 			bootcpu_valid = true;
621 
622 			/*
623 			 * cpu_logical_map has already been
624 			 * initialized and the boot cpu doesn't need
625 			 * the enable-method so continue without
626 			 * incrementing cpu.
627 			 */
628 			continue;
629 		}
630 
631 		if (cpu_count >= NR_CPUS)
632 			goto next;
633 
634 		pr_debug("cpu logical map 0x%llx\n", hwid);
635 		cpu_logical_map(cpu_count) = hwid;
636 
637 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
638 next:
639 		cpu_count++;
640 	}
641 }
642 
643 /*
644  * Enumerate the possible CPU set from the device tree or ACPI and build the
645  * cpu logical map array containing MPIDR values related to logical
646  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
647  */
648 void __init smp_init_cpus(void)
649 {
650 	int i;
651 
652 	if (acpi_disabled)
653 		of_parse_and_init_cpus();
654 	else
655 		/*
656 		 * do a walk of MADT to determine how many CPUs
657 		 * we have including disabled CPUs, and get information
658 		 * we need for SMP init
659 		 */
660 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
661 				      acpi_parse_gic_cpu_interface, 0);
662 
663 	if (cpu_count > NR_CPUS)
664 		pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n",
665 			cpu_count, NR_CPUS);
666 
667 	if (!bootcpu_valid) {
668 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
669 		return;
670 	}
671 
672 	/*
673 	 * We need to set the cpu_logical_map entries before enabling
674 	 * the cpus so that cpu processor description entries (DT cpu nodes
675 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
676 	 * with entries in cpu_logical_map while initializing the cpus.
677 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
678 	 */
679 	for (i = 1; i < NR_CPUS; i++) {
680 		if (cpu_logical_map(i) != INVALID_HWID) {
681 			if (smp_cpu_setup(i))
682 				cpu_logical_map(i) = INVALID_HWID;
683 		}
684 	}
685 }
686 
687 void __init smp_prepare_cpus(unsigned int max_cpus)
688 {
689 	int err;
690 	unsigned int cpu;
691 
692 	init_cpu_topology();
693 
694 	smp_store_cpu_info(smp_processor_id());
695 
696 	/*
697 	 * Initialise the present map (which describes the set of CPUs
698 	 * actually populated at the present time) and release the
699 	 * secondaries from the bootloader.
700 	 */
701 	for_each_possible_cpu(cpu) {
702 
703 		if (cpu == smp_processor_id())
704 			continue;
705 
706 		if (!cpu_ops[cpu])
707 			continue;
708 
709 		err = cpu_ops[cpu]->cpu_prepare(cpu);
710 		if (err)
711 			continue;
712 
713 		set_cpu_present(cpu, true);
714 	}
715 }
716 
717 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
718 
719 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
720 {
721 	__smp_cross_call = fn;
722 }
723 
724 static const char *ipi_types[NR_IPI] __tracepoint_string = {
725 #define S(x,s)	[x] = s
726 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
727 	S(IPI_CALL_FUNC, "Function call interrupts"),
728 	S(IPI_CPU_STOP, "CPU stop interrupts"),
729 	S(IPI_TIMER, "Timer broadcast interrupts"),
730 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
731 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
732 };
733 
734 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
735 {
736 	trace_ipi_raise(target, ipi_types[ipinr]);
737 	__smp_cross_call(target, ipinr);
738 }
739 
740 void show_ipi_list(struct seq_file *p, int prec)
741 {
742 	unsigned int cpu, i;
743 
744 	for (i = 0; i < NR_IPI; i++) {
745 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
746 			   prec >= 4 ? " " : "");
747 		for_each_online_cpu(cpu)
748 			seq_printf(p, "%10u ",
749 				   __get_irq_stat(cpu, ipi_irqs[i]));
750 		seq_printf(p, "      %s\n", ipi_types[i]);
751 	}
752 }
753 
754 u64 smp_irq_stat_cpu(unsigned int cpu)
755 {
756 	u64 sum = 0;
757 	int i;
758 
759 	for (i = 0; i < NR_IPI; i++)
760 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
761 
762 	return sum;
