1 /* 2 * SMP initialisation and IPI support 3 * Based on arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/acpi.h> 21 #include <linux/arm_sdei.h> 22 #include <linux/delay.h> 23 #include <linux/init.h> 24 #include <linux/spinlock.h> 25 #include <linux/sched/mm.h> 26 #include <linux/sched/hotplug.h> 27 #include <linux/sched/task_stack.h> 28 #include <linux/interrupt.h> 29 #include <linux/cache.h> 30 #include <linux/profile.h> 31 #include <linux/errno.h> 32 #include <linux/mm.h> 33 #include <linux/err.h> 34 #include <linux/cpu.h> 35 #include <linux/smp.h> 36 #include <linux/seq_file.h> 37 #include <linux/irq.h> 38 #include <linux/percpu.h> 39 #include <linux/clockchips.h> 40 #include <linux/completion.h> 41 #include <linux/of.h> 42 #include <linux/irq_work.h> 43 #include <linux/kexec.h> 44 45 #include <asm/alternative.h> 46 #include <asm/atomic.h> 47 #include <asm/cacheflush.h> 48 #include <asm/cpu.h> 49 #include <asm/cputype.h> 50 #include <asm/cpu_ops.h> 51 #include <asm/daifflags.h> 52 #include <asm/mmu_context.h> 53 #include <asm/numa.h> 54 #include <asm/pgtable.h> 55 #include <asm/pgalloc.h> 56 #include <asm/processor.h> 57 #include <asm/smp_plat.h> 58 #include <asm/sections.h> 59 #include <asm/tlbflush.h> 60 #include <asm/ptrace.h> 61 #include <asm/virt.h> 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/ipi.h> 65 66 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); 67 EXPORT_PER_CPU_SYMBOL(cpu_number); 68 69 /* 70 * as from 2.5, kernels no longer have an init_tasks structure 71 * so we need some other way of telling a new secondary core 72 * where to place its SVC stack 73 */ 74 struct secondary_data secondary_data; 75 /* Number of CPUs which aren't online, but looping in kernel text. */ 76 int cpus_stuck_in_kernel; 77 78 enum ipi_msg_type { 79 IPI_RESCHEDULE, 80 IPI_CALL_FUNC, 81 IPI_CPU_STOP, 82 IPI_CPU_CRASH_STOP, 83 IPI_TIMER, 84 IPI_IRQ_WORK, 85 IPI_WAKEUP 86 }; 87 88 #ifdef CONFIG_HOTPLUG_CPU 89 static int op_cpu_kill(unsigned int cpu); 90 #else 91 static inline int op_cpu_kill(unsigned int cpu) 92 { 93 return -ENOSYS; 94 } 95 #endif 96 97 98 /* 99 * Boot a secondary CPU, and assign it the specified idle task. 100 * This also gives us the initial stack to use for this CPU. 101 */ 102 static int boot_secondary(unsigned int cpu, struct task_struct *idle) 103 { 104 if (cpu_ops[cpu]->cpu_boot) 105 return cpu_ops[cpu]->cpu_boot(cpu); 106 107 return -EOPNOTSUPP; 108 } 109 110 static DECLARE_COMPLETION(cpu_running); 111 112 int __cpu_up(unsigned int cpu, struct task_struct *idle) 113 { 114 int ret; 115 long status; 116 117 /* 118 * We need to tell the secondary core where to find its stack and the 119 * page tables. 120 */ 121 secondary_data.task = idle; 122 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; 123 update_cpu_boot_status(CPU_MMU_OFF); 124 __flush_dcache_area(&secondary_data, sizeof(secondary_data)); 125 126 /* 127 * Now bring the CPU into our world. 128 */ 129 ret = boot_secondary(cpu, idle); 130 if (ret == 0) { 131 /* 132 * CPU was successfully started, wait for it to come online or 133 * time out. 134 */ 135 wait_for_completion_timeout(&cpu_running, 136 msecs_to_jiffies(1000)); 137 138 if (!cpu_online(cpu)) { 139 pr_crit("CPU%u: failed to come online\n", cpu); 140 ret = -EIO; 141 } 142 } else { 143 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 144 } 145 146 secondary_data.task = NULL; 147 secondary_data.stack = NULL; 148 status = READ_ONCE(secondary_data.status); 149 if (ret && status) { 150 151 if (status == CPU_MMU_OFF) 152 status = READ_ONCE(__early_cpu_boot_status); 153 154 switch (status) { 155 default: 156 pr_err("CPU%u: failed in unknown state : 0x%lx\n", 157 cpu, status); 158 break; 159 case CPU_KILL_ME: 160 if (!op_cpu_kill(cpu)) { 161 pr_crit("CPU%u: died during early boot\n", cpu); 162 break; 163 } 164 /* Fall through */ 165 pr_crit("CPU%u: may not have shut down cleanly\n", cpu); 166 case CPU_STUCK_IN_KERNEL: 167 pr_crit("CPU%u: is stuck in kernel\n", cpu); 168 cpus_stuck_in_kernel++; 169 break; 170 case CPU_PANIC_KERNEL: 171 panic("CPU%u detected unsupported configuration\n", cpu); 172 } 173 } 174 175 return ret; 176 } 177 178 /* 179 * This is the secondary CPU boot entry. We're using this CPUs 180 * idle thread stack, but a set of temporary page tables. 181 */ 182 asmlinkage notrace void secondary_start_kernel(void) 183 { 184 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 185 struct mm_struct *mm = &init_mm; 186 unsigned int cpu; 187 188 cpu = task_cpu(current); 189 set_my_cpu_offset(per_cpu_offset(cpu)); 190 191 /* 192 * All kernel threads share the same mm context; grab a 193 * reference and switch to it. 194 */ 195 mmgrab(mm); 196 current->active_mm = mm; 197 198 /* 199 * TTBR0 is only used for the identity mapping at this stage. Make it 200 * point to zero page to avoid speculatively fetching new entries. 201 */ 202 cpu_uninstall_idmap(); 203 204 preempt_disable(); 205 trace_hardirqs_off(); 206 207 /* 208 * If the system has established the capabilities, make sure 209 * this CPU ticks all of those. If it doesn't, the CPU will 210 * fail to come online. 211 */ 212 check_local_cpu_capabilities(); 213 214 if (cpu_ops[cpu]->cpu_postboot) 215 cpu_ops[cpu]->cpu_postboot(); 216 217 /* 218 * Log the CPU info before it is marked online and might get read. 219 */ 220 cpuinfo_store_cpu(); 221 222 /* 223 * Enable GIC and timers. 224 */ 225 notify_cpu_starting(cpu); 226 227 store_cpu_topology(cpu); 228 numa_add_cpu(cpu); 229 230 /* 231 * OK, now it's safe to let the boot CPU continue. Wait for 232 * the CPU migration code to notice that the CPU is online 233 * before we continue. 234 */ 235 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", 236 cpu, (unsigned long)mpidr, 237 read_cpuid_id()); 238 update_cpu_boot_status(CPU_BOOT_SUCCESS); 239 set_cpu_online(cpu, true); 240 complete(&cpu_running); 241 242 local_daif_restore(DAIF_PROCCTX); 243 244 /* 245 * OK, it's off to the idle thread for us 246 */ 247 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 248 } 249 250 #ifdef CONFIG_HOTPLUG_CPU 251 static int op_cpu_disable(unsigned int cpu) 252 { 253 /* 254 * If we don't have a cpu_die method, abort before we reach the point 255 * of no return. CPU0 may not have an cpu_ops, so test for it. 256 */ 257 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die) 258 return -EOPNOTSUPP; 259 260 /* 261 * We may need to abort a hot unplug for some other mechanism-specific 262 * reason. 263 */ 264 if (cpu_ops[cpu]->cpu_disable) 265 return cpu_ops[cpu]->cpu_disable(cpu); 266 267 return 0; 268 } 269 270 /* 271 * __cpu_disable runs on the processor to be shutdown. 272 */ 273 int __cpu_disable(void) 274 { 275 unsigned int cpu = smp_processor_id(); 276 int ret; 277 278 ret = op_cpu_disable(cpu); 279 if (ret) 280 return ret; 281 282 remove_cpu_topology(cpu); 283 numa_remove_cpu(cpu); 284 285 /* 286 * Take this CPU offline. Once we clear this, we can't return, 287 * and we must not schedule until we're ready to give up the cpu. 288 */ 289 set_cpu_online(cpu, false); 290 291 /* 292 * OK - migrate IRQs away from this CPU 293 */ 294 irq_migrate_all_off_this_cpu(); 295 296 return 0; 297 } 298 299 static int op_cpu_kill(unsigned int cpu) 300 { 301 /* 302 * If we have no means of synchronising with the dying CPU, then assume 303 * that it is really dead. We can only wait for an arbitrary length of 304 * time and hope that it's dead, so let's skip the wait and just hope. 305 */ 306 if (!cpu_ops[cpu]->cpu_kill) 307 return 0; 308 309 return cpu_ops[cpu]->cpu_kill(cpu); 310 } 311 312 /* 313 * called on the thread which is asking for a CPU to be shutdown - 314 * waits until shutdown has completed, or it is timed out. 315 */ 316 void __cpu_die(unsigned int cpu) 317 { 318 int err; 319 320 if (!cpu_wait_death(cpu, 5)) { 321 pr_crit("CPU%u: cpu didn't die\n", cpu); 322 return; 323 } 324 pr_notice("CPU%u: shutdown\n", cpu); 325 326 /* 327 * Now that the dying CPU is beyond the point of no return w.r.t. 328 * in-kernel synchronisation, try to get the firwmare to help us to 329 * verify that it has really left the kernel before we consider 330 * clobbering anything it might still be using. 331 */ 332 err = op_cpu_kill(cpu); 333 if (err) 334 pr_warn("CPU%d may not have shut down cleanly: %d\n", 335 cpu, err); 336 } 337 338 /* 339 * Called from the idle thread for the CPU which has been shutdown. 340 * 341 */ 342 void cpu_die(void) 343 { 344 unsigned int cpu = smp_processor_id(); 345 346 idle_task_exit(); 347 348 local_daif_mask(); 349 350 /* Tell __cpu_die() that this CPU is now safe to dispose of */ 351 (void)cpu_report_death(); 352 353 /* 354 * Actually shutdown the CPU. This must never fail. The specific hotplug 355 * mechanism must perform all required cache maintenance to ensure that 356 * no dirty lines are lost in the process of shutting down the CPU. 357 */ 358 cpu_ops[cpu]->cpu_die(cpu); 359 360 BUG(); 361 } 362 #endif 363 364 /* 365 * Kill the calling secondary CPU, early in bringup before it is turned 366 * online. 367 */ 368 void cpu_die_early(void) 369 { 370 int cpu = smp_processor_id(); 371 372 pr_crit("CPU%d: will not boot\n", cpu); 373 374 /* Mark this CPU absent */ 375 set_cpu_present(cpu, 0); 376 377 #ifdef CONFIG_HOTPLUG_CPU 378 update_cpu_boot_status(CPU_KILL_ME); 379 /* Check if we can park ourselves */ 380 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die) 381 cpu_ops[cpu]->cpu_die(cpu); 382 #endif 383 update_cpu_boot_status(CPU_STUCK_IN_KERNEL); 384 385 cpu_park_loop(); 386 } 387 388 static void __init hyp_mode_check(void) 389 { 390 if (is_hyp_mode_available()) 391 pr_info("CPU: All CPU(s) started at EL2\n"); 392 else if (is_hyp_mode_mismatched()) 393 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, 394 "CPU: CPUs started in inconsistent modes"); 395 else 396 pr_info("CPU: All CPU(s) started at EL1\n"); 397 } 398 399 void __init smp_cpus_done(unsigned int max_cpus) 400 { 401 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); 402 setup_cpu_features(); 403 hyp_mode_check(); 404 apply_alternatives_all(); 405 mark_linear_text_alias_ro(); 406 } 407 408 void __init smp_prepare_boot_cpu(void) 409 { 410 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 411 /* 412 * Initialise the static keys early as they may be enabled by the 413 * cpufeature code. 414 */ 415 jump_label_init(); 416 cpuinfo_store_boot_cpu(); 417 } 418 419 static u64 __init of_get_cpu_mpidr(struct device_node *dn) 420 { 421 const __be32 *cell; 422 u64 hwid; 423 424 /* 425 * A cpu node with missing "reg" property is 426 * considered invalid to build a cpu_logical_map 427 * entry. 