763 }
764 
765 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
766 {
767 	smp_cross_call(mask, IPI_CALL_FUNC);
768 }
769 
770 void arch_send_call_function_single_ipi(int cpu)
771 {
772 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
773 }
774 
775 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
776 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
777 {
778 	smp_cross_call(mask, IPI_WAKEUP);
779 }
780 #endif
781 
782 #ifdef CONFIG_IRQ_WORK
783 void arch_irq_work_raise(void)
784 {
785 	if (__smp_cross_call)
786 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
787 }
788 #endif
789 
790 /*
791  * ipi_cpu_stop - handle IPI from smp_send_stop()
792  */
793 static void ipi_cpu_stop(unsigned int cpu)
794 {
795 	set_cpu_online(cpu, false);
796 
797 	local_irq_disable();
798 
799 	while (1)
800 		cpu_relax();
801 }
802 
803 /*
804  * Main handler for inter-processor interrupts
805  */
806 void handle_IPI(int ipinr, struct pt_regs *regs)
807 {
808 	unsigned int cpu = smp_processor_id();
809 	struct pt_regs *old_regs = set_irq_regs(regs);
810 
811 	if ((unsigned)ipinr < NR_IPI) {
812 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
813 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
814 	}
815 
816 	switch (ipinr) {
817 	case IPI_RESCHEDULE:
818 		scheduler_ipi();
819 		break;
820 
821 	case IPI_CALL_FUNC:
822 		irq_enter();
823 		generic_smp_call_function_interrupt();
824 		irq_exit();
825 		break;
826 
827 	case IPI_CPU_STOP:
828 		irq_enter();
829 		ipi_cpu_stop(cpu);
830 		irq_exit();
831 		break;
832 
833 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
834 	case IPI_TIMER:
835 		irq_enter();
836 		tick_receive_broadcast();
837 		irq_exit();
838 		break;
839 #endif
840 
841 #ifdef CONFIG_IRQ_WORK
842 	case IPI_IRQ_WORK:
843 		irq_enter();
844 		irq_work_run();
845 		irq_exit();
846 		break;
847 #endif
848 
849 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
850 	case IPI_WAKEUP:
851 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
852 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
853 			  cpu);
854 		break;
855 #endif
856 
857 	default:
858 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
859 		break;
860 	}
861 
862 	if ((unsigned)ipinr < NR_IPI)
863 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
864 	set_irq_regs(old_regs);
865 }
866 
867 void smp_send_reschedule(int cpu)
868 {
869 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
870 }
871 
872 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
873 void tick_broadcast(const struct cpumask *mask)
874 {
875 	smp_cross_call(mask, IPI_TIMER);
876 }
877 #endif
878 
879 void smp_send_stop(void)
880 {
881 	unsigned long timeout;
882 
883 	if (num_online_cpus() > 1) {
884 		cpumask_t mask;
885 
886 		cpumask_copy(&mask, cpu_online_mask);
887 		cpumask_clear_cpu(smp_processor_id(), &mask);
888 
889 		if (system_state == SYSTEM_BOOTING ||
890 		    system_state == SYSTEM_RUNNING)
891 			pr_crit("SMP: stopping secondary CPUs\n");
892 		smp_cross_call(&mask, IPI_CPU_STOP);
893 	}
894 
895 	/* Wait up to one second for other CPUs to stop */
896 	timeout = USEC_PER_SEC;
897 	while (num_online_cpus() > 1 && timeout--)
898 		udelay(1);
899 
900 	if (num_online_cpus() > 1)
901 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
902 			   cpumask_pr_args(cpu_online_mask));
903 }
904 
905 /*
906  * not supported here
907  */
908 int setup_profiling_timer(unsigned int multiplier)
909 {
910 	return -EINVAL;
911 }
912 
913 static bool have_cpu_die(void)
914 {
915 #ifdef CONFIG_HOTPLUG_CPU
916 	int any_cpu = raw_smp_processor_id();
917 
918 	if (cpu_ops[any_cpu]->cpu_die)
919 		return true;
920 #endif
921 	return false;
922 }
923 
924 bool cpus_are_stuck_in_kernel(void)
925 {
926 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
927 
928 	return !!cpus_stuck_in_kernel || smp_spin_tables;
929 }
930