428 */ 429 cell = of_get_property(dn, "reg", NULL); 430 if (!cell) { 431 pr_err("%pOF: missing reg property\n", dn); 432 return INVALID_HWID; 433 } 434 435 hwid = of_read_number(cell, of_n_addr_cells(dn)); 436 /* 437 * Non affinity bits must be set to 0 in the DT 438 */ 439 if (hwid & ~MPIDR_HWID_BITMASK) { 440 pr_err("%pOF: invalid reg property\n", dn); 441 return INVALID_HWID; 442 } 443 return hwid; 444 } 445 446 /* 447 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized 448 * entries and check for duplicates. If any is found just ignore the 449 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid 450 * matching valid MPIDR values. 451 */ 452 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) 453 { 454 unsigned int i; 455 456 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) 457 if (cpu_logical_map(i) == hwid) 458 return true; 459 return false; 460 } 461 462 /* 463 * Initialize cpu operations for a logical cpu and 464 * set it in the possible mask on success 465 */ 466 static int __init smp_cpu_setup(int cpu) 467 { 468 if (cpu_read_ops(cpu)) 469 return -ENODEV; 470 471 if (cpu_ops[cpu]->cpu_init(cpu)) 472 return -ENODEV; 473 474 set_cpu_possible(cpu, true); 475 476 return 0; 477 } 478 479 static bool bootcpu_valid __initdata; 480 static unsigned int cpu_count = 1; 481 482 #ifdef CONFIG_ACPI 483 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; 484 485 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) 486 { 487 return &cpu_madt_gicc[cpu]; 488 } 489 490 /* 491 * acpi_map_gic_cpu_interface - parse processor MADT entry 492 * 493 * Carry out sanity checks on MADT processor entry and initialize 494 * cpu_logical_map on success 495 */ 496 static void __init 497 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) 498 { 499 u64 hwid = processor->arm_mpidr; 500 501 if (!(processor->flags & ACPI_MADT_ENABLED)) { 502 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); 503 return; 504 } 505 506 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { 507 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); 508 return; 509 } 510 511 if (is_mpidr_duplicate(cpu_count, hwid)) { 512 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); 513 return; 514 } 515 516 /* Check if GICC structure of boot CPU is available in the MADT */ 517 if (cpu_logical_map(0) == hwid) { 518 if (bootcpu_valid) { 519 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", 520 hwid); 521 return; 522 } 523 bootcpu_valid = true; 524 cpu_madt_gicc[0] = *processor; 525 return; 526 } 527 528 if (cpu_count >= NR_CPUS) 529 return; 530 531 /* map the logical cpu id to cpu MPIDR */ 532 cpu_logical_map(cpu_count) = hwid; 533 534 cpu_madt_gicc[cpu_count] = *processor; 535 536 /* 537 * Set-up the ACPI parking protocol cpu entries 538 * while initializing the cpu_logical_map to 539 * avoid parsing MADT entries multiple times for 540 * nothing (ie a valid cpu_logical_map entry should 541 * contain a valid parking protocol data set to 542 * initialize the cpu if the parking protocol is 543 * the only available enable method). 544 */ 545 acpi_set_mailbox_entry(cpu_count, processor); 546 547 cpu_count++; 548 } 549 550 static int __init 551 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header, 552 const unsigned long end) 553 { 554 struct acpi_madt_generic_interrupt *processor; 555 556 processor = (struct acpi_madt_generic_interrupt *)header; 557 if (BAD_MADT_GICC_ENTRY(processor, end)) 558 return -EINVAL; 559 560 acpi_table_print_madt_entry(header); 561 562 acpi_map_gic_cpu_interface(processor); 563 564 return 0; 565 } 566 567 static void __init acpi_parse_and_init_cpus(void) 568 { 569 int i; 570 571 /* 572 * do a walk of MADT to determine how many CPUs 573 * we have including disabled CPUs, and get information 574 * we need for SMP init. 575 */ 576 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, 577 acpi_parse_gic_cpu_interface, 0); 578 579 /* 580 * In ACPI, SMP and CPU NUMA information is provided in separate 581 * static tables, namely the MADT and the SRAT. 582 * 583 * Thus, it is simpler to first create the cpu logical map through 584 * an MADT walk and then map the logical cpus to their node ids 585 * as separate steps. 586 */ 587 acpi_map_cpus_to_nodes(); 588 589 for (i = 0; i < nr_cpu_ids; i++) 590 early_map_cpu_to_node(i, acpi_numa_get_nid(i)); 591 } 592 #else 593 #define acpi_parse_and_init_cpus(...) do { } while (0) 594 #endif 595 596 /* 597 * Enumerate the possible CPU set from the device tree and build the 598 * cpu logical map array containing MPIDR values related to logical 599 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 600 */ 601 static void __init of_parse_and_init_cpus(void) 602 { 603 struct device_node *dn; 604 605 for_each_of_cpu_node(dn) { 606 u64 hwid = of_get_cpu_mpidr(dn); 607 608 if (hwid == INVALID_HWID) 609 goto next; 610 611 if (is_mpidr_duplicate(cpu_count, hwid)) { 612 pr_err("%pOF: duplicate cpu reg properties in the DT\n", 613 dn); 614 goto next; 615 } 616 617 /* 618 * The numbering scheme requires that the boot CPU 619 * must be assigned logical id 0. Record it so that 620 * the logical map built from DT is validated and can 621 * be used. 622 */ 623 if (hwid == cpu_logical_map(0)) { 624 if (bootcpu_valid) { 625 pr_err("%pOF: duplicate boot cpu reg property in DT\n", 626 dn); 627 goto next; 628 } 629 630 bootcpu_valid = true; 631 early_map_cpu_to_node(0, of_node_to_nid(dn)); 632 633 /* 634 * cpu_logical_map has already been 635 * initialized and the boot cpu doesn't need 636 * the enable-method so continue without 637 * incrementing cpu. 638 */ 639 continue; 640 } 641 642 if (cpu_count >= NR_CPUS) 643 goto next; 644 645 pr_debug("cpu logical map 0x%llx\n", hwid); 646 cpu_logical_map(cpu_count) = hwid; 647 648 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); 649 next: 650 cpu_count++; 651 } 652 } 653 654 /* 655 * Enumerate the possible CPU set from the device tree or ACPI and build the 656 * cpu logical map array containing MPIDR values related to logical 657 * cpus. Assumes that cpu_logical_map(0) has already been initialized. 658 */ 659 void __init smp_init_cpus(void) 660 { 661 int i; 662 663 if (acpi_disabled) 664 of_parse_and_init_cpus(); 665 else 666 acpi_parse_and_init_cpus(); 667 668 if (cpu_count > nr_cpu_ids) 669 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", 670 cpu_count, nr_cpu_ids); 671 672 if (!bootcpu_valid) { 673 pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); 674 return; 675 } 676 677 /* 678 * We need to set the cpu_logical_map entries before enabling 679 * the cpus so that cpu processor description entries (DT cpu nodes 680 * and ACPI MADT entries) can be retrieved by matching the cpu hwid 681 * with entries in cpu_logical_map while initializing the cpus. 682 * If the cpu set-up fails, invalidate the cpu_logical_map entry. 683 */ 684 for (i = 1; i < nr_cpu_ids; i++) { 685 if (cpu_logical_map(i) != INVALID_HWID) { 686 if (smp_cpu_setup(i)) 687 cpu_logical_map(i) = INVALID_HWID; 688 } 689 } 690 } 691 692 void __init smp_prepare_cpus(unsigned int max_cpus) 693 { 694 int err; 695 unsigned int cpu; 696 unsigned int this_cpu; 697 698 init_cpu_topology(); 699 700 this_cpu = smp_processor_id(); 701 store_cpu_topology(this_cpu); 702 numa_store_cpu_info(this_cpu); 703 numa_add_cpu(this_cpu); 704 705 /* 706 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set 707 * secondary CPUs present. 708 */ 709 if (max_cpus == 0) 710 return; 711 712 /* 713 * Initialise the present map (which describes the set of CPUs 714 * actually populated at the present time) and release the 715 * secondaries from the bootloader. 716 */ 717 for_each_possible_cpu(cpu) { 718 719 per_cpu(cpu_number, cpu) = cpu; 720 721 if (cpu == smp_processor_id()) 722 continue; 723 724 if (!cpu_ops[cpu]) 725 continue; 726 727 err = cpu_ops[cpu]->cpu_prepare(cpu); 728 if (err) 729 continue; 730 731 set_cpu_present(cpu, true); 732 numa_store_cpu_info(cpu); 733 } 734 } 735 736 void (*__smp_cross_call)(const struct cpumask *, unsigned int); 737 738 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 739 { 740 __smp_cross_call = fn; 741 } 742 743 static const char *ipi_types[NR_IPI] __tracepoint_string = { 744 #define S(x,s) [x] = s 745 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 746 S(IPI_CALL_FUNC, "Function call interrupts"), 747 S(IPI_CPU_STOP, "CPU stop interrupts"), 748 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), 749 S(IPI_TIMER, "Timer broadcast interrupts"), 750 S(IPI_IRQ_WORK, "IRQ work interrupts"), 751 S(IPI_WAKEUP, "CPU wake-up interrupts"), 752 }; 753 754 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 755 { 756 trace_ipi_raise(target, ipi_types[ipinr]); 757 __smp_cross_call(target, ipinr); 758 } 759 760 void show_ipi_list(struct seq_file *p, int prec) 761 { 762 unsigned int cpu, i; 763 764 for (i = 0; i < NR_IPI; i++) { 765 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, 766 prec >= 4 ? " " : ""); 767 for_each_online_cpu(cpu) 768 seq_printf(p, "%10u ", 769 __get_irq_stat(cpu, ipi_irqs[i])); 770 seq_printf(p, " %s\n", ipi_types[i]); 771 } 772 } 773 774 u64 smp_irq_stat_cpu(unsigned int cpu) 775 { 776 u64 sum = 0; 777 int i; 778 779 for (i = 0; i < NR_IPI; i++) 780 sum += __get_irq_stat(cpu, ipi_irqs[i]); 781 782 return sum; 783 } 784 785 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 786 { 787 smp_cross_call(mask, IPI_CALL_FUNC); 788 } 789 790 void arch_send_call_function_single_ipi(int cpu) 791 { 792 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 793 } 794 795 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 796 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 797 { 798 smp_cross_call(mask, IPI_WAKEUP); 799 } 800 #endif 801 802 #ifdef CONFIG_IRQ_WORK 803 void arch_irq_work_raise(void) 804 { 805 if (__smp_cross_call) 806 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 807 } 808 #endif 809 810 /* 811 * ipi_cpu_stop - handle IPI from smp_send_stop() 812 */ 813 static void ipi_cpu_stop(unsigned int cpu) 814 { 815 set_cpu_online(cpu, false); 816 817 local_daif_mask(); 818 sdei_mask_local_cpu(); 819 820 while (1) 821 cpu_relax(); 822 } 823 824 #ifdef CONFIG_KEXEC_CORE 825 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); 826 #endif 827 828 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) 829 { 830 #ifdef CONFIG_KEXEC_CORE 831 crash_save_cpu(regs, cpu); 832 833 atomic_dec(&waiting_for_crash_ipi); 834 835 local_irq_disable(); 836 sdei_mask_local_cpu(); 837 838 #ifdef CONFIG_HOTPLUG_CPU 839 if (cpu_ops[cpu]->cpu_die) 840 cpu_ops[cpu]->cpu_die(cpu); 841 #endif 842 843 /* just in case */ 844 cpu_park_loop(); 845 #endif 846 } 847 848 /* 849 * Main handler for inter-processor interrupts 850 */ 851 void handle_IPI(int ipinr, struct pt_regs *regs) 852 { 853 unsigned int cpu = smp_processor_id(); 854 struct pt_regs *old_regs = set_irq_regs(regs); 855 856 if ((unsigned)ipinr < NR_IPI) { 857 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 858 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 859 } 860 861 switch (ipinr) { 862 case IPI_RESCHEDULE: 863 scheduler_ipi(); 864 break; 865 866 case IPI_CALL_FUNC: 867 irq_enter(); 868 generic_smp_call_function_interrupt(); 869 irq_exit(); 870 break; 871 872 case IPI_CPU_STOP: 873 irq_enter(); 874 ipi_cpu_stop(cpu); 875 irq_exit(); 876 break; 877 878 case IPI_CPU_CRASH_STOP: 879 if (IS_ENABLED(CONFIG_KEXEC_CORE)) { 880 irq_enter(); 881 ipi_cpu_crash_stop(cpu, regs); 882 883 unreachable(); 884 } 885 break; 886 887 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 888 case IPI_TIMER: 889 irq_enter(); 890 tick_receive_broadcast(); 891 irq_exit(); 892 break; 893 #endif 894 895 #ifdef CONFIG_IRQ_WORK 896 case IPI_IRQ_WORK: 897 irq_enter(); 898 irq_work_run(); 899 irq_exit(); 900 break; 901 #endif 902 903 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL 904 case IPI_WAKEUP: 905 WARN_ONCE(!acpi_parking_protocol_valid(cpu), 906 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", 907 cpu); 908 break; 909 #endif 910 911 default: 912 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); 913 break; 914 } 915 916 if ((unsigned)ipinr < NR_IPI) 917 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 918 set_irq_regs(old_regs); 919 } 920 921 void smp_send_reschedule(int cpu) 922 { 923 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 924 } 925 926 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 927 void tick_broadcast(const struct cpumask *mask) 928 { 929 smp_cross_call(mask, IPI_TIMER); 930 } 931 #endif 932 933 void smp_send_stop(void) 934 { 935 unsigned long timeout; 936 937 if (num_online_cpus() > 1) { 938 cpumask_t mask; 939 940 cpumask_copy(&mask, cpu_online_mask); 941 cpumask_clear_cpu(smp_processor_id(), &mask); 942 943 if (system_state <= SYSTEM_RUNNING) 944 pr_crit("SMP: stopping secondary CPUs\n"); 945 smp_cross_call(&mask, IPI_CPU_STOP); 946 } 947 948 /* Wait up to one second for other CPUs to stop */ 949 timeout = USEC_PER_SEC; 950 while (num_online_cpus() > 1 && timeout--) 951 udelay(1); 952 953 if (num_online_cpus() > 1) 954 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 955 cpumask_pr_args(cpu_online_mask)); 956 957 sdei_mask_local_cpu(); 958 } 959 960 #ifdef CONFIG_KEXEC_CORE 961 void crash_smp_send_stop(void) 962 { 963 static int cpus_stopped; 964 cpumask_t mask; 965 unsigned long timeout; 966 967 /* 968 * This function can be called twice in panic path, but obviously 969 * we execute this only once. 970 */ 971 if (cpus_stopped) 972 return; 973 974 cpus_stopped = 1; 975 976 if (num_online_cpus() == 1) { 977 sdei_mask_local_cpu(); 978 return; 979 } 980 981 cpumask_copy(&mask, cpu_online_mask); 982 cpumask_clear_cpu(smp_processor_id(), &mask); 983 984 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); 985 986 pr_crit("SMP: stopping secondary CPUs\n"); 987 smp_cross_call(&mask, IPI_CPU_CRASH_STOP); 988 989 /* Wait up to one second for other CPUs to stop */ 990 timeout = USEC_PER_SEC; 991 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) 992 udelay(1); 993 994 if (atomic_read(&waiting_for_crash_ipi) > 0) 995 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n", 996 cpumask_pr_args(&mask)); 997 998 sdei_mask_local_cpu(); 999 } 1000 1001 bool smp_crash_stop_failed(void) 1002 { 1003 return (atomic_read(&waiting_for_crash_ipi) > 0); 1004 } 1005 #endif 1006 1007 /* 1008 * not supported here 1009 */ 1010 int setup_profiling_timer(unsigned int multiplier) 1011 { 1012 return -EINVAL; 1013 } 1014 1015 static bool have_cpu_die(void) 1016 { 1017 #ifdef CONFIG_HOTPLUG_CPU 1018 int any_cpu = raw_smp_processor_id(); 1019 1020 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die) 1021 return true; 1022 #endif 1023 return false; 1024 } 1025 1026 bool cpus_are_stuck_in_kernel(void) 1027 { 1028 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); 1029 1030 return !!cpus_stuck_in_kernel || smp_spin_tables; 1031 } 